版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
北京市順義牛欄山一中2025屆高一數(shù)學第一學期期末聯(lián)考試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.甲、乙二人參加某體育項目訓練,近期的八次測試得分情況如圖,則下列結論正確的是()A.甲得分的極差大于乙得分的極差 B.甲得分的75%分位數(shù)大于乙得分的75%分位數(shù)C.甲得分的平均數(shù)小于乙得分的平均數(shù) D.甲得分的標準差小于乙得分的標準差2.如圖,在正方體中,分別為的中點,則異面直線與所成的角等于A. B.C. D.3.設,則a,b,c的大小關系為()A. B.C. D.4.已知,,,夾角為,如圖所示,若,,且D為BC中點,則的長度為A. B.C.7 D.85.已知函數(shù)的圖象如圖所示,則函數(shù)與在同一直角坐標系中的圖象是A. B.C. D.6.已知圓C與直線及都相切,圓心在直線上,則圓C的方程為()A. B.C. D.7.某幾何體的三視圖如圖所示,則該幾何體的表面積是A. B.C. D.8.將函數(shù)圖象向右平移個單位得到函數(shù)的圖象,已知的圖象關于原點對稱,則的最小正值為()A.2 B.3C.4 D.69.設,且,則下列不等式一定成立的是()A. B.C. D.10.函數(shù)有()A.最大值 B.最小值C.最大值2 D.最小值2二、填空題:本大題共6小題,每小題5分,共30分。11.已知函數(shù),則滿足的實數(shù)的取值范圍是__12.一個正方體的頂點都在球面上,它的棱長為2cm,則球的表面積為_____________13.已知函數(shù)的定義域為,當時,,若,則的解集為______14.若函數(shù)在區(qū)間上單調遞增,則實數(shù)的取值范圍是__________.15.設函數(shù),若互不相等的實數(shù)、、滿足,則的取值范圍是_________16.已知函數(shù)有兩個零點分別為a,b,則的取值范圍是_____________三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.汽車在行駛中,由于慣性的作用,剎車后還要繼續(xù)向前滑行一段距離才能停住,我們稱這段距離為“剎車距離”.剎車距離是分析事故產生原因的一個重要因素.在一個限速為40km/h的彎道上,現(xiàn)場勘查測得一輛事故汽車的剎車距離略超過10米.已知這種型號的汽車的剎車距離(單位:m)與車速(單位:km/h)之間滿足關系式,其中為常數(shù).試驗測得如下數(shù)據(jù):車速km/h20100剎車距離m355(1)求的值;(2)請你判斷這輛事故汽車是否超速,并說明理由18.已知函數(shù).(1)求的最小正周期和單調遞增區(qū)間;(2)求在區(qū)間的最大值和最小值19.設,且.(1)求a的值及的定義域;(2)求在區(qū)間上的值域.20.已知函數(shù)有如下性質:如果常數(shù),那么該函數(shù)在上是減函數(shù),在上是增函數(shù).(1)已知,,利用上述性質,求函數(shù)的單調區(qū)間和值域;(2)對于(1)中的函數(shù)和函數(shù),若對任意,總存在,使得成立,求實數(shù)a的值.21.某保險公司決定每月給推銷員確定具體的銷售目標,對推銷員實行目標管理.銷售目標確定的適當與否,直接影響公司的經濟效益和推銷員的工作積極性,為此,該公司當月隨機抽取了50位推銷員上個月的月銷售額(單位:萬元),繪制成如圖所示的頻率分布直方圖:(1)①根據(jù)圖中數(shù)據(jù),求出月銷售額在小組內的頻率;②根據(jù)直方圖估計,月銷售目標定為多少萬元時,能夠使的推銷員完成任務?并說明理由;(2)該公司決定從月銷售額為和的兩個小組中,選取2位推銷員介紹銷售經驗,求選出的推銷員來自同一個小組的概率.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】根據(jù)圖表數(shù)據(jù)特征進行判斷即可得解.【詳解】乙組數(shù)據(jù)最大值29,最小值5,極差24,甲組最大值小于29,最小值大于5,所以A選項說法錯誤;甲得分的75%分位數(shù)是20,,乙得分的75%分位數(shù)17,所以B選項說法正確;甲組具體數(shù)據(jù)不易看出,不能判斷C選項;乙組數(shù)據(jù)更集中,標準差更小,所以D選項錯誤故選:B2、B【解析】取的中點,則由三角形的中位線的性質可得平行且等于的一半,故或其補角即為異面直線與所成的角.設正方體的棱長為1,則,,故為等邊三角形,故∠EGH=60°考點:空間幾何體中異面直線所成角.【思路點睛】本題主要考查異面直線所成的角的定義和求法,找出兩異面直線所成的角,是解題的關鍵,體現(xiàn)了等價轉化的數(shù)學思想.取的中點,由三角形的中位線的性質可得或其補角即為異面直線與所成的角.判斷為等邊三角形,從而求得異面直線與所成的角的大小3、D【解析】根據(jù)指數(shù)函數(shù)的性質求得,,根據(jù)對數(shù)函數(shù)的性質求得,即可得到答案.【詳解】由題意,根據(jù)指數(shù)函數(shù)的性質,可得,由對數(shù)函數(shù)的性質,知,即所以.故選:D4、A【解析】AD為的中線,從而有,代入,根據(jù)長度進行數(shù)量積的運算便可得出的長度【詳解】根據(jù)條件:;故選A【點睛】本題考查模長公式,向量加法、減法及數(shù)乘運算,向量數(shù)量積的運算及計算公式,根據(jù)公式計算是關鍵,是基礎題.5、C【解析】根據(jù)冪函數(shù)的圖象和性質,可得a∈(0,1),再由指數(shù)函數(shù)和對數(shù)函數(shù)的圖象和性質,可得答案【詳解】由已知中函數(shù)y=xa(a∈R)的圖象可知:a∈(0,1),故函數(shù)y=a﹣x為增函數(shù)與y=logax為減函數(shù),故選C【點睛】本題考查知識點是冪函數(shù)的圖象和性質,指數(shù)函數(shù)和對數(shù)函數(shù)的圖象和性質,難度不大,屬于基礎題6、D【解析】根據(jù)圓心在直線上,設圓心坐標為,然后根據(jù)圓C與直線及都相切,由求解.【詳解】因為圓心在直線上,設圓心坐標為,因為圓C與直線及都相切,所以,解得,∴圓心坐標為,又,∴,∴圓的方程為,故選:D.7、A【解析】由三視圖可知幾何體是一個底面為梯形的棱柱,再求幾何體的表面積得解.【詳解】由三視圖可知幾何體是一個底面為直角梯形的棱柱,梯形的上底為1,下底為2,高為2,棱柱的高為2.由題可計算得梯形的另外一個腰長為.所以該幾何體的表面積=.故答案為A【點睛】本題主要考查三視圖找原圖,考查幾何體的表面積的計算,意在考查學生對這些知識的掌握水平和空間想象分析推理能力.8、B【解析】根據(jù)圖象平移求出g(x)解析式,g(x)為奇函數(shù),則g(0)=0,據(jù)此即可計算ω的取值.【詳解】根據(jù)已知,可得,∵的圖象關于原點對稱,所以,從而,Z,所以,其最小正值為3,此時故選:B9、D【解析】利用特殊值及不等式的性質判斷可得;【詳解】解:因為,對于A,若,,滿足,但是,故A錯誤;對于B:當時,,故B錯誤;對于C:當時沒有意義,故C錯誤;對于D:因為,所以,故D正確;故選:D10、D【解析】分離常數(shù)后,用基本不等式可解.【詳解】(方法1),,則,當且僅當,即時,等號成立.(方法2)令,,,.將其代入,原函數(shù)可化為,當且僅當,即時等號成立,此時.故選:D二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】分別對,分別大于1,等于1,小于1的討論,即可.【詳解】對,分別大于1,等于1,小于1討論,當,解得當,不存在,當時,,解得,故x的范圍為【點睛】本道題考查了分段函數(shù)問題,分類討論,即可,難度中等12、【解析】正方體的對角線等于球的直徑.求得正方體的對角線,則球的表面積為考點:球的表面積點評:若長方體的長、寬和高分別為a、b、c,則球的直徑等于長方體的對角線13、##【解析】構造,可得在上單調遞減.由,轉化為,利用單調性可得答案【詳解】由,得,令,則,又,所以在上單調遞減由,得,因為,所以,所以,得故答案為:.14、【解析】按a值對函數(shù)進行分類討論,再結合函數(shù)的性質求解作答.【詳解】當時,函數(shù)在R上單調遞增,即在上遞增,則,當時,函數(shù)是二次函數(shù),又在上單調遞增,由二次函數(shù)性質知,,則有,解得,所以實數(shù)的取值范圍是.故答案為:15、【解析】作出函數(shù)的圖象,設,求出的取值范圍以及的值,由此可求得的取值范圍.【詳解】作出函數(shù)的圖象,設,如下圖所示:二次函數(shù)的圖象關于直線對稱,則,由圖可得,可得,解得,所以,.故答案為:.【點睛】關鍵點點睛:本題考查零點有關代數(shù)式的取值范圍的求解,解題的關鍵在于利用利用圖象結合對稱性以及對數(shù)運算得出零點相關的等式與不等式,進而求解.16、【解析】根據(jù)函數(shù)零點可轉化為有2個不等的根,利用對數(shù)函數(shù)的性質可知,由均值不等式求解即可.詳解】不妨設,因為函數(shù)有兩個零點分別為a,b,所以,所以,即,且,,當且僅當,即時等號成立,此時不滿足題意,,即,故答案為:三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)(2)超速,理由見解析【解析】(1)將表格中的數(shù)據(jù)代入函數(shù)的解析式建立方程組即可求得答案;(2)根據(jù)(1)建立不等式,進而解出不等式,最后判斷答案.【小問1詳解】由題意得,解得.【小問2詳解】由題意知,,解得或(舍去)所以該車超速18、(1)最小正周期為,單調遞增區(qū)間;(2)在上的最大值為,最小值為.【解析】(1)由正弦型函數(shù)的性質,應用整體代入法有時單調遞增求增區(qū)間,由求最小正周期即可.(2)由已知區(qū)間確定的區(qū)間,進而求的最大值和最小值【詳解】(1)由三角函解析式知:最小正周期為,令,得,∴單調遞增區(qū)間為,(2)在上,有,∴當時取最小值,當時取最大值為.19、(1),;(2)【解析】(1)由代入計算可得的值,根據(jù)對數(shù)的真數(shù)大于零,求出函數(shù)的定義域;(2)由(1)可知,設,則,由的取值范圍求出的范圍,即可求出的值域;【詳解】解:(1)∵,∴,∴,則由,解得,即,所以的定義域為(2),設,則,,當時,,而,,∴,,所以在區(qū)間上的值域為【點睛】本題考查待定系數(shù)法求函數(shù)解析式,對數(shù)型復合函數(shù)的值域,屬于中檔題.20、(1)減區(qū)間為,增區(qū)間為;;(2).【解析】(1)設,,,則,,根據(jù)函數(shù)的性質,可得單調性,根據(jù)單調性可得值域;(2)根據(jù)單調性求出函數(shù)在上的值域,再根據(jù)的值域是的值域的子集列式可解得結果.【詳解】(1),設,,,則,,由已知性質得,當,即時,單調遞減,所以減區(qū)間為;當,即時,單調遞增,所以增區(qū)間為;由,,,得的值域為;(2)因為為減函數(shù),故函數(shù)在上的值域為.由題意,得的值域是的值域的子集,所以,所以.【點睛】本題考查了對勾函數(shù)的單調性,考查了利用函數(shù)的單調性求值域,考查了轉化化歸思想,屬于中檔題.21、(1)①;②17,理由見解析(2)【解析】(1)①利用各組的頻率和為1求解,②由題意可得的推銷員不能完成該目標,而前兩組的頻率和,前三組的頻率和為,所以月銷售目標應在第3組,從而可求得結果,(2)由頻率分布
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 舊鋼回收合同范例
- 投放合同范例
- 2024年度危貨押運員安全操作規(guī)范與培訓服務合同2篇
- 2024年版股權轉讓合同及履約保證金
- 2024年雙方自愿離婚協(xié)議書及雙方住所變更協(xié)議3篇
- 2024年社區(qū)食堂服務運營協(xié)議3篇
- 2024年石英砂訂購合同2篇
- 2024年瓶裝礦泉水定制化服務與銷售合同3篇
- 2024年電子商務交易協(xié)議法律效力研究版B版
- 2024年危險化學品運輸安全責任保險協(xié)議3篇
- 公司領導班子績效考核表格
- 衛(wèi)浴產品銷售訂貨單Excel模板
- 保安隊排班表
- (完整版)第二章-鑄鐵的結晶及組織形成課件
- SparkCCD6000操作規(guī)程操作版分解
- 工程勘察設計收費標準(2002年修訂本)
- EN779-2012一般通風過濾器——過濾性能測定(中文版)
- 計量經濟學論文
- 勞務分包的施工方案
- 實習律師申請表(模板)
- 電氣裝置安裝工程接地裝置施工及驗收規(guī)范
評論
0/150
提交評論