版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
山東省濟省實驗學校2025屆數(shù)學高二上期末調(diào)研試題注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.等差數(shù)列中,已知,則()A.36 B.27C.18 D.92.如圖,在正方體中,點E是上底面的中心,則異面直線與所成角的余弦值為()A. B.C. D.3.曲線在處的切線的斜率為()A.-1 B.1C.2 D.34.過原點O作兩條相互垂直的直線分別與橢圓交于A、C與B、D,則四邊形ABCD面積最小值為()A. B.C. D.5.過點的直線與圓相切,則直線的方程為()A.或 B.或C.或 D.或6.已知拋物線的焦點為,準線為,是上一點,是直線與拋物線的一個交點,若,則()A. B.3C. D.27.已知,數(shù)列,,,與,,,,都是等差數(shù)列,則的值是()A. B.C. D.8.拋物線y=4x2的焦點坐標是()A.(0,1) B.(1,0)C. D.9.下列事件:①連續(xù)兩次拋擲同一個骰子,兩次都出現(xiàn)2點;②某人買彩票中獎;③從集合中任取兩個不同元素,它們的和大于2;④在標準大氣壓下,水加熱到90℃時會沸騰.其中是隨機事件的個數(shù)是()A.1 B.2C.3 D.410.已知全集,集合,,則()A. B.C. D.11.1202年,意大利數(shù)學家斐波那契出版了他的《算盤全書》.他在書中收錄了一些有意思的問題,其中有一個關于兔子繁殖的問題:如果1對兔子每月生1對小兔子(一雌一雄),而每1對小兔子出生后的第3個月里,又能生1對小兔子,假定在不發(fā)生死亡的情況下,如果用Fn表示第n個月的兔子的總對數(shù),則有(n>2),.設數(shù)列{an}滿足:an=,則數(shù)列{an}的前36項和為()A.11 B.12C.13 D.1812.已知拋物線上一點到其焦點的距離為5,雙曲線的左頂點為A,若雙曲線的一條漸近線與直線AM平行,則實數(shù)n的值是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知點是橢圓上的一點,分別為橢圓的左、右焦點,已知=120°,且,則橢圓的離心率為___________.14.已知點,,其中,若線段的中點坐標為,則直線的方程為________15.在空間直角坐標系中,點到x軸的距離為___________.16.設拋物線的焦點為,直線過焦點,且與拋物線交于兩點,,則__________三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)雙曲線的離心率為2,經(jīng)過C的焦點垂直于x軸的直線被C所截得的弦長為12.(1)求C的方程;(2)設A,B是C上兩點,線段AB的中點為,求直線AB的方程.18.(12分)某蓮藕種植塘每年的固定成本是2萬元,每年最大規(guī)模的種植量是8萬千克,每種植1萬千克蓮藕,成本增加0.5萬元.種植萬千克蓮藕的銷售額(單位:萬元)是(是常數(shù)),若種植2萬千克蓮藕,利潤是1.5萬元,求:(1)種植萬千克蓮藕利潤(單位:萬元)為的解析式;(2)要使利潤最大,每年需種植多少萬千克蓮藕,并求出利潤的最大值.19.(12分)已知兩定點,,動點與兩定點的斜率之積為(1)求動點M的軌跡方程;(2)設(1)中所求曲線為C,若斜率為的直線l過點,且與C交于P,Q兩點.問:在x軸上是否存在一點T,使得對任意且,都有(其中,分別表示,的面積).若存在,請求出點T的坐標;若不存在,請說明理由20.(12分)如圖,在四棱錐中,底面為正方形,底面,,為棱的中點.(1)求直線與所成角的余弦值;(2)求直線與平面所成角的正弦值;(3)求二面角的余弦值.21.(12分)設數(shù)列的前n項和為,且滿足.(1)證明為等比數(shù)列,并求數(shù)列通項公式;(2)在(1)的條件下,設,求數(shù)列的前項和.22.(10分)已知圓,圓.(1)試判斷圓C與圓M的位置關系,并說明理由;(2)若過點的直線l與圓C相切,求直線l的方程.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】直接利用等差數(shù)列的求和公式及等差數(shù)列的性質(zhì)求解.【詳解】解:由題得.故選:B2、B【解析】建立空間直角坐標系,利用向量夾角求解.【詳解】以為原點,為軸正方向建立空間直角坐標系如圖所示,設正方體棱長為2,所以,所以異面直線與所成角的余弦值為.故選:B3、D【解析】先求解出導函數(shù),然后代入到導函數(shù)中,所求導數(shù)值即為切線斜率.【詳解】因為,所以,所以切線的斜率為.故選:D.4、A【解析】直線AC、BD與坐標軸重合時求出四邊形面積,與坐標軸不重合求出四邊形ABCD面積最小值,再比較大小即可作答.【詳解】因四邊形ABCD的兩條對角線互相垂直,由橢圓性質(zhì)知,四邊形ABCD的四個頂點為橢圓頂點時,而,四邊形ABCD的面積,當直線AC斜率存在且不0時,設其方程為,由消去y得:,設,則,,直線BD方程為,同理得:,則有,當且僅當,即或時取“=”,而,所以四邊形ABCD面積最小值為.故選:A5、D【解析】根據(jù)斜率存在和不存在分類討論,斜率存在時設直線方程,由圓心到直線距離等于半徑求解【詳解】圓心為,半徑為2,斜率不存在時,直線滿足題意,斜率存在時,設直線方程為,即,由,得,直線方程為,即故選:D6、D【解析】根據(jù)拋物線的定義求得,由此求得的長.【詳解】過作,垂足為,設與軸交點為.根據(jù)拋物線的定義可知.由于,所以,所以,所以,所以.故選:D【點睛】本小題主要考查拋物線定義,考查數(shù)形結合的數(shù)學思想方法,屬于基礎題.7、A【解析】根據(jù)等差數(shù)列的通項公式,分別表示出,,整理即可得答案.【詳解】數(shù)列,,,和,,,,各自都成等差數(shù)列,,,,故選:A8、C【解析】將拋物線方程化為標準方程,由此可拋物線的焦點坐標得選項.【詳解】解:將拋物線y=4x2的化為標準方程為x2=y(tǒng),p=,開口向上,焦點在y軸的正半軸上,故焦點坐標為(0,).故選:C9、B【解析】因為隨機事件指的是在一定條件下,可能發(fā)生,也可能不發(fā)生的事件,只需逐一判斷4個事件哪一個符合這種情況即可【詳解】解:連續(xù)兩次拋擲同一個骰子,兩次都出現(xiàn)2點這一事件可能發(fā)生也可能不發(fā)生,①是隨機事件某人買彩票中獎這一事件可能發(fā)生也可能不發(fā)生,②是隨機事件從集合,2,中任取兩個元素,它們的和必大于2,③是必然事件在標準大氣壓下,水加熱到時才會沸騰,④是不可能事件故隨機事件有2個,故選:B10、A【解析】先求,然后求.【詳解】,,.故選:A11、B【解析】由奇數(shù)+奇數(shù)=偶數(shù),奇數(shù)+偶數(shù)=奇數(shù)可知,數(shù)列{Fn}中F3,F(xiàn)6,F(xiàn)9,F(xiàn)12,,F(xiàn)3n為偶數(shù),其余項都為奇數(shù),再根據(jù)an=,即可求出數(shù)列{an}的前36項和【詳解】由奇數(shù)+奇數(shù)=偶數(shù),奇數(shù)+偶數(shù)=奇數(shù)可知,數(shù)列{Fn}中F3,F(xiàn)6,F(xiàn)9,F(xiàn)12,,F(xiàn)3n為偶數(shù),其余項都為奇數(shù),∴前36項共有12項為偶數(shù),∴數(shù)列{an}的前36項和為12×1+24×0=12.故選:B12、C【解析】首先根據(jù)拋物線焦半徑公式得到,從而得到,再根據(jù)曲線的一條漸近線與直線AM平行,斜率相等求解即可.【詳解】由題知:,解得,拋物線.雙曲線的左頂點為,,因為雙曲線的一條漸近線與直線平行,所以,解得.故選:C二、填空題:本題共4小題,每小題5分,共20分。13、【解析】設,由余弦定理知,所以,故填.14、【解析】根據(jù)中點坐標公式求出,再根據(jù)直線的兩點式方程即可得出答案.【詳解】解:由,,得線段的中點坐標為,所以,解得,所以直線的方程為,即.故答案為:.15、【解析】由空間直角坐標系中點到軸的距離為計算可得【詳解】解:空間直角坐標系中,點到軸的距離為故答案為:16、【解析】拋物線焦點為,由于直線和拋物線有兩個交點,故直線斜率存在.根據(jù)拋物線的定義可知,故的縱坐標為,橫坐標為.不妨設,故直線的方程為,聯(lián)立直線方程和拋物線方程,化簡得,解得,故.所以.【點睛】本小題主要考查直線和拋物線的位置關系,考查拋物線的幾何性質(zhì)和定義.考查三角形面積公式.在解題過程中,先根據(jù)題目所給拋物線的方程求得焦點的坐標,然后利用拋物線的定義:到定點的距離等于到定直線的距離,由此求得點的坐標,進而求得直線的方程,聯(lián)立直線方程和拋物線方程求得點的坐標.最后求得面積比.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)根據(jù)已知條件求得,由此求得的方程.(2)結合點差法求得直線的斜率,從而求得直線的方程.【小問1詳解】因為C的離心率為2,所以,可得.將代入可得,由題設.解得,,,所以C的方程為.【小問2詳解】設,,則,.因此,即.因為線段AB的中點為,所以,,從而,于是直線AB的方程是.18、(1),;(2)6萬千克,萬元.【解析】(1)根據(jù)題意找等量關系即可求g(x)解析式,根據(jù)函數(shù)值可求a;(2)根據(jù)g(x)導數(shù)研究其單調(diào)性并求其最大值即可.【小問1詳解】種植萬千克蓮藕的利潤(單位:萬元)為:,,即,,當時,,解得,故,;【小問2詳解】,當時,,當時,,∴函數(shù)在上單調(diào)遞增,在上單調(diào)遞減,∴時,利潤最大為萬元.19、(1)(2)存在;【解析】(1)設出點的坐標,根據(jù),即可直接求出動點M的軌跡方程;(2)根據(jù)題意寫出直線的方程,把直線的方程與曲線的方程聯(lián)立,消元,寫韋達;根據(jù)條件,同時結合三角形的面積公式可得出;從而結合韋達定理可求出點T的坐標.【小問1詳解】設,由,得,即,所以動點M的軌跡方程為.【小問2詳解】設PT與RT夾角為,QT與RT夾角為,因為,所以,即,所以,設,,,直線l的方程為,因為,所以,即,所以,即①,由,得,所以,代入①式,得,解得,所以存在點,使得對任意且,都有.20、(1);(2);(3).【解析】以點為坐標原點,、、所在直線分別為、、軸建立空間直角坐標系,設.(1)寫出、的坐標,利用空間向量法計算出直線與所成角的余弦值;(2)求出平面的一個法向量的坐標,利用空間向量法可計算得出直線與平面所成角的正弦值;(3)求出平面的一個法向量的坐標,利用空間向量法可求得二面角的余弦值.【詳解】平面,四邊形為正方形,設.以點為坐標原點,、、所在直線分別為、、軸建立空間直角坐標系,如下圖所示:則、、、、、.(1),,,所以,異面直線、所成角的余弦值為;(2)設平面的一個法向量為,,,由,可得,取,可得,則,,,因此,直線與平面所成角的正弦值為;(3)設平面的一個法向量為,,,由,可得,得,取,則,,所以,平面的一個法向量為,,由圖形可知,二面角為銳角,因此,二面角的余弦值為.【點睛】方法點睛:求空間角的常用方法:(1)定義法:由異面直線所成角、線面角、二面角的定義,結合圖形,作出所求空間角,再結合題中條件,解對應的三角形,即可求出結果;(2)向量法:建立適當?shù)目臻g直角坐標系,通過計算向量的夾角(兩直線的方向向量、直線的方向向量與平面的法向量、兩平面的法向量)的余弦值,即可求得結果.21、(1)證明見解析,;(2).【解析】(1)利用與的關系求數(shù)列的遞推關系,即得證明結論,并根據(jù)等比數(shù)列求通項公式;(2)根據(jù)(1)的結果求出,再分和,求.【詳解】(1)當時,,,當時,,與已知式作差得,即,又,∴,∴,故數(shù)列是以為首項,2為公比的等比數(shù)列,所以(2)由(1)知,∴,若,,若,,∴.【點睛】關鍵點點睛:本題的關鍵是第二問弄清楚數(shù)列與的前項和的關系,在
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 煤堆棚消防知識培訓課件
- 2024版招投標代理合同
- 浙江科技學院《科研思路與方法》2023-2024學年第一學期期末試卷
- 中華女子學院《臨床免疫學檢驗技術》2023-2024學年第一學期期末試卷
- 2024微股東眾籌入股區(qū)塊鏈技術應用入股協(xié)議3篇
- 金融領域人才流失分析
- 理財投資行業(yè)前臺接待工作總結
- 汽車設計師設計汽車外觀優(yōu)化車身結構
- 2025年特色餐廳特色食材采購與加工合作協(xié)議3篇
- 生物學入門講座模板
- 科技創(chuàng)新與科技服務業(yè)協(xié)同發(fā)展策略
- 崗位資質(zhì)管理流程培訓方案
- 腦動脈狹窄支架植入術護理及健康宣教
- 腹膜透析建立課件
- 花籃拉桿式懸挑腳手架工程技術交底
- 裝修工程施工方案(20篇)
- 蘇教版四年級數(shù)學下冊《全冊》完整課件ppt
- 《高一地理必修一全套課件》
- 水工隧道鋼管內(nèi)襯施工技術小結
- 膝關節(jié)磁共振成像講義
- 銷售回款專項激勵政策方案(地產(chǎn)公司)
評論
0/150
提交評論