版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
PublicDisclosureAuthorizedPublicDisclosureAuthorized
PolicyResearchWorkingPaper10928
JoblessDevelopment
FranziskaOhnsorge
RichardRogerson
ZoeLeiyuXie
WORLDBANKGROUP
SouthAsiaRegion
OfficeoftheChiefEconomistSeptember2024
PolicyResearchWorkingPaper10928
Abstract
AnalysesofGDPpercapitadifferencesacrosscountriesfocusalmostexclusivelyondifferencesinproductivity.Thispapershowsthattherearealsolargedifferencesinmedi-um-rundynamicsintheemployment-to-populationratio.ThepaperfindsageneraltendencyforproductivitygrowthtobenegativelycorrelatedwithchangesintheemploymenttopopulationratioforalargesampleofEMDEs—aphe-nomenondescribedusingthetermjoblessdevelopmentinthispaper.Thepaperalsoshowsthattherearelargedifferencesinthesteadystatelevelsoftheemploymenttopopulationratiosthatcountriesareconvergingto.Therearealsocountriesthatexperiencesubstantialincreasesintheir
employment-to-populationratioduringthedevelopmentprocess.Usingatwo-stageprocedure,thepaperstudiesthisissueinalargesampleofEMDEs.Inthefirststage,thepaperestimatesdifferencesinsteady-stateemploymentratiosacrosscountries.Inthesecondstage,itdocumentswhichinstitutionalandpolicyfactorsarecorrelatedwithsteady-stateemploymentratios.Thepaperfindsparticularlylargedifferencesacrosscountriesinsteady-stateemploy-mentratiosforwomen.Fewerlegalprotectionsofwomen’srightsareassociatedwithlowersteady-stateemploymentratiosforwomen,withoutanoffsettingpositiveeffectformen.
ThispaperisaproductoftheOfficeoftheChiefEconomist,SouthAsiaRegion.ItispartofalargereffortbytheWorldBanktoprovideopenaccesstoitsresearchandmakeacontributiontodevelopmentpolicydiscussionsaroundtheworld.PolicyResearchWorkingPapersarealsopostedontheWebat
/prwp
.Theauthorsmaybecontactedatlxie@.
ThePolicyResearchWorkingPaperSeriesdisseminatesthefindingsofworkinprogresstoencouragetheexchangeofideasaboutdevelopmentissues.Anobjectiveoftheseriesistogetthefindingsoutquickly,evenifthepresentationsarelessthanfullypolished.Thepaperscarrythenamesoftheauthorsandshouldbecitedaccordingly.Thefindings,interpretations,andconclusionsexpressedinthispaperareentirelythoseoftheauthors.TheydonotnecessarilyrepresenttheviewsoftheInternationalBankforReconstructionandDevelopment/WorldBankanditsaffiliatedorganizations,orthoseoftheExecutiveDirectorsoftheWorldBankorthegovernmentstheyrepresent.
ProducedbytheResearchSupportTeam
JoblessDevelopment*
FranziskaOhnsorgea,b,RichardRogersonc,d,andZoeLeiyuXiea
aWorldBank,WashingtonDC,USA
bCEPR,London,UK;CAMA,Canberra,Australia
cPrincetonSchoolofPublicandInternationalAffairsdNationalBureauofEconomicResearch
JEL-codes:J11;J16;J21;F66;O41;O47
Keywords:employment;emerginganddevelopingcountries;structuraltransformation;femalelaborforceparticipation.
*WewouldliketothankNinaArnhold;MargaretArnold;NajyBenhassine;XimenaDelCarpio;PatriciaFernandes;IsisGaddis;JonJellema;NandiniKrishnan;RobinMearns;GauravNayyar;AnnaO’Donnell;NethraPalaniswamy;LokendraPhadera;MartinRaiser;andJavierSanchez-Reazafortheirhelpfulcomments.Thefindings,interpretationsandconclusionsexpressedinthispaperarethoseoftheauthorsandshouldnotbeattributedtotheWorldBank,itsExecutiveDirectors,orthecountriestheyrepresent.
2
1.Introduction
ChangesinGDPpercapitaarethemostcommonmetricusedtotrackacountry’soveralldevelopment.BecauseGDPpercapitaistheproductofGDPperworkerandtheemployment-to-populationratio,changesinGDPpercapitareflectchangesinbothproductivityandtheemployment-to-populationratio.Inparticular,changesintheemployment-to-populationratiooverthemediumruncaneitherdampenoramplifytheeffectsofproductivitygrowth.
Wecointhetermjoblessdevelopmenttodescribecountriesthatexperiencedecreasesintheiremployment-to-populationratioduringaperiodofproductivitygrowth.Whilealargeliteraturehasstudiedthedynamicsofproductivitygrowthforemergingmarketanddevelopingeconomies(EMDEs),thedynamicsoftheemployment-to-populationratioforthesecountrieshavereceivedverylittleattention.Inthispaperweaddressthisgapintheliteraturebystudyingemployment-to-populationratiodynamicsamongEMDEsinthepost-1990period.
1
Onereasonforthelackofattentiondevotedtolabormarketoutcomesinthecontextofmacroeconomicdevelopmentisthefactthattheemployment-to-populationratioislargelyuncorrelatedwiththelevelofdevelopmentinabroadcross-sectionofcountries.Thishasledresearcherstoabstractfromconsideringitasanimportantfactor.Butthisnear-zerocorrelationdoesnotimplythatdifferencesinlabormarketoutcomesaresmall;onthecontrary,thesedifferencesarelargeinmanycasesandouranalysisfocusesonthesedifferences.
TheexamplesofSouthKoreaandIndiaservetomotivateouranalysis.BothSouthKoreaandIndiahaveexperiencedsustainedperiodsofrapidgrowthasmeasuredbyincreasesinGDPpercapita.InSouthKoreathisperiodcovered1965-1987,whenGDPpercapitaincreasedby170logpoints.InIndia,itcovers1990-2018whenGDPpercapitaincreasedby130logpoints.Inbothcountries,periodsofrapidgrowthinGDPpercapitawerealsoperiodsofrapidgrowthinproductivity---GDPperworkerroseby140logpointsinbothcountries.
However,SouthKorea’sandIndia’sdevelopmentdiffersinoneimportantrespect.Figure1displaysthetimeseriesofthelogratioofemploymenttotheworkingagepopulation(hereafterEWAP)forSouthKoreaandIndiasince1960.WhereasSouthKorea’speriodofrapidgrowthcoincidedwithalargeincreaseinEWAP,India’speriodofrapidgrowthwasassociatedwithalargedecreaseinEWAP.Thisdifferenceisquantitativelyimportant:EWAPwas24logpointshigherinIndiathanSouthKoreain1960,butasof2019itis28logpointslower—areversalof52logpoints.Ifonetakes2percentasastandardvaluefor“normal”annualgrowthinrealGDPpercapita,thisreversalamountsto26yearsofgrowth.
1Severalpreviousstudieshaveestimatedthecorrelatesofemploymentgrowthinlargecross-sectionsofcountries(Crivelli,Furceri,andToujas-Bernaté2012;Kapsos2005).Seethemeta-analysisinWorldBank(2024).
3
OurperspectiveonEWAPdynamicsinEMDEsismotivatedbytheliteratureonstructuralchange.AkeydynamicamongEMDEsisthemovementofeconomicactivityoutofagricultureandintonon-agriculture.Labormarketsinthesetwosectorshaveverydifferentoperatingfeatures:agriculturallabormarketsaredominatedbyself-employmentinlow-densityruralareas,whereasnon-agriculturallabormarketsaredominatedbyformalorinformalemploymentinhigher-densityurbanareas.Additionally,manypolicyandinstitutionaldifferencesarelikelytohaveverydifferenteffectsonlabormarketsinthesetwosectors.Forthesereasons,theprocessofstructuralchangewillplausiblygiverisetodynamicsinaggregatelabormarketoutcomes,asactivityswitchesfromlargelyself-employmentinruralareastoformalorinformalemploymentinurbanareas.Long-runlabormarketoutcomeswillthusreflectthesteadystateoutcomesinthenon-agriculturalsector.
OurmethodologyforstudyingEWAPdynamicsdrawsheavilyonthegrowthliteraturethatstudiesconvergencepatternsincross-countrypaneldatasets.Specifically,followingtheliteratureonconditionalconvergence,weincludecountryfixedeffectsinourconvergenceregressionstoallowforthepossibilitythateachcountryisconvergingtoitsownsteady-statelevelofEWAP.Whenimplementingthisprocedure,wealsocontrolfortwotime-varyingdrivingforces:productivityandpopulation.
OuranalysisofEWAPdynamicsproceedsintwosteps.ThefirststeprunsconvergenceregressionsforEWAP.Aby-productofthisfirststeparecountry-specificsteady-statevaluesfortheEWAP.Inthesecondstep,weexaminethecorrelationbetweenthesesteady-statelevelsandvariousindicators.
Ourfirststepdeliversthreekeyresults.First,whiletherearemanycountrieswithverysimilarsteady-stateEWAPlevels,therearemanycountrieswithsteady-stateEWAPlevelsthatdisplaylargedeviationsfromthemean.Second,higherpopulationgrowthisassociatedwithsignificantlylowerEWAP.Third,higherproductivitygrowthisalsoassociatedwithsignificantlylowerEWAP.ThisthirdfindingsuggeststhatEMDEsmayfaceatradeoffbetweenemploymentandproductivity.Thiswouldbethecaseifthesecountriestendtohavemanyindividualsemployedinlow-productivityactivities,aseliminatingthesejobswouldincreaseproductivitygrowthviacompositioneffects.
OursecondstepidentifiesseveralfactorsthatdisplaysignificantcorrelationswithlongrunlevelsofEWAP.Theseincludegreateropennesstointernationaltrade;moreefficientlabor,land,andproductmarkets;largerfirmsize;andbettereducationoutcomes.Weemphasizethattheseresultsonlyreflectcorrelationsandsodonotnecessarilyimplycausation.Butwethinkthesecorrelationsareinformativeasafirststepinthinkingaboutthepotentialeffectsofvariouspolicies.
OurbenchmarkresultsarefortheaggregatelevelofEWAP.WealsorepeatouranalysisforEWAPlevelsbygender.Wefindthatdifferencesinsteady-stateEWAPlevelsforwomenaremuchmoresubstantialthandifferencesformen.
Inthispaper,wedeliberatelyfocusontheaggregatequantityofemployment,assumingthatemploymentisapolicygoalinitsownright.Individualsvaluejobsfortheearnings,aswellasfortheircontributionstoself-esteemandhappinessandjobsinfluencelivingstandardsandsocialcohesion(WorldBank2013).Switchingjobs,especiallyintonon-agriculture,isoneofthemostcommonlyusedformsofclimateadaptationbyhouseholds.Thequalityofemploymentintermsofitsvariouscharacteristics—laborproductivity,laborincomeshares,wagerates,orcontractualarrangements—isnolesscriticalforthedevelopmentprocessbutiswell-coveredintheliteratureandbeyondthescopeofthispaper.
4
Ourpaperisrelatedtotwoliteratures.Severalpapershaveestimatedthecorrelatesofemploymentgrowthinlargecross-sectionsofcountries(Crivelli,Furceri,andToujas-Bernaté2012;Kapsos2005).WorldBank(2024)summarizesestimatesoftheelasticityofemploymentwithrespecttooutputgrowthfromthisbodyofliterature.Relativetothisliterature,wehavetwokeycontributions.First,akeydistinguishingfeatureofouranalysisisthatweexaminechangesinemploymentratios,ratherthanemploymentgrowth.ThisiscriticalbecausemanyEMDEshaverapidlygrowingworking-agepopulations,anditisdifficulttointerpretagivenlevelofemploymentgrowthwithoutcontrollingforpopulationgrowth.Second,ouranalysisfocusesonlongrunoutcomes,whereastheabovementionedpapersoftenfocusonshortruneffects.
AsecondstrandofliteratureusestheWorldBank’sEnterpriseSurveystostudyfirm-levelemployment,ofteninspecificcountries.(See,forexample,AgaandFrancis2015;Ayyagari,Demirgü?-Kunt,andMaksimovic2011;Khan2023).Relativetothisliterature,ourkeycontributionistousetheseSurveystolinklongrunaggregateemploymentoutcomestofirm-levelconstraints.Oursisthefirstanalysisoftheextenttowhichgovernmentregulationsonlabor,land,finance,andtradehelporhindertheabsorptionofagrowingworking-agepopulationintoemploymentinEMDEs.
Theremainderofthepaperisorganizedasfollows.Section2documentsthedataandmethodology.Section3summarizespatternsinsteady-stateEWAPsandtheeffectofproductivityandpopulationgrowth.Section4showsthecorrelatesofthesesteady-stateEWAPs.Section5concludesanddiscussesthepolicyimplications.
2.Methodologyanddata
2.1Conceptualframework
Economy-wideemploymentcanbethoughtofastheequilibriumoutcomeoflaborsupplybyhouseholdsthatneedtoearnincometoconsumeandlabordemandbyfirmsthatneedlaborasaninputintoproduction.Thenaturalstartingpointforthinkingaboutdynamicsinaggregateproductivityandemploymentistheone-sectorgrowthmodel.Onelimitationofthisframeworkforunderstandingdynamicsindevelopingeconomiesisthatitabstractsfromtheprocessofstructuraltransformation,whichisanotherkeydynamicprocessthatpotentiallyimpactsbothlaborsupplyandlabordemand.Herrendorf,Rogerson,andValentinyi(2014)modelastylizedeconomywiththreesectors—agriculture,industry,andservices—thattogetherproduceaggregateoutputY.Forourpurposesitissufficienttoconsideraneconomywithtwosectors:agriculture(a)andnon-agriculture(n).EachsectorjusesaCobb-DouglasfunctiontechnologytoproduceoutputYj(soldatthepricepj)usinglaborLjandotherinputsKj(includingintermediategoods)withtechnologyAj:
Yj=AjKjαLj1-α
Aggregateoutput(andincome)isthengivenby:
Y=paYa+pnYn
Thisframeworkshouldbeseenasasimplebenchmark.Onecangeneralizeitalongseveraldimensions:toallowfordifferencesinfactorintensityacrosssectors,richerpatternsofsubstitutionbetweenfactors,non-neutralformsoftechnicalchange,andmultipletypesoflabor.
Asinaone-sectormodel,increasesinoverallproductivityinthisframeworkwillraisewagesandincome,andaffectoveralldemandandsupplyoflabor.Butthisframeworkalsofeaturesadditional
5
channels.Inparticular,changesinrelativeproductivityacrosssectorswillinducechangesinrelativepricesacrosssectorsandinfluencerelativedemandacrosssectors.Changesinoverallproductivitythatinducechangesinincome,mayalsoinfluencerelativedemandacrosssectorsifincomeeffectsdifferacrosssectors.
Akeyimplicationofthesemodelsisthattheprocessofdevelopmentisassociatedwithasecularreallocationoflaboroutoftheagriculturesectorintothenon-agriculturalsectors,drivenbytheforcesjustmentioned.Itfollowsthatthelong-runlabormarketequilibriumthataneconomyconvergestowardreflectsoutcomesinthenon-agriculturalsector.
Importantly,andfromapracticalperspective,thenatureoflaborsupplyanddemandmayvaryacrosssectors.Individualslivinginruralareasmayhavedifferentlevelsoflaborsupplyacrosssectors,andfirmsindifferentsectorsmaydemanddifferenttypesofworkers.Ifthisisthecase,thenthedynamicsofstructuraltransformationwillpotentiallyinfluencethedynamicsofequilibriuminthelabormarket.
Itisalsoplausibletothinkthattheeffectofvariousinstitutionsandregulationshavedifferentialimpactonboththedemandandsupplyoflaboracrosssectors.Regulationsthatdisproportionatelyaffectlargeestablishmentswilllikelyhaveverydifferenteffectsinagriculturalversusnon-agriculture.Policiesthatincreasethecostofcapitaloraccesstocreditwillhavedifferentialimpactacrosssectorsifsectorsdifferintheimportanceofcapitalorcredit.Theimplicationofthisobservationisthatthedynamicsoflabormarketequilibriummayvaryacrosscountrieswithdifferentlabormarketinstitutions.Moreover,theoverallimpactofaparticularinstitutionorregulationmaydifferalongthedevelopmentpath:institutionsthatnegativelyaffectlabordemandinthenon-agriculturalsectorwillhaveasmalleraggregateimpactinaneconomyinwhichalmosteveryoneworksinagriculture.Alargebodyofresearchshowstheeffectonlabormarketequilibriumofsuchfactorsaslabormarketpolicies,institutions(societalnorms,bothformal,suchaslaws,andinformal,suchastraditions),andregulationsonlabormarketequilibrium(DuvalandLoungani2019;McKenzie2017;NickellandLayard1999).
Theaboveframeworkmodelsproductionatthesectorallevel.Itislikelyrelevanttoalsostudyproductionatamoregranularlevel,astheoverallleveloflabordemandwithinagivensectormayalsobeinfluencedbypoliciesthatdistortthedemandforlaboracrossindividualfirms.(HsiehandKlenow2009;2014).Thatis,theproductivitytermsinthesectoralproductionfunctionsmaythemselvesbefunctionsoftheinstitutionalandregulatoryenvironment.
ThisconceptualframeworkhasmuchincommonwiththatusedtostudythedynamicsofGDPpercapitaacrosscountries(BarroandSala-i-Martin1992;Kremer,Willis,andYou2022;Patel,Sandefur,andSubramanian2021).Liketheframeworkusedhere,thisliteratureviewseachcountryashavingitsownsteady-statelevel,dictatedbycountry-specificfactorsthatreflectpoliciesandinstitutionsandallowforadynamicprocessofconvergence.
2.2Methodology
TodiscerntherelationshipbetweenEWAPsandtheircorrelates,whileremainingagnosticaboutcausality,weconductatwo-stageexercise.Inthefirststage,weestimatefixed-effectspanelregressionsofthechangesinEWAPsonlaggedlevels,controllingforotherfactors,torecoverthelong-runsteady-stateEWAPforeachcountry.Inthesecondstage,weestimatelinearregressionsofthesesteady-stateEWAPsonpolicyvariablesthathavebeenshowntocorrelatewithemploymentgenerationintheliterature.Theanalysisisconductedatdifferentlevelsof
6
aggregation:forthewholeeconomy,formenandwomenseparately,foragricultureandnon-agricultureseparatelyandforwomeninnon-agriculture.
2.2.1Firststage:Panelregression
Weestimateapanelregressionoftheyear-over-yearchangesinEWAPs.Themainpurposeofthisanalysisistoidentifythesteady-stateEWAPthateachcountryisconvergingtowards.Forthispurpose,wecontrolforlaborproductivitygrowthandworking-agepopulationgrowth,timeandcountryfixedeffects.
Thebaselinepanelregressionisasfollows:
EWAPc,t-EWAPc,t-1=α+β1?Prodc,t+β2?WAPc,t+β3EWAPc,t-1+dt+dc+εc,t(1)
wherethedependentvariableisthechangeincountryc’sEWAP(inpercentagepoints)betweentheyearst-1andt;?Prodc,tiscountryc’soveralllaborproductivitygrowth(inpercent)fromt-1tot;?WAPc,tiscountryc’sworking-agepopulationgrowth(inpercent)overthesameperiod;EWAPc,t-1iscountryc’sEWAP(inpercent)inyeart-1;yeardummies(dt)controlforcommonshocksovertime,suchasglobalrecessions;andcountryfixedeffects(dc)capturecountrycharacteristicsthatdonotchangeovertime.
Asnotedpreviously,weestimate(1)formeasuresofEWAPatdifferentlevelsofaggregation,consideringbothsectorandgender.Intheanalysisbygender,gender-specificworking-agepopulationgrowthisused.Intheanalysisbysector,twosectorsareconsidered:agricultureandnon-agriculture.Thelinearanalysisheredoesnotseparateindustryandservicesbecausetheliteraturehasdocumentedanonlinearrelationshipforindustry,acomplexitythatgoesbeyondthescopeoftheanalysishere(Herrendorf,Rogerson,andValentinyi2014;Rodrik2016;Timmer,deVries,anddeVries2015).
2.2.2Firststage:Countryfixedeffects
Asnotedearlier,ourspecificationsharesmuchincommonwiththeliteratureonconvergencepropertiesforGDPpercapita.
2
Withoutcountryfixedeffects,thecoefficientβ3onlaggedEWAPcapturestheextentofunconditionalconvergence,thatis,thesteady-stateEWAPtowhichallcountriesconverge.Whencountryfixedeffectsareincludedasin(1),β3togetherwiththecountryfixedeffectsdccapturethepresenceandspeedofconditionalconvergence,whereeachcountryisallowedtoconvergetoadifferentsteady-stateEWAP.ThisparallelsthediscussionofconvergenceinGDPpercapitainBarroandSala-i-Martin(1992)andDurlauf,Johnson,andTemple(2005).
Intheliteratureonconvergenceinoutputperworker,thegrowthofoutputperworkerinacountryisrelatedtoitsdistancefromthesteady-statelevelofoutputperworker.Ifallcountrieshavethesamesteadystate,thenthis“unconditionalconvergence”canbedescribedbythefollowingexpression:
logyit+1-logyit=a+b(logyit-logy*),
2See,forexample,BarroandSala-i-Martin(1992),Kremer,Willis,andYou(2022),andPatel,Sandefur,andSubramanian(2021).
7
whereyitiscountryi’soutputperworker,andy*isacommonsteadystatelevelforallcountries.Sincey*isaconstant,b×logy*canbecombinedintotheconstantterm.Thismodificationmotivatesrunningthefollowingregression:
logyit+1-logyit=c+b×logyit.
Inthe“conditionalconvergence”literature(forexample,BarroandSala-i-Martin1992;2003;Mankiw,Romer,andWeil1992),eachcountryihasitsownsteadystatevalueyi*.Theequationthatcapturestherelationshipbetweengrowthandsteadystatebecomes:
logyit+1-logyit=a+b(logyit-logyi*).
Thevalueb×logyi*isnowacountry-specificconstant,whichmotivatesthefixedeffectsregression:
logyit+1-logyit=ci+b×logyit,
wherethevariationinsteady-statelevelsacrosscountriesisembeddedinthefixedeffectsci.Thesefixedeffectsimplydifferencesingrowthratesconditionaloncurrentlevels,buttheyalsocapturedifferencesinthesteady-stateoutputperworkertowhicheachcountryisconverging.
Returningtoourregressionspecification(1),wecanapplythesameinterpretation.Specifically,thecountryfixedeffectsdcdividedbythecoefficientonthelaggedEWAPβ3arethedeviationofeachcountryc’ssteady-stateEWAPfromthesampleaverage,aftercontrollingforlaborproductivityandworking-agepopulationgrowth.
2.2.3Secondstage:Cross-countryregression
Inthesecondstage,weinvestigatehowthesecountryfixedeffectsarecorrelatedwithfeaturesoftheeconomicenvironmentandpoliciesthathavebeenassociatedwithhigheremploymentintheliterature.Specifically,weestimatethefollowingcross-countryregression:
dc=γXc+ηc(2)
whereXcisapolicyvariablethattheliteraturehasfoundtobecorrelatedwithfasteremploymentgrowth,andhencecouldbecorrelatedwithhighersteady-stateEWAPsinoursetup.Theregressionusestheaverageofeachpolicyvariableover2000–2019,capturingthelong-termaverageofthesevariables.Becausemanyofthepolicyvariablesarecorrelatedwitheachother,theregressionisrunseparatelyforeachvariable.Ourgoalwiththisexerciseissimplytodeterminewhichvariablesdisplaystatisticallysignificantcorrelationswithsteadystateemployment.Webelievethisinformationisausefulinputintofutureworkthatseekstoisolatethecausalfactorsbehindthedifferencesinsteady-stateemploymentlevels.
Thesepolicyvariablesserveasproxiesforfactorsrelatedtolabordemand(suchastrade,accesstofinance,andpoliciesthatdirectlyaffectfirms)andlaborsupply(suchaseducationandgender-biasedpolicies).Effectively,thissecond-stageregressionestimatesthelong-runcorrelatesofsteadystateEWAPs.
Alargebodyofresearchstudiestheeffectonlabormarketequilibriumofsuchfactorsaslabormarketpolicies,institutions(societalnorms,bothformal,suchaslaws,andinformal,suchastraditions),andregulationsonlabormarketequilibrium(DuvalandLoungani2019;McKenzie2017;NickellandLayard1999).Animportantdistinctionbetweenthesestudiesandourprocedureisthatthesestudiesfocusoncontemporaneousrelationshipsbetweenlabormarketpoliciesandlabormarketoutcomes,implicitlyassumingthatcurrentoutcomesreflectthesteady-stateeffectsoflabormarketpolicies.Ourapproachallowsfortherealitythattheearlystagesofthe
8
developmentprocessinvolvealargereallocationofactivityfromtheagriculturalsectortothenon-agriculturalsector,andthatthenatureoflaborsupplyanddemandmayvaryacrosssectors.Individualslivinginruralareasmayhavedifferentlevelsoflaborsupplyacrosssectors,andfirmsindifferentsectorsmaydemanddifferenttypesofworkers.Ifthisisthecase,thenthedynamicsofstructuraltransformationwillpotentiallyinfluencethedynamicsofequilibriuminthelabormarket.
Itisalsoplausibletothinkthattheeffectofvariousinstitutionsandregulationshavedifferentialimpactsonboththedemandandsupplyoflaboracrosssectors.Regulationsthatdisproportionatelyaffectlargeestablishmentswilllikelyhaveverydifferenteffectsinagriculturalversusnon-agriculture.Policiesthatincreasethecostofcapitaloraccesstocreditwillhavedifferentialimpactacrosssectorsifsectorsdifferintheimportanceofcapitalorcredit.Theimplicationofthisobservationisthatthedynamicsoflabormarketequilibriummayvaryacrosscountrieswithdifferentlabormarketinstitutions.Moreover,theoverallimpactofaparticularinstitutionorregulationmaydifferalongthedevelopmentpath:institutionsthatnegativelyaffectlabordemandinthenon-agriculturalsectorwillhaveasmalleraggregateimpactinaneconomyinwhichalmosteveryoneworksinagriculture.
2.3Data
Thedatasetincludes160countriesover1960–2019.However,thebaselinesamplefocuseson103EMDEsthatarenotsmallstatesfor2000–19,aperiodinwhichthereisgooddatacoverageformostEMDEsandwhichexcludestheoutlieryearsduringtheCOVID-19pandemic.
ThemaindatasourcesincludetheWorldBank’sWorldDevelopmentIndicators(WDI)database,theInternationalLabourOrganization(ILO)’sILOSTATdatabase,andthePennWorldTables.
DataforemploymentcomesfromthePennWorldTables,andincludesbothformalandinformal(includingsubsistence)formsofwork.
3
ThedataforbaselinerealoutputarefromtheWorldBank’sGlobalEconomicProspectsdatabase,supplementedwithdatafromWDIforearlieryears,splicedbysectorusingWDI’ssectoralgrossvalue-addeddata.Productivityiscalculatedastheratioofrealoutputtothenumberofworkers.
Totalandworking-agepopulationcomefromWDI.Theworking-a
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 消防器材的日常檢查與維護培訓(xùn)
- 2024年標準派遣工勞動協(xié)議模板版B版
- 2024年度2人合伙創(chuàng)辦心理咨詢機構(gòu)合作協(xié)議2篇
- 2024年度圖書館圖書采購與讀者服務(wù)滿意度提升合同3篇
- 2024年個人租賃設(shè)備合同2篇
- 2024年度瓷磚倉儲物流配送合同2篇
- 2024年度存單質(zhì)押貸款電子化操作規(guī)范協(xié)議3篇
- 2024年度農(nóng)業(yè)廢棄物資源化種植合同2篇
- 危險化學(xué)品運輸合同
- 2024年度機制砂石料購銷合同
- 兵團電大建筑結(jié)構(gòu)實訓(xùn)
- 愛吃糖的大獅子
- 醫(yī)學(xué)小常識幻燈片課件
- 化妝品功效評價
- 風(fēng)電場通用類作業(yè)行為風(fēng)險管控清單
- 【幼兒園園本教研】幼兒表征的教師一對一傾聽策略
- GCS評分實施細則及要點說明課件
- 英語│英語中考英語閱讀理解(有難度)
- 手術(shù)操作分類代碼國家臨床版3.0
- 采血知情同意書模板
- 我的家鄉(xiāng)廣東廣州宣傳簡介
評論
0/150
提交評論