西藏林芝二中2025屆數(shù)學(xué)高二上期末經(jīng)典試題含解析_第1頁
西藏林芝二中2025屆數(shù)學(xué)高二上期末經(jīng)典試題含解析_第2頁
西藏林芝二中2025屆數(shù)學(xué)高二上期末經(jīng)典試題含解析_第3頁
西藏林芝二中2025屆數(shù)學(xué)高二上期末經(jīng)典試題含解析_第4頁
西藏林芝二中2025屆數(shù)學(xué)高二上期末經(jīng)典試題含解析_第5頁
已閱讀5頁,還剩13頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

西藏林芝二中2025屆數(shù)學(xué)高二上期末經(jīng)典試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)、考場號(hào)和座位號(hào)填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時(shí),選出每小題答案后,用2B鉛筆把答題卡上對(duì)應(yīng)題目選項(xiàng)的答案信息點(diǎn)涂黑;如需改動(dòng),用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動(dòng),先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知正三棱柱的側(cè)棱長與底面邊長相等,則AB1與側(cè)面ACC1A1所成角的正弦值等于A. B.C. D.2.某綜合實(shí)踐小組設(shè)計(jì)了一個(gè)“雙曲線型花瓶”.他們的設(shè)計(jì)思路是將某雙曲線的一部分(圖1中A,C之間的曲線)繞其虛軸所在直線l旋轉(zhuǎn)一周,得到花瓶的側(cè)面,花瓶底部是平整的圓面,如圖2.該小組給出了圖1中的相關(guān)數(shù)據(jù):,,,,,其中B是雙曲線的一個(gè)頂點(diǎn).小組中甲、乙、丙、丁四位同學(xué)分別用不同的方法估算了該花瓶的容積(忽略瓶壁和底部的厚度),結(jié)果如下表所示學(xué)生甲乙丙丁估算結(jié)果()其中估算結(jié)果最接近花瓶的容積的同學(xué)是()(參考公式:,,)A.甲 B.乙C.丙 D.丁3.已知雙曲線C的離心率為,,是C的兩個(gè)焦點(diǎn),P為C上一點(diǎn),,若△的面積為,則雙曲線C的實(shí)軸長為()A.1 B.2C.4 D.64.直線過點(diǎn)且與雙曲線僅有一個(gè)公共點(diǎn),則這樣的直線有()A.1條 B.2條C.3條 D.4條5.已知數(shù)列中,,,是的前n項(xiàng)和,則()A. B.C. D.6.已知雙曲線的右焦點(diǎn)為F,關(guān)于原點(diǎn)對(duì)稱的兩點(diǎn)A、B分別在雙曲線的左、右兩支上,,且點(diǎn)C在雙曲線上,則雙曲線的離心率為()A.2 B.C. D.7.點(diǎn)F是拋物線的焦點(diǎn),點(diǎn),P為拋物線上一點(diǎn),P不在直線AF上,則△PAF的周長的最小值是()A.4 B.6C. D.8.在的展開式中,只有第4項(xiàng)的二項(xiàng)式系數(shù)最大,則()A.5 B.6C.7 D.89.若橢圓的短軸為,一個(gè)焦點(diǎn)為,且為等邊三角形的橢圓的離心率是A. B.C. D.10.等比數(shù)列的公比為,則“”是“對(duì)于任意正整數(shù)n,都有”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分又不必要條件11.設(shè)是兩個(gè)不同的平面,是一條直線,以下命題正確的是A.若,則 B.若,則C.若,則 D.若,則12.在平面直角坐標(biāo)系中,橢圓的左、右焦點(diǎn)分別為,,過且垂直于軸的直線與交于,兩點(diǎn),與軸交于點(diǎn),,則的離心率為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知雙曲線(a,b>0)的左、右焦點(diǎn)分別為F1,F(xiàn)2,過點(diǎn)F1且傾斜角為的直線l與雙曲線的左、右支分別交于點(diǎn)A,B.且|AF2|=|BF2|,則該雙曲線的離心率為____________.14.同時(shí)擲兩枚骰子,則點(diǎn)數(shù)和為7的概率是__________.15.已知函數(shù),則______16.已知實(shí)數(shù),滿足不等式組,則目標(biāo)函數(shù)的最大值為__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在四棱錐中,底面ABCD是邊長為2的正方形,為正三角形,且側(cè)面底面ABCD,(1)求證:平面ACM;(2)求平面MBC與平面DBC的夾角的大小18.(12分)已知,:,:.(1)若,為真命題,為假命題,求實(shí)數(shù)的取值范圍;(2)若是的充分不必要條件,求實(shí)數(shù)的取值范圍19.(12分)在平面直角坐標(biāo)系xOy中,已知橢圓的左、右焦點(diǎn)分別是,,離心率,請(qǐng)?jiān)購南旅鎯蓚€(gè)條件中選擇一個(gè)作為已知條件,完成下面的問題:①橢圓C過點(diǎn);②以點(diǎn)為圓心,3為半徑的圓與以點(diǎn)為圓心,1為半徑的圓相交,且交點(diǎn)在橢圓C上(只能從①②中選擇一個(gè)作為已知)(1)求橢圓C的方程;(2)已知過點(diǎn)的直線l交橢圓C于M,N兩點(diǎn),點(diǎn)N關(guān)于x軸的對(duì)稱點(diǎn)為,且,M,三點(diǎn)構(gòu)成一個(gè)三角形,求證:直線過定點(diǎn),并求面積的最大值.20.(12分)已知為等差數(shù)列,是各項(xiàng)均為正數(shù)的等比數(shù)列的前n項(xiàng)和,,,,在①;②;③.這三個(gè)條件中任選其中一個(gè),補(bǔ)充在上面的橫線上,并完成下面問題的解答(如果選擇多個(gè)條件解答,則按選擇的第一個(gè)解答計(jì)分)(1)求數(shù)列和的通項(xiàng)公式;(2)求數(shù)列的前n項(xiàng)和.21.(12分)某話劇表演小組由名學(xué)生組成,若從這名學(xué)生中任意選取人,其中恰有名男生的概率是.(1)求該小組中男、女生各有多少人?(2)若這名學(xué)生站成一排照相留念,求所有排法中男生不相鄰的概率.22.(10分)已知橢圓過點(diǎn),且離心率,為坐標(biāo)原點(diǎn).(1)求橢圓的方程;(2)判斷是否存在直線,使得直線與橢圓相交于兩點(diǎn),直線與軸相交于點(diǎn),且滿足,若存在,求出直線的方程;若不存在,請(qǐng)說明理由.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】過作,連接,由于,故平面,所以所求直線與平面所成的角為,設(shè)棱長為,則,故,.點(diǎn)睛:本題主要考查空間立體幾何直線與平面的位置關(guān)系,考查直線與平面所成的角,考查線面垂直的證明方法和常見幾何體的結(jié)構(gòu)特征.由于題目所給幾何體為直三棱柱,故側(cè)棱和底面垂直,這是一個(gè)重要的隱含條件,通過作交線的垂線,即可得到高,由此作出二面角的平面角.2、D【解析】根據(jù)幾何體可分割為圓柱和曲邊圓錐,利用圓柱和圓錐的體積公式對(duì)幾何體的體積進(jìn)行估計(jì)即可.【詳解】可將幾何體看作一個(gè)以為半徑,高為的圓柱,再加上兩個(gè)曲邊圓錐,其中底面半徑分別為,,高分別為,,,,所以花瓶的容積,故最接近的是丁同學(xué)的估算,故選:D3、C【解析】由已知條件可得,,,再由余弦定理得,進(jìn)而求其正弦值,最后利用三角形面積公式列方程求參數(shù)a,即可知雙曲線C的實(shí)軸長.【詳解】由題意知,點(diǎn)P在右支上,則,又,∴,,又,∴,則在△中,,∴,故,解得,∴實(shí)軸長為,故選:C.4、C【解析】根據(jù)直線的斜率存在與不存在,分類討論,結(jié)合雙曲線的漸近線的性質(zhì),即可求解.【詳解】當(dāng)直線的斜率不存在時(shí),直線過雙曲線的右頂點(diǎn),方程為,滿足題意;當(dāng)直線的斜率存在時(shí),若直線與兩漸近線平行,也能滿足與雙曲線有且僅有一個(gè)公共點(diǎn).綜上可得,滿足條件的直線共有3條.故選:C.【點(diǎn)睛】本題主要考查了直線與雙曲線的位置關(guān)系,以及雙曲線的漸近線的性質(zhì),其中解答中忽視斜率不存在的情況是解答的一個(gè)易錯(cuò)點(diǎn),著重考查了分析問題和解答問題的能力,以及分類討論思想的應(yīng)用,屬于基礎(chǔ)題.5、D【解析】由,得到為遞增數(shù)列,又由,得到,化簡,即可求解.【詳解】解:由,得,又,所以,所以,即,所以數(shù)列為遞增數(shù)列,所以,得,即,又由是的前項(xiàng)和,則.故選:D.【點(diǎn)睛】關(guān)鍵點(diǎn)睛:本題考查數(shù)列求和問題,關(guān)鍵在于由已知條件得出,運(yùn)用裂項(xiàng)相消求和法.6、D【解析】設(shè),由,得到四邊形是矩形,在中,利用勾股定理求得,再在中,利用勾股定理求解.【詳解】如圖所示:設(shè),則,,,因?yàn)?,所以,則四邊形是矩形,在中,,即,解得,在中,,即,解得,故選:D7、C【解析】由拋物線的定義轉(zhuǎn)化后求距離最值【詳解】拋物線的焦點(diǎn),準(zhǔn)線為過點(diǎn)作準(zhǔn)線于點(diǎn),故△PAF的周長為,,可知當(dāng)三點(diǎn)共線時(shí)周長最小,為故選:C8、B【解析】當(dāng)n為偶數(shù)時(shí),展開式中第項(xiàng)二項(xiàng)式系數(shù)最大,當(dāng)n為奇數(shù)時(shí),展開式中第和項(xiàng)二項(xiàng)式系數(shù)最大.【詳解】因?yàn)橹挥幸豁?xiàng)二項(xiàng)式系數(shù)最大,所以n為偶數(shù),故,得.故選:B9、B【解析】因?yàn)闉榈冗吶切?所以.考點(diǎn):橢圓的幾何性質(zhì).點(diǎn)評(píng):橢圓圖形當(dāng)中有一個(gè)特征三角形,它的三邊分別為a,b,c.因而可據(jù)此求出離心率.10、D【解析】結(jié)合等比數(shù)列的單調(diào)性,根據(jù)充分必要條件的定義判斷【詳解】若,,則,,充分性不成立;反過來,若,,則時(shí),必要性不成立;因此“”是“對(duì)于任意正整數(shù)n,都有”的既不充分也不必要條件.故選:D11、C【解析】對(duì)于A、B、D均可能出現(xiàn),而對(duì)于C是正確的12、B【解析】由題意結(jié)合幾何性質(zhì)可得為等腰三角形,且,所以,求出的長,結(jié)合橢圓的定義可得答案.【詳解】如圖,由題意軸,軸,則又為的中點(diǎn),則為的中點(diǎn),又,則為等腰三角形,且,所以將代入橢圓方程得,,即所以,則由橢圓的定義可得,即則橢圓的離心率故選:B二、填空題:本題共4小題,每小題5分,共20分。13、【解析】由雙曲線的定義和直角三角形的勾股定理,以及解直角三角形,可得a,c的關(guān)系,再由離心率公式可得所求值【詳解】過F2作F2N⊥AB于點(diǎn)N,設(shè)|AF2|=|BF2|=m,因?yàn)橹本€l的傾斜角為,所以在直角三角形F1F2N中,,由雙曲線的定義可得|BF1|﹣|BF2|=2a,所以|BF1|=2a+m,同理可得|AF1|=m﹣2a,所以|AB|=|BF1|﹣|AF1|=4a,即|AN|=2a,所以|AF1|=c﹣2a,因此,在直角三角形ANF2中,|AF2|2=|NF2|2+|AN|2,所以(c)2=4a2+c2,所以c=a,則,故答案為:14、【解析】利用古典概型的概率計(jì)算公式即得.【詳解】依題意,記拋擲兩顆骰子向上的點(diǎn)數(shù)分別為,,則可得到數(shù)組共有組,其中滿足的組數(shù)共有6組,分別為,,,,,,因此所求的概率等于.故答案為:.15、【解析】根據(jù)導(dǎo)數(shù)的定義求解即可【詳解】由,得,所以,故答案為:16、##【解析】畫出可行域,通過平移基準(zhǔn)直線到可行域邊界來求得的最大值.【詳解】,畫出可行域如下圖所示,由圖可知,當(dāng)時(shí),取得最大值.故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析(2)30°【解析】(1)連接BD,借助三角形中位線可證;(2)建立空間直角坐標(biāo)系,利用向量法直接可求.【小問1詳解】連接BD,與AC交于點(diǎn)O,在中,因?yàn)镺,M分別為BD,PD的中點(diǎn),則,又平面ACM,平面ACM,所以平面ACM.【小問2詳解】設(shè)E是AB的中點(diǎn),連接PE,因?yàn)闉檎切?,則,又因?yàn)槠矫娴酌鍭BCD,平面平面,則平面ABCD,過點(diǎn)E作EF平行于CB,與CD交于點(diǎn)F,以E為坐標(biāo)原點(diǎn),建立空間直角坐標(biāo)系如圖所示,則,,,,,,所以,,設(shè)平面CBM的法向量為,則,令,則,因?yàn)槠矫鍭BCD,則平面ABCD的一個(gè)法向量為,所以,所以平面MBC與平面DBC所成角大小為30°18、(1)(2)【解析】(1)化簡命題p,將m=3代入求出命題q,再根據(jù)或、且連接的命題真假確定p,q真假即可得解;(2)由給定條件可得p是q的必要不充分條件,再列式計(jì)算作答.【小問1詳解】依題意,:,:,得:.當(dāng)時(shí),:,因?yàn)檎婷},為假命題,則與一真一假,當(dāng)真假時(shí),即或,無解,當(dāng)假真時(shí),即或,解得或,綜上得:或,所以實(shí)數(shù)x的取值范圍是;【小問2詳解】因是的充分不必要條件,則p是q的必要不充分條件,于是得,解得,所以實(shí)數(shù)m的取值范圍是19、(1)(2)證明見解析,【解析】(1)若選①,則由題意可得,解方程組求出,從而可求得橢圓方程,若選②,,再結(jié)合離心率和求出,從而可求得橢圓方程,(2)由題意設(shè)直線MN的方程為,設(shè),,,將直線方程代入橢圓方程中,消去,再利用根與系數(shù)的關(guān)系,表示出直線的方程,令,求出,結(jié)合前面的式子化簡可得線過的定點(diǎn),表示出的面積,利用基本不等式可求得其最大值【小問1詳解】若選①:由題意知,∴.所以橢圓C的方程為.若選②:設(shè)圓與圓相交于點(diǎn)Q.由題意知:.又因?yàn)辄c(diǎn)Q在橢圓上,所以,∴.又因?yàn)?,∴,?所以橢圓C的方程為.【小問2詳解】由題易知直線MN斜率存在且不為0,因?yàn)?,故設(shè)直線MN方程為,設(shè),,,∴,∴,,因?yàn)辄c(diǎn)N關(guān)于x軸對(duì)稱點(diǎn)為,所以,所以直線方程為,令,∴.又,∴.所以直線過定點(diǎn),∴.當(dāng)且僅當(dāng),即時(shí),取等號(hào).所以面積的最大值為.20、(1)無論選擇哪個(gè)條件答案均為;(2).【解析】(1)先根據(jù)題設(shè)條件求解,然后根據(jù)選擇的條件求解;(2)先求,然后利用分組求和的方法求解.【小問1詳解】設(shè)的公差為,因?yàn)?,;所以,解得,所?選①:設(shè)的公比為,則;由題意得,因?yàn)?,所以,解得或(舍);所?選②:由,當(dāng)時(shí),,因?yàn)?,所以;?dāng)時(shí),,整理得;即是首項(xiàng)和公比均為2的等比數(shù)列,所以.選③:因?yàn)?,,所以,解得;所?【小問2詳解】由(1)得;所以.21、(1)男生人數(shù)為,女生人數(shù)為;(2).【解析】(1)設(shè)男生的人數(shù)為,則女生人數(shù)為,且,根據(jù)組合計(jì)數(shù)原理結(jié)合古典概型的概率公式可求得的值,即可得解;(2)利用插空法結(jié)合古典概型的概率公式可求得所求事件的概率.【小問1詳解】解:設(shè)男生的人數(shù)為,則女生人數(shù)為,且,由已知可得,即,因?yàn)榍?,解得,所以?/p>

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論