版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2025屆浙江寧波市高二上數學期末復習檢測模擬試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知數列滿足,令是數列的前n項積,,現給出下列四個結論:①;②為單調遞增的等比數列;③當時,取得最大值;④當時,取得最大值其中所有正確結論的編號為()A.②④ B.①③C.②③④ D.①③④2.函數的導函數為,對任意,都有成立,若,則滿足不等式的的取值范圍是()A. B.C. D.3.設為數列的前n項和,且,則=()A.26 B.19C.11 D.94.將函數的圖象向左平移個單位長度后,得到函數的圖象,則()A. B.C. D.5.由1,2,3,4,5五個數組成沒有重復數字的五位數,其中1與2不能相鄰的排法總數為()A.20 B.36C.60 D.726.已知△的頂點B,C在橢圓上,頂點A是橢圓的一個焦點,且橢圓的另一個焦點在BC邊上,則△的周長是()A. B.C.8 D.167.直線與圓的位置關系是()A.相交 B.相切C.相離 D.相交或相切8.函數極小值為()A. B.C. D.9.已知橢圓:的左、右焦點分別為,,下頂點為,直線與橢圓的另一個交點為,若為等腰三角形,則橢圓的離心率為()A. B.C. D.10.入冬以來,梁老師準備了4個不同的烤火爐,全部分發(fā)給樓的三個辦公室(每層樓各有一個辦公室).1,2樓的老師反映辦公室有點冷,所以1,2樓的每個辦公室至少需要1個烤火隊,3樓老師表示不要也可以.則梁老師共有多少種分發(fā)烤火爐的方法()A.108 B.36C.50 D.8611.總體有編號為01,02,…,19,20的20個個體組成,利用下面的隨機數表選取3個個體,選取方法是從隨機數表第1行的第5列和第6列數字開始由左到右依次選取兩個數字,則選出來的第3個個體的編號為()7816657208026314070243699728019832049234493582003623486969387481A.08 B.02C.63 D.1412.有3個興趣小組,甲、乙兩位同學各自參加其中一個小組,每位同學參加各個小組可能性相同,則這兩位同學參加同一個興趣小組的概率為A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知正方形的邊長為分別是邊的中點,沿將四邊形折起,使二面角的大小為,則兩點間的距離為__________14.已知數列滿足,則的最小值為__________.的前20項和為________15.如圖,正方體的棱長為1,P為BC的中點,Q為線段上的動點,過點A,P,Q的平面截該正方體所得的截面記為S.則下列命題正確的是_________(寫出所有正確命題的編號).①當時,S為四邊形;②當時,S為等腰梯形;③當時,S與的交點R滿足;④當時,S為六邊形;⑤當時,S的面積為.16.2021年7月,某市發(fā)生德爾塔新冠肺炎疫情,市衛(wèi)健委決定在全市設置多個核酸檢測點對全市人員進行核酸檢測.已知組建一個小型核酸檢測點需要男醫(yī)生1名,女醫(yī)生3名,每小時可做200人次的核酸檢測,組建一個大型核酸檢測點需要男醫(yī)生3名,女醫(yī)生3名.每小時可做300人次的核酸檢測.某三甲醫(yī)院決定派出男醫(yī)生10名、女醫(yī)生18名去做核酸檢測工作,則這28名醫(yī)生需要組建________個小型核酸檢測點和________個大型核酸檢測點,才能更高效的完成本次核酸檢測工作.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)新型冠狀病毒的傳染主要是人與人之間進行傳播,感染人群年齡大多數是歲以上人群.該病毒進入人體后有潛伏期.潛伏期是指病原體侵入人體至最早出現臨床癥狀的這段時間.潛伏期越長,感染到他人的可能性越高.現對個病例的潛伏期(單位:天)進行調查,統(tǒng)計發(fā)現潛伏期平均數為,方差為.如果認為超過天的潛伏期屬于“長潛伏期”,按照年齡統(tǒng)計樣本,得到下面的列聯表:年齡/人數長期潛伏非長期潛伏50歲以上6022050歲及50歲以下4080(1)是否有的把握認為“長期潛伏”與年齡有關;(2)假設潛伏期服從正態(tài)分布,其中近似為樣本平均數,近似為樣本方差.(i)現在很多省市對入境旅客一律要求隔離天,請用概率知識解釋其合理性;(ii)以題目中的樣本頻率估計概率,設個病例中恰有個屬于“長期潛伏”的概率是,當為何值時,取得最大值.附:0.10.050.0102.7063.8416.635若,則,,.18.(12分)在直三棱柱中,、、、分別為中點,.(1)求證:平面(2)求二面角的余弦值19.(12分)已知p:關于x的方程至多有一個實數解,.(1)若命題p為真命題,求實數a的取值范圍;(2)若p是q的充分不必要條件,求實數m的取值范圍.20.(12分)已知橢圓的離心率為,且經過點.(1)求橢圓的方程;(2)經過點的直線與橢圓交于不同的兩點,,為坐標原點,若的面積為,求直線的方程.21.(12分)如圖,在四棱錐中,平面,底面為菱形,且,,分別為,的中點(Ⅰ)證明:平面;(Ⅱ)點在棱上,且,證明:平面22.(10分)函數.(1)當時,解不等式;(2)若不等式對任意恒成立,求實數a的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】求出,即可判斷選項①正確;求出,即可選項②錯誤;求出,利用單調性即可判斷選項③正確;求出,即可判斷選項④錯誤,即得解.【詳解】解:因為,①所以,,②①②得,,整理得,又,滿足上式,所以,因為,所以數列為等差數列,公差為,所以,故①正確;,因為,故數列為等比數列,其中首項,公比為的等比數列,因為,,所以數列為遞減的等比數列,故②錯誤;,因為為單調遞增函數,所以當最大時,有最大值,因為,所以時,最大,即時,取得最大值,故③正確;設,由可得,,解得或,又因為,所以時,取得最大值,故④錯誤;故選:B2、C【解析】構造函數,利用導數分析函數的單調性,將所求不等式變形為,結合函數的單調性即可得解.【詳解】對任意,都有成立,即令,則,所以函數上單調遞增不等式即,即因為,所以所以,,解得,所以不等式的解集為故選:C.3、D【解析】先求得,然后求得.【詳解】依題意,當時,,當時,,,所以,所以.故選:D4、A【解析】先化簡函數表達式,然后再平移即可.【詳解】函數的圖象向左平移個單位長度后,得到的圖象.故選:A5、D【解析】先排3,4,5,然后利用插空法在4個位置上選2個排1,2.【詳解】先排3,4,5,,共有種排法,然后在4個位置上選2個排列1,2,有種排法,則1與2不能相鄰的排法總數為種,故選:D.6、D【解析】根據橢圓定義求解【詳解】由橢圓定義得△的周長是,故選:D.7、A【解析】由直線恒過定點,且定點圓內,從而即可判斷直線與圓相交.【詳解】解:因為直線恒過定點,而,所以定點在圓內,所以直線與圓相交,故選:A.8、A【解析】利用導數分析函數的單調性,可求得該函數的極小值.【詳解】對函數求導得,令,可得或,列表如下:減極小值增極大值減所以,函數的極小值為.故選:A.9、B【解析】由橢圓定義可得各邊長,利用三角形相似,可得點坐標,再根據點在橢圓上,可得離心率.【詳解】如圖所示:因為為等腰三角形,且,又,所以,所以,過點作軸,垂足為,則,由,,得,因為點在橢圓上,所以,所以,即離心率,故選:B.10、C【解析】運用分類計數原理,結合組合數定義進行求解即可.【詳解】當3樓不要烤火爐時,不同的分發(fā)烤火爐的方法為:;當3樓需要1個烤火爐時,不同的分發(fā)烤火爐的方法為:;當3樓需要2個烤火爐時,不同的分發(fā)烤火爐的方法為:,所以分發(fā)烤火爐的方法總數為:,故選:C【點睛】關鍵點睛:運用分類計數原理是解題的關鍵.11、D【解析】由隨機數表法抽樣原理即可求出答案.【詳解】根據題意,依次讀出的數據為65(舍去),72(舍去),08,02,63(舍去),14,即第三個個體編號為14.故選:D.12、A【解析】每個同學參加的情形都有3種,故兩個同學參加一組的情形有9種,而參加同一組的情形只有3種,所求的概率為p=選A二、填空題:本題共4小題,每小題5分,共20分。13、.【解析】取BE的中點G,然后證明是二面角的平面角,進而證明,最后通過勾股定理求得答案.【詳解】如圖,取BE的中點G,連接AG,CG,由題意,則是二面角的平面角,則,又,則是正三角形,于是.根據可得:平面ABE,而平面ABE,所以,而,則平面BCFE,又平面BCFE,于是,,又,所以.故答案為:.14、①②.【解析】由題設可得,應用累加法求的通項公式,由基本不等式及確定的最小值,再應用裂項求和法求的前20和.【詳解】由題設,,∴,…,,又,∴將上式累加可得:,則,∴,當且僅當時等號成立,又,故最小,則或5,當時,;當時,;∴的最小值為.由上知:,∴前20項和為.故答案為:8,.15、①②③⑤【解析】①由如圖當點向移動時,滿足,只需在上取點滿足,即可得截面為四邊形,如圖所示,是四邊形,故①正確;②當時,即為中點,此時可得PQ∥AD,AP=QD==,故可得截面APQD為等腰梯形,等腰梯形,故②正確;③當時,如圖,延長至,使,連接交于,連接交于,連接,可證,由∽,可得,故可得,故③正確;④由③可知當時,只需點上移即可,此時的截面形狀仍然如圖所示的,如圖是五邊形,故④不正確;⑤當時,與重合,取的中點,連接,可證,且,可知截面為為菱形,故其面積為,如圖是菱形,面積為,故⑤正確,故答案為①②③⑤考點:正方體的性質.16、①.4②.2【解析】根據題意建立不等式組,進而作出可行域,最后通過數形結合求得答案.【詳解】設需要組建個小型核酸檢測點和個大型核酸檢測點,則每小時做核酸檢測的最高人次,作出可行域如圖中陰影部分所示,由圖可見當直線過點A時,z取得最大值,由得恰為整數點,所以組建4個小型核酸檢測點和2個大型核酸檢測點,才能更高效的完成本次核酸檢測工作.故答案為:4;2.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)有;(2)(i)答案見解析;(ii)250.【解析】(1)根據列聯表中的數據,利用求得,與臨界表值對比下結論;(2)(ⅰ)根據,利用小概率事件判斷;(ⅱ)易得一個患者屬于“長潛伏期”的概率是,進而得到,然后判斷其單調性求解.【詳解】(1)依題意有,由于,故有的把握認為“長期潛伏”與年齡有關;(2)(ⅰ)若潛伏期,由,得知潛伏期超過天的概率很低,因此隔離天是合理的;(ⅱ)由于個病例中有個屬于長潛伏期,若以樣本頻率估計概率,一個患者屬于“長潛伏期”的概率是,于是,則,,當時,;當時,;∴,.故當時,取得最大值.【點睛】方法點睛:利用獨立重復試驗概率公式可以簡化求概率的過程,但需要注意檢查該概率模型是否滿足公式的三個條件:(1)在一次試驗中某事件A發(fā)生的概率是一個常數p;(2)n次試驗不僅是在完全相同的情況下進行的重復試驗,而且各次試驗的結果是相互獨立的;(3)該公式表示n次試驗中事件A恰好發(fā)生了k次的概率18、(1)見解析;(2)【解析】(1)取中點,連接,根據直棱柱的特征,易知,再由、分別為的中點,根據中位線定理,可得,得到四邊形為平行四邊形,再利用線面平行的判定定理證明.(2)取的中點,連接,以為原點,、、分別為、、軸建立空間直角坐標系,則.,再分別求得平面和平面的一個法向量,利用面面角的向量公式求解.【詳解】(1)證明:如圖所示:取中點,連接,易知,、分別為的中點,∴,∴故四邊形為平行四邊形,∴,∵平面,平面,平面(2)取的中點,連接,以為原點,、、分別為、、軸建立如圖所示的空間直角坐標系,如圖所示:則∴,設平面的法向量為,則,即,取,得,易知平面的一個法向量為,∴,∴二面角的余弦值為【點睛】本題主要考查線面平行的判定定理和面面角的向量求法,還考查了轉化化歸的思想和運算求解的能力,屬于中檔題.19、(1)(2)【解析】(1)根據命題p為真命題,可得,解之即可得解;(2)若p是q的充分不必要條件,則,列出不等式組,解之即可得出答案.【小問1詳解】解:命題p:關于x的方程至多有一個實數解,∴,解得,∴實數a的取值范圍是;【小問2詳解】解:命題,∵p是q的充分不必要條件,∴,∴,且兩式等號不能同時取得,解得,∴實數m的取值范圍是.20、(1);(2)或.【解析】(1)由離心率公式、將點代入橢圓方程得出橢圓的方程;(2)聯立橢圓和直線的方程,由判別式得出的范圍,再由韋達定理結合三角形面積公式得出,求出的值得出直線的方程.【詳解】解:(1)因為橢圓的離心率為,所以.①又因為橢圓經過點,所以有.②聯立①②可得,,,所以橢圓的方程為.(2)由題意可知,直線的斜率存在,設直線的方程為.由消去整理得,.因為直線與橢圓交于不同兩點,所以,即,所以設,,則,.由題意得,面積,即.因為的面積為,所以,即.化簡得,,即,解得或,均滿足,所以或.所以直線的方程為或.【點睛】關鍵點睛:在第二問中,關鍵是由韋達定理建立的關系,結合三角形面積公式求出斜率,得出直線的方程.21、(Ⅰ)證明見解析(Ⅱ)證明見解析【解析】(Ⅰ)證明和得到平面.(Ⅱ)根據
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年湖南省高考生物試卷真題(含答案解析)
- 2024至2030年中國開背式焊服行業(yè)投資前景及策略咨詢研究報告
- 2024至2030年中國尼龍藍網數據監(jiān)測研究報告
- 2024至2030年中國動態(tài)補償控制器行業(yè)投資前景及策略咨詢研究報告
- 2024至2030年中國光盤數據監(jiān)測研究報告
- 2024年中國碗袋兩用油炸方便面生產線市場調查研究報告
- 2024年中國田螺市場調查研究報告
- 2024年中國法式陳列柜市場調查研究報告
- 讓孩子更自信更有成就感-培養(yǎng)孩子自信提高學習
- 高中物理第二章磁場第五節(jié)磁性材料課件新人教版選修1-
- 對公客戶管理方案(修改版)
- 腎移植術的解剖(1)
- 《政務禮儀》PPT課件.ppt
- 文身的危害PPT精選課件
- IFRS17保險合同準則評析及影響分析
- PLC課程設計(停車場車位控制 )
- 軟件項目運維工作記錄表
- 《羊道春牧場》讀后感作文5篇
- 上消化道大出血的護理PPT課件
- 鐵塔安裝施工方案(完整版)
- 直接抒情與間接抒情PPT學習教案
評論
0/150
提交評論