版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
余江縣第一中學2025屆數學高二上期末考試試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若雙曲線的漸近線方程為,則的值為()A.2 B.3C.4 D.62.直線的傾斜角的大小為()A. B.C. D.3.已知正三棱柱的側棱長與底面邊長相等,則AB1與側面ACC1A1所成角的正弦值等于A. B.C. D.4.如圖,我市某地一拱橋垂直軸截面是拋物線,已知水利人員在某個時刻測得水面寬,則此時刻拱橋的最高點到水面的距離為()A. B.C. D.5.復數,則對應的點所在的象限是()A.第一象限 B.第二象限C.第三象限 D.第四象限6.已知圓,則圓上的點到坐標原點的距離的最小值為()A.-1 B.C.+1 D.67.已知直線與圓交于A,B兩點,O為原點,且,則實數m等于()A. B.C. D.8.如圖,是函數的部分圖象,且關于直線對稱,則()A. B.C. D.9.“”是“方程表示焦點在x軸上的橢圓”的()A.充要條件 B.必要而不充分條件C.充分而不必要條件 D.既不充分也不必要條件10.等差數列x,,,…的第四項為()A.5 B.6C.7 D.811.設,則的一個必要不充分條件為()A. B.C. D.12.是數列,,,-17,中的第幾項()A第項 B.第項C.第項 D.第項二、填空題:本題共4小題,每小題5分,共20分。13.若,若,則______14.曲線圍成的圖形的面積為___________.15.已知向量與是平面的兩個法向量,則__________16.在中,,,,則此三角形的最大邊長為___________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)某地從今年8月份開始啟動12-14歲人群新冠肺炎疫苗的接種工作,共有8千人需要接種疫苗.前4周的累計接種人數統計如下表:前x周1234累計接種人數y(千人)2.5344.5(1)求y關于的線性回歸方程;(2)根據(1)中所求的回歸方程,預計該地第幾周才能完成疫苗接種工作?參考公式:回歸方程中斜率和截距的最小二乘估計公式分別為,18.(12分)如圖,在四棱錐中,底面是平行四邊形,,M,N分別為的中點,.(1)證明:;(2)求直線與平面所成角的正弦值.19.(12分)已知函數(1)求的單調區(qū)間;(2)若,求的最大值與最小值20.(12分)已知點,橢圓:的離心率為,是橢圓的右焦點,直線的斜率為,為坐標原點.設過點的動直線與相交于,兩點(1)求橢圓的方程(2)是否存在直線,使得的面積為?若存在,求出的方程;若不存在,請說明理由21.(12分)已知公差不為零的等差數列的前項和為,,且,,成等比數列(1)求的通項公式;(2)記,求數列的前項和22.(10分)已知等差數列的前n項和為,等比數列的前n項和為,且,,(1)求,;(2)已知,,試比較,的大小
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】根據雙曲線方程確定焦點位置,再根據漸近線方程為求解.【詳解】因為雙曲線所以焦點在x軸上,又因為漸近線方程為,所以,所以.故選:A【點睛】本題主要考查雙曲線的幾何性質,還考查了理解辨析的能力,屬于基礎題.2、B【解析】由直線方程,可知直線的斜率,設直線的傾斜角為,則,又,所以,故選3、C【解析】過作,連接,由于,故平面,所以所求直線與平面所成的角為,設棱長為,則,故,.點睛:本題主要考查空間立體幾何直線與平面的位置關系,考查直線與平面所成的角,考查線面垂直的證明方法和常見幾何體的結構特征.由于題目所給幾何體為直三棱柱,故側棱和底面垂直,這是一個重要的隱含條件,通過作交線的垂線,即可得到高,由此作出二面角的平面角.4、D【解析】代入計算即可.【詳解】設B點的坐標為,由拋物線方程得,則此時刻拱橋的最高點到水面的距離為2米.故選:D5、C【解析】化簡復數,根據復數的幾何意義,即可求解.【詳解】由題意,復數,所以復數對應的點為位于第三象限.故選:C.6、A【解析】先求出圓心和半徑,求出圓心到坐標原點的距離,從而求出圓上的點到坐標原點的距離的最小值.【詳解】變形為,故圓心為,半徑為1,故圓心到原點的距離為,故圓上的點到坐標原點的距離最小值為.故選:A7、A【解析】根據給定條件求出,再求出圓O到直線l的距離即可計算作答.【詳解】圓的圓心O,半徑,因,則,而,則,即是正三角形,點O到直線l的距離,因此,,解得,所以實數m等于.故選:A8、C【解析】先根據條件確定為函數的極大值點,得到的值,再根據圖像的單調性和導數幾何意義得到和的正負即可判斷.【詳解】根據題意得,為函數部分函數的極大值點,所以,又因為函數在單調遞增,由圖像可知處切線斜率為銳角,根據導數的幾何意義,所以,又因為函數在單調遞增,由圖像可知處切線斜率為鈍角,根據導數的幾何意義所以.即.故選:C.9、A【解析】由橢圓的標準方程結合充分必要條件的定義即得.【詳解】若,則方程表示焦點在軸上的橢圓;反之,若方程表示焦點在軸上的橢圓,則;所以“”是“方程表示焦點在x軸上的橢圓”的充要條件.故選:A.10、A【解析】根據等差數列的定義求出x,求出公差,即可求出第四項.【詳解】由題可知,等差數列公差d=(x+2)-x=2,故3x+6=x+2+2,故x=-1,故第四項為-1+(4-1)×2=5.故選:A.11、C【解析】利用必要條件和充分條件的定義判斷.【詳解】A選項:,,,所以是的充分不必要條件,A錯誤;B選項:,,所以是的非充分非必要條件,B錯誤;C選項:,,,所以是必要不充分條件,C正確;D選項:,,,所以是的非充分非必要條件,D錯誤.故選:C.12、C【解析】利用等差數列的通項公式即可求解【詳解】設數列,,,,是首項為,公差d=-4的等差數列{},,令,得故選:C二、填空題:本題共4小題,每小題5分,共20分。13、2【解析】首先利用二項展開式的通項公式,求,再利用賦值法求系數的和以及【詳解】展開式的通項為,令,則,即,故,令,得.又,所以故故答案為:14、##【解析】曲線圍成圖形關于軸,軸對稱,故只需要求出第一象限的面積即可.【詳解】將或代入方程,方程不發(fā)生改變,故曲線關于軸,軸對稱,因此只需求出第一象限的面積即可.當,時,曲線可化為:,表示的圖形為一個半圓,圍成的面積為,故曲線圍成的圖形的面積為.故答案:.15、【解析】由且為非零向量可直接構造方程求得,進而得到結果.【詳解】由題意知:,,解得:(舍)或,.故答案為:.16、【解析】可知B對的邊最大,再用正弦定理計算即可.【詳解】利用正弦定理可知,B對的邊最大,因為,,所以,.故答案為:三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2)預計第9周才能完成接種工作【解析】(1)利用最小二乘法原理求解即可;(2)解方程即得解.【小問1詳解】解:由表中數據得,,,,.所以所以y關于的線性回歸方程為.【小問2詳解】解:令,解得.所以預計第9周才能完成接種工作.18、(1)證明見解析;(2)【解析】(1)要證,可證,由題意可得,,易證,從而平面,即有,從而得證;(2)取中點,根據題意可知,兩兩垂直,所以以點為坐標原點,建立空間直角坐標系,再分別求出向量和平面的一個法向量,即可根據線面角的向量公式求出【詳解】(1)中,,,,由余弦定理可得,所以,.由題意且,平面,而平面,所以,又,所以(2)由,,而與相交,所以平面,因為,所以,取中點,連接,則兩兩垂直,以點為坐標原點,如圖所示,建立空間直角坐標系,則,又為中點,所以.由(1)得平面,所以平面的一個法向量從而直線與平面所成角的正弦值為【點睛】本題第一問主要考查線面垂直的相互轉化,要證明,可以考慮,題中與有垂直關系直線較多,易證平面,從而使問題得以解決;第二問思路直接,由第一問的垂直關系可以建立空間直角坐標系,根據線面角的向量公式即可計算得出19、(1)單調遞增區(qū)間是和,單調遞減是;(2)函數的最大值是,函數的最小值是.【解析】(1)利用導數和函數單調性關系,求函數的單調區(qū)間;(2)利用函數的單調性,列表求函數的最值.【小問1詳解】,當,解得:或,所以函數的單調遞增區(qū)間是和,當,解得:,所以函數的單調遞減區(qū)間是,所以函數的單調遞增區(qū)間是和,單調遞減是;【小問2詳解】由(1)可得下表4單調遞增單調遞減單調遞增所以函數的最大值是,函數的最小值是20、(1);(2)存在;或.【解析】(1)設,由,,,求得的值即可得橢圓的方程;(2)設,,直線的方程為與橢圓方程聯立可得,,進而可得弦長,求出點到直線的距離,解方程,求得的值即可求解.【小問1詳解】設,因為直線的斜率為,,所以,可得,又因為,所以,所以,所以橢圓的方程為【小問2詳解】假設存在直線,使得的面積為,當軸時,不合題意,設,,直線的方程為,聯立消去得:,由可得或,,,所以,點到直線的距離,所以,整理可得:即,所以或,所以或,所以存在直線:或使得的面積為.21、(1)(2)【解析】(1)設數列的公差為,由,且,,,利用“”法求解;(2)由,利用裂項相消法求解.【小問1詳解】解:,,設數列的公差為,則,,,由題知,整理得,解得,(舍去),,則.【小問2詳解】,則=.22、(1),;(2).【解析】(1)設等差數列的公差,等比數列
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度金融科技平臺技術服務合同范本2篇
- 2024房產異業(yè)聯盟合作合同樣本版B版
- 2024年跨境電商商鋪租賃及運營合同3篇
- 2024年美食制作合作協議2篇
- 2024年度客運站聘用班車司機勞動合同(升級版)3篇
- 2024日照房屋租賃合同
- 三方商業(yè)地產轉租條款:正式協議版A版
- 2024年鏟車油料供應與回收合同
- 2024購車所需民間借款合同
- 2024年限酒店前臺接待工作人員協議版
- 九年級上冊第二單元民主與法治 單元作業(yè)設計
- 三年級上冊豎式、脫式、應用題每日一練
- 團隊建設團隊診斷
- 醫(yī)院電子病歷系統應用水平分級評價 4級實證材料選擇項
- 運用PDCA康復醫(yī)學科康復患者訓練落實率品管圈QCC匯報
- 部編人教版三年級語文下冊同步習題(全冊含答案)
- 2023年歷屆華杯賽初賽小高真題
- 焦作市中佰宜佳材料有限公司年產15萬噸煅后焦項目環(huán)評報告
- 2023年健康管理師(一級)《基礎知識》考試題庫資料(300多題)
- GB/T 6913-2023鍋爐用水和冷卻水分析方法磷酸鹽的測定
- 項目部布置圖方案
評論
0/150
提交評論