湖南省湘南2025屆數(shù)學高二上期末考試試題含解析_第1頁
湖南省湘南2025屆數(shù)學高二上期末考試試題含解析_第2頁
湖南省湘南2025屆數(shù)學高二上期末考試試題含解析_第3頁
湖南省湘南2025屆數(shù)學高二上期末考試試題含解析_第4頁
湖南省湘南2025屆數(shù)學高二上期末考試試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

湖南省湘南2025屆數(shù)學高二上期末考試試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知函數(shù)對于任意的滿足,其中是函數(shù)的導函數(shù),則下列各式正確的是()A. B.C. D.2.雙曲線的焦點到漸近線的距離為()A. B.C. D.3.設為拋物線焦點,直線,點為上任意一點,過點作于,則()A.3 B.4C.2 D.不能確定4.在矩形中,,在該矩形內(nèi)任取一點M,則事件“”發(fā)生的概率為()A. B.C. D.5.已知P是直線上的動點,PA,PB是圓的切線,A,B為切點,C為圓心,那么四邊形PACB的面積的最小值是()A2 B.C.3 D.6.已知雙曲線C:-=1(a>b>0)的左焦點為F1,若過原點傾斜角為的直線與雙曲線C左右兩支交于M、N兩點,且MF1NF1,則雙曲線C的離心率是()A.2 B.C. D.7.變量,之間的一組相關數(shù)據(jù)如表所示:若,之間的線性回歸方程為,則的值為()45678.27.86.65.4A. B.C. D.8.已知集合,,則A. B.C. D.9.設雙曲線的左、右頂點分別為、,左、右焦點分別為、,以為直徑的圓與雙曲線左支的一個交點為若以為直徑的圓與直線相切,則的面積為()A. B.C. D.10.焦點坐標為的拋物線的標準方程是()A. B.C. D.11.若圓的半徑為,則實數(shù)()A. B.-1C.1 D.12.在等差數(shù)列中,若,則()A.6 B.9C.11 D.24二、填空題:本題共4小題,每小題5分,共20分。13.如圖,在正四棱錐中,為棱PB的中點,為棱PD的中點,則棱錐與棱錐的體積之比為______14.設,若,則S=________.15.已知直線與圓:交于、兩點,則的面積為______.16.若雙曲線的漸近線為,則其離心率的值為_______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)數(shù)列的前n項和為,(1)求數(shù)列的通項公式;(2)令,求數(shù)列的前n項和18.(12分)2021年10月16日,搭載“神舟十三號”的火箭發(fā)射升空,有很多民眾通過手機、電視等方式觀看有關新聞.某機構將關注這件事的時間在2小時以上的人稱為“天文愛好者”,否則稱為“非天文愛好者”,該機構通過調(diào)查,從參與調(diào)查的人群中隨機抽取100人進行分析,得到下表(單位:人):天文愛好者非天文愛好者合計女203050男351550合計5545100(1)能否有99%的把握認為“天文愛好者”或“非天文愛好者”與性別有關?(2)現(xiàn)從抽取的女性人群中,按“天文愛好者”和“非天文愛好者”這兩種類型進行分層抽樣抽取5人,然后再從這5人中隨機選出3人,記其中“天文愛好者”的人數(shù)為X,求X的分布列和數(shù)學期望附:,其中n=a+b+c+d0.100.050.0100.0050.0012.7063.8416.6357.87910.82819.(12分)已知橢圓C的中心在原點,焦點在x軸上,長軸長為4,且點在橢圓上(1)經(jīng)過點M(1,)作一直線交橢圓于AB兩點,若點M為線段AB的中點,求直線的斜率;(2)設橢圓C的上頂點為P,設不經(jīng)過點P的直線與橢圓C交于C,D兩點,且,求證:直線過定點20.(12分)已知圓C:的半徑為1(1)求實數(shù)a的值;(2)判斷直線l:與圓C是否相交?若不相交,請說明理由;若相交,請求出弦長21.(12分)動點與定點的距離和它到定直線的距離的比是,記動點M的軌跡為曲線C.(1)求曲線C的方程;(2)已知過點的直線與曲線C相交于兩點,,請問點P能否為線段的中點,并說明理由.22.(10分)已知點,圓C:,l:.(1)若直線過點M,且被圓C截得的弦長為,求該直線的方程;(2)設P為已知直線l上的動點,過點P向圓C作一條切線,切點為Q,求的最小值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】令,結合題意可得,利用導數(shù)討論函數(shù)的單調(diào)性,進而得出,變形即可得出結果.【詳解】令,則,又,所以,令,令,所以函數(shù)在上單調(diào)遞減,在單調(diào)遞增,所以,即,則.故選:C2、D【解析】根據(jù)題意,由雙曲線的標準方程可得雙曲線的焦點坐標以及漸近線方程,由點到直線的距離公式計算可得答案.【詳解】解:根據(jù)題意,雙曲線的方程為,其焦點坐標為,其漸近線方程為,即,則其焦點到漸近線的距離;故選D.【點睛】本題考查雙曲線的幾何性質,關鍵是求出雙曲線的漸近線與焦點坐標.3、A【解析】由拋物線方程求出準線方程,由題意可得,由拋物線的定義可得,即可求解.【詳解】由可得,準線為,設,由拋物線的定義可得,因為過點作于,可得,所以,故選:A.4、D【解析】利用幾何概型的概率公式,轉化為面積比直接求解.【詳解】以AB為直徑作圓,當點M在圓外時,.所以事件“”發(fā)生的概率為.故選:D5、D【解析】由圓C的標準方程可得圓心為(1,1),半徑為1,根據(jù)切線的性質可得四邊形PACB面積等于,,故求解最小時即可確定四邊形PACB面積的最小值.【詳解】圓C:x2+y2-2x-2y+1=0即,表示以C(1,1)為圓心,以1為半徑的圓,由于四邊形PACB面積等于2×××=,而,故當最小時,四邊形PACB面積最小,又的最小值等于圓心C到直線l:的距離d,而,故四邊形PACB面積的最小值為,故選:D6、C【解析】根據(jù)雙曲線和直線的對稱性,結合矩形的性質、雙曲線的定義、離心率公式、余弦定理進行求解即可.【詳解】設雙曲線的右焦點為F2,過原點傾斜角為的直線為,設M、N分別在第三、第一象限,由雙曲線和直線的對稱性可知:M、N兩點關于原點對稱,而MF1NF1,因此四邊形是矩形,而,所以是等邊三角形,故,因此,因為,所以,在等腰三角形中,由余弦定理可知:,由矩形的性質可知:,由雙曲線的定義可知:,故選:C【點睛】關鍵點睛:利用矩形的性質、雙曲線的定義是解題的關鍵.7、C【解析】本題先求樣本點中心,再利用線性回歸方程過樣本點中心直接求解即可.【詳解】解:,,所以樣本點中心:,線性回歸方程過樣本點中心,則解得:,故選:C【點睛】本題考查線性回歸方程過樣本點中心,是簡單題.8、B【解析】由交集定義直接求解即可.【詳解】集合,,則.故選B.【點睛】本題主要考查了集合的交集運算,屬于基礎題.9、C【解析】據(jù)三角形中位線可得;再由雙曲線的定義求出,進而求出的面積【詳解】雙曲線的方程為:,,設以為直徑的圓與直線相切與點,則,且,,∥.又為的中點,,又,,的面積為:.故選:C10、D【解析】依次確定選項中各個拋物線的焦點坐標即可.【詳解】對于A,的焦點坐標為,A錯誤;對于B,的焦點坐標為,B錯誤;對于C,焦點坐標為,C錯誤;對于D,的焦點坐標為,D正確.故選:D.11、B【解析】將圓的方程化為標準方程,即可求出半徑的表達式,從而可求出的值.【詳解】由題意,圓的方程可化為,所以半徑為,解得.故選:B.【點睛】本題考查圓的方程,考查學生的計算求解能力,屬于基礎題.12、B【解析】根據(jù)等差數(shù)列的通項公式的基本量運算求解【詳解】設的公差為d,因為,所以,又,所以故選:B二、填空題:本題共4小題,每小題5分,共20分。13、【解析】根據(jù)圖形可求出與棱錐的體積之比,即可求出結果【詳解】如圖所示:棱錐可看成正四棱錐減去四個小棱錐的體積得到,設正四棱錐的體積為,為PB的中點,為PD的中點,所以,而,同理,故棱錐的體積的為,即棱錐與棱錐的體積之比為故答案為:.14、1007【解析】可證f(x)+f(1﹣x)=1,由倒序相加法可得所求為1007對的組合,即1007個1,可得答案【詳解】解:∵函數(shù)f(x),∴f(x)+f(1﹣x)1故可得S=f()+f()…+f()=1007×1=1007,故答案為:1007點睛】本題考查倒序相加法求和,推斷出f(x)+f(1﹣x)=1是解題的關鍵.15、2【解析】用已知直線方程和圓方程聯(lián)立,可以求出交點,再分析三角形的形狀,即可求出三角形的面積.【詳解】由圓C方程:可得:;即圓心C的坐標為(0,-1),半徑r=2;聯(lián)立方程得交點,如下圖:可知軸,∴是以為直角的直角三角形,,故答案為:2.16、【解析】利用漸近線斜率為和雙曲線的關系可構造關于的齊次方程,進而求得結果.【詳解】由漸近線方程可知:,即,,,(負值舍掉).故答案為:.【點睛】本題考查根據(jù)雙曲線漸近線方程求解離心率的問題,關鍵是利用漸進線的斜率構造關于的齊次方程.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】(1)根據(jù)給定條件結合“當時,”計算作答.(2)由(1)求出,利用裂項相消法計算得解.【小問1詳解】數(shù)列的前n項和為,,當時,,當時,,滿足上式,則,所以數(shù)列的通項公式是【小問2詳解】由(1)知,,所以,所以數(shù)列的前n項和18、(1)有(2)分布列見解析,【解析】(1)依題意由列聯(lián)表計算出卡方,與參考數(shù)值比較,即可判斷;(2)按照分層抽樣得到有2人為“天文愛好者”,有3人為“非天文愛好者”,記“天文愛好者”的人數(shù)為X,則X的可能值為0,1,2,即可求出所對應的概率,從而得到分布列與數(shù)學期望;【小問1詳解】解:由題意,所以有99%的把握認為“天文愛好者”或“非天文愛好者”與性別有關.【小問2詳解】解:抽取的100人中女性人群有50人,其中“天文愛好者”有20人,“非天文愛好者”有30人,所以按分層抽樣在50個女性人群中抽取5人,則有2人為“天文愛好者”,有3人為“非天文愛好者”再從這5人中隨機選出3人,記其中“天文愛好者”的人數(shù)為X,則X的可能值為0,1,2,∴,,,X的分布列如下表:X012P19、(1);(2)證明見解析.【解析】(1)設橢圓的方程為代入點的坐標求出橢圓的方程,再利用點差法求解;(2)由題得直線的斜率存在,設直線的方程為,聯(lián)立直線和橢圓的方程得韋達定理,根據(jù)和韋達定理得到,即得證.【小問1詳解】解:由題設橢圓的方程為因為橢圓經(jīng)過點,所以所以橢圓的方程為.設,所以,所以,由題得,所以,所以,所以,所以直線的斜率為.【小問2詳解】解:由題得當直線的斜率不存在時,不符合題意;當直線的斜率存在時,設直線的方程為,聯(lián)立方程組y=kx+nx24所以,解得①,設,,,,則②,因為,則,,,又,,所以③,由②③可得(舍或滿足條件①,此時直線的方程為,故直線過定點20、(1);(2)直線l與圓C相交,.【解析】(1)利用配方法進行求解即可;(2)根據(jù)點到直線距離公式,結合圓的弦長公式進行求解即可.【小問1詳解】將化為標準方程得:因為圓C的半徑為1,所以,得【小問2詳解】由(1)知圓C的圓心為,半徑為1設圓心C到直線l的距離為d,則,所以直線l與圓C相交,設其交點為A,B,則,即21、(1)(2)不能,理由見解析.【解析】(1)利用題中距離之比列出關于動點的方程即可求解;(2)先假設點P能為線段的中點,再利用點差法求出直線的斜率,最后聯(lián)立直線與曲線進行檢驗即可.【小問1詳解】解:動點與定點的距離和它到定直線的距離的比是則等式兩邊平方可得:化簡得曲線C的方程為:【小問2詳解】解:點不能為線段的中點,理由如下:由(1)知,曲線C的方程為:過點的直線斜率為,,因為過點的直線與曲線C相交于兩點,所以,兩式作差并化簡得:①當為的中點時,則,②將②代入①可得:此時過點的直線方程為:將直線方程與曲線C方程聯(lián)立得:,,無解與過點的直線與曲線C相交于兩點矛盾所以點不能為線段的中點【點

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論