新疆博爾塔拉蒙古自治州第五師中學(xué)2025屆數(shù)學(xué)高三上期末綜合測試試題含解析_第1頁
新疆博爾塔拉蒙古自治州第五師中學(xué)2025屆數(shù)學(xué)高三上期末綜合測試試題含解析_第2頁
新疆博爾塔拉蒙古自治州第五師中學(xué)2025屆數(shù)學(xué)高三上期末綜合測試試題含解析_第3頁
新疆博爾塔拉蒙古自治州第五師中學(xué)2025屆數(shù)學(xué)高三上期末綜合測試試題含解析_第4頁
新疆博爾塔拉蒙古自治州第五師中學(xué)2025屆數(shù)學(xué)高三上期末綜合測試試題含解析_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

新疆博爾塔拉蒙古自治州第五師中學(xué)2025屆數(shù)學(xué)高三上期末綜合測試試題注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知集合,,則A. B.C. D.2.設(shè)集合A={4,5,7,9},B={3,4,7,8,9},全集U=AB,則集合中的元素共有()A.3個 B.4個 C.5個 D.6個3.函數(shù)的部分圖象大致為()A. B.C. D.4.在菱形中,,,,分別為,的中點,則()A. B. C.5 D.5.設(shè)全集,集合,,則集合()A. B. C. D.6.函數(shù)的圖象大致為A. B. C. D.7.直線x-3y+3=0經(jīng)過橢圓x2a2+y2bA.3-1 B.3-12 C.8.已知某幾何體的三視圖如圖所示,則該幾何體外接球的表面積為()A. B. C. D.9.若點(2,k)到直線5x-12y+6=0的距離是4,則k的值是()A.1 B.-3 C.1或 D.-3或10.函數(shù)的大致圖象為()A. B.C. D.11.設(shè),則,則()A. B. C. D.12.已知向量,,,若,則()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.有2名老師和3名同學(xué),將他們隨機(jī)地排成一行,用表示兩名老師之間的學(xué)生人數(shù),則對應(yīng)的排法有______種;______;14.已知(且)有最小值,且最小值不小于1,則的取值范圍為__________.15.函數(shù)的定義域為__________.16.已知,則展開式的系數(shù)為__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖(1)五邊形中,,將沿折到的位置,得到四棱錐,如圖(2),點為線段的中點,且平面.(1)求證:平面平面;(2)若直線與所成角的正切值為,求直線與平面所成角的正弦值.18.(12分)[選修4-4:極坐標(biāo)與參數(shù)方程]在直角坐標(biāo)系中,曲線的參數(shù)方程為(是參數(shù)),以坐標(biāo)原點為極點,軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.(1)求曲線的極坐標(biāo)方程和曲線的直角坐標(biāo)方程;(2)若射線與曲線交于,兩點,與曲線交于,兩點,求取最大值時的值19.(12分)已知點,若點滿足.(Ⅰ)求點的軌跡方程;(Ⅱ)過點的直線與(Ⅰ)中曲線相交于兩點,為坐標(biāo)原點,求△面積的最大值及此時直線的方程.20.(12分)已知函數(shù).(1)若,證明:當(dāng)時,;(2)若在只有一個零點,求的值.21.(12分)已知橢圓的左焦點坐標(biāo)為,,分別是橢圓的左,右頂點,是橢圓上異于,的一點,且,所在直線斜率之積為.(1)求橢圓的方程;(2)過點作兩條直線,分別交橢圓于,兩點(異于點).當(dāng)直線,的斜率之和為定值時,直線是否恒過定點?若是,求出定點坐標(biāo);若不是,請說明理.22.(10分)在平面直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)).以坐標(biāo)原點為極點,軸正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為.(Ⅰ)求直線的直角坐標(biāo)方程與曲線的普通方程;(Ⅱ)已知點設(shè)直線與曲線相交于兩點,求的值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】

因為,,所以,,故選D.2、A【解析】試題分析:,,所以,即集合中共有3個元素,故選A.考點:集合的運算.3、B【解析】

圖像分析采用排除法,利用奇偶性判斷函數(shù)為奇函數(shù),再利用特值確定函數(shù)的正負(fù)情況?!驹斀狻?,故奇函數(shù),四個圖像均符合。當(dāng)時,,,排除C、D當(dāng)時,,,排除A。故選B?!军c睛】圖像分析采用排除法,一般可供判斷的主要有:奇偶性、周期性、單調(diào)性、及特殊值。4、B【解析】

據(jù)題意以菱形對角線交點為坐標(biāo)原點建立平面直角坐標(biāo)系,用坐標(biāo)表示出,再根據(jù)坐標(biāo)形式下向量的數(shù)量積運算計算出結(jié)果.【詳解】設(shè)與交于點,以為原點,的方向為軸,的方向為軸,建立直角坐標(biāo)系,則,,,,,所以.故選:B.【點睛】本題考查建立平面直角坐標(biāo)系解決向量的數(shù)量積問題,難度一般.長方形、正方形、菱形中的向量數(shù)量積問題,如果直接計算較麻煩可考慮用建系的方法求解.5、C【解析】∵集合,,∴點睛:本題是道易錯題,看清所問問題求并集而不是交集.6、D【解析】

由題可得函數(shù)的定義域為,因為,所以函數(shù)為奇函數(shù),排除選項B;又,,所以排除選項A、C,故選D.7、A【解析】

由直線x-3y+3=0過橢圓的左焦點F,得到左焦點為再由FC=2CA,求得A3【詳解】由題意,直線x-3y+3=0經(jīng)過橢圓的左焦點F,令所以c=3,即橢圓的左焦點為F(-3,0)直線交y軸于C(0,1),所以,OF=因為FC=2CA,所以FA=3又由點A在橢圓上,得3a由①②,可得4a2-24所以e2所以橢圓的離心率為e=3故選A.【點睛】本題考查了橢圓的幾何性質(zhì)——離心率的求解,其中求橢圓的離心率(或范圍),常見有兩種方法:①求出a,c,代入公式e=ca;②只需要根據(jù)一個條件得到關(guān)于a,b,c的齊次式,轉(zhuǎn)化為a,c的齊次式,然后轉(zhuǎn)化為關(guān)于e的方程,即可得8、C【解析】

由三視圖可知,幾何體是一個三棱柱,三棱柱的底面是底邊為,高為的等腰三角形,側(cè)棱長為,利用正弦定理求出底面三角形外接圓的半徑,根據(jù)三棱柱的兩底面中心連線的中點就是三棱柱的外接球的球心,求出球的半徑,即可求解球的表面積.【詳解】由三視圖可知,幾何體是一個三棱柱,三棱柱的底面是底邊為,高為的等腰三角形,側(cè)棱長為,如圖:由底面邊長可知,底面三角形的頂角為,由正弦定理可得,解得,三棱柱的兩底面中心連線的中點就是三棱柱的外接球的球心,所以,該幾何體外接球的表面積為:.故選:C【點睛】本題考查了多面體的內(nèi)切球與外接球問題,由三視圖求幾何體的表面積,考查了學(xué)生的空間想象能力,屬于基礎(chǔ)題.9、D【解析】

由題得,解方程即得k的值.【詳解】由題得,解方程即得k=-3或.故答案為:D【點睛】(1)本題主要考查點到直線的距離公式,意在考查學(xué)生對該知識的掌握水平和計算推理能力.(2)點到直線的距離.10、A【解析】

利用特殊點的坐標(biāo)代入,排除掉C,D;再由判斷A選項正確.【詳解】,排除掉C,D;,,,.故選:A.【點睛】本題考查了由函數(shù)解析式判斷函數(shù)的大致圖象問題,代入特殊點,采用排除法求解是解決這類問題的一種常用方法,屬于中檔題.11、A【解析】

根據(jù)換底公式可得,再化簡,比較的大小,即得答案.【詳解】,,.,顯然.,即,,即.綜上,.故選:.【點睛】本題考查換底公式和對數(shù)的運算,屬于中檔題.12、A【解析】

根據(jù)向量坐標(biāo)運算求得,由平行關(guān)系構(gòu)造方程可求得結(jié)果.【詳解】,,解得:故選:【點睛】本題考查根據(jù)向量平行關(guān)系求解參數(shù)值的問題,涉及到平面向量的坐標(biāo)運算;關(guān)鍵是明確若兩向量平行,則.二、填空題:本題共4小題,每小題5分,共20分。13、36;1.【解析】

的可能取值為0,1,2,3,對應(yīng)的排法有:.分別求出,,,,由此能求出.【詳解】解:有2名老師和3名同學(xué),將他們隨機(jī)地排成一行,用表示兩名老師之間的學(xué)生人數(shù),則的可能取值為0,1,2,3,對應(yīng)的排法有:.∴對應(yīng)的排法有36種;,,,,∴故答案為:36;1.【點睛】本題考查了排列、組合的應(yīng)用,離散型隨機(jī)變量的分布列以及數(shù)學(xué)期望,屬于中檔題.14、【解析】

真數(shù)有最小值,根據(jù)已知可得的范圍,求出函數(shù)的最小值,建立關(guān)于的不等量關(guān)系,求解即可.【詳解】,且(且)有最小值,,的取值范圍為.故答案為:.【點睛】本題考查對數(shù)型復(fù)合函數(shù)的性質(zhì),熟練掌握基本初等函數(shù)的性質(zhì)是解題關(guān)鍵,屬于基礎(chǔ)題.15、【解析】

根據(jù)函數(shù)成立的條件列不等式組,求解即可得定義域.【詳解】解:要使函數(shù)有意義,則,即.則定義域為:.故答案為:【點睛】本題主要考查定義域的求解,要熟練掌握張建函數(shù)成立的條件.16、【解析】

先根據(jù)定積分求出的值,再用二項展開式公式即可求解.【詳解】因為所以的通項公式為當(dāng)時,當(dāng)時,故展開式中的系數(shù)為故答案為:【點睛】此題考查定積分公式,二項展開式公式等知識點,屬于簡單題目.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)見解析(2)【解析】試題分析:(1)根據(jù)已知條件由線線垂直得出線面垂直,再根據(jù)面面垂直的判定定理證得成立;(2)通過已知條件求出各邊長度,建系如圖所示,求出平面的法向量,根據(jù)線面角公式代入坐標(biāo)求得結(jié)果.試題解析:(1)證明:取的中點,連接,則,又,所以,則四邊形為平行四邊形,所以,又平面,∴平面,∴.由即及為的中點,可得為等邊三角形,∴,又,∴,∴,∴平面平面,∴平面平面.(2)解:,∴為直線與所成的角,由(1)可得,∴,∴,設(shè),則,取的中點,連接,過作的平行線,可建立如圖所示的空間直角坐標(biāo)系,則,∴,所以,設(shè)為平面的法向量,則,即,取,則為平面的一個法向量,∵,則直線與平面所成角的正弦值為.點睛:判定直線和平面垂直的方法:①定義法.②利用判定定理:一條直線和一個平面內(nèi)的兩條相交直線都垂直,則該直線和此平面垂直.③推論:如果在兩條平行直線中,有一條垂直于一個平面,那么另一條直線也垂直于這個平面.平面與平面垂直的判定方法:①定義法.②利用判定定理:一個平面過另一個平面的一條垂線,則這兩個平面垂直.18、(1)的極坐標(biāo)方程為.曲線的直角坐標(biāo)方程為.(2)【解析】

(1)先得到的一般方程,再由極坐標(biāo)化直角坐標(biāo)的公式得到一般方程,將代入得,得到曲線的直角坐標(biāo)方程;(2)設(shè)點、的極坐標(biāo)分別為,,將分別代入曲線、極坐標(biāo)方程得:,,,之后進(jìn)行化一,可得到最值,此時,可求解.【詳解】(1)由得,將代入得:,故曲線的極坐標(biāo)方程為.由得,將代入得,故曲線的直角坐標(biāo)方程為.(2)設(shè)點、的極坐標(biāo)分別為,,將分別代入曲線、極坐標(biāo)方程得:,,則,其中為銳角,且滿足,,當(dāng)時,取最大值,此時,【點睛】這個題目考查了參數(shù)方程化為普通方程的方法,極坐標(biāo)化為直角坐標(biāo)的方法,以及極坐標(biāo)中極徑的幾何意義,極徑代表的是曲線上的點到極點的距離,在參數(shù)方程和極坐標(biāo)方程中,能表示距離的量一個是極徑,一個是t的幾何意義,其中極徑多數(shù)用于過極點的曲線,而t的應(yīng)用更廣泛一些.19、(Ⅰ);(Ⅱ)面積的最大值為,此時直線的方程為.【解析】

(1)根據(jù)橢圓的定義求解軌跡方程;(2)設(shè)出直線方程后,采用(表示原點到直線的距離)表示面積,最后利用基本不等式求解最值.【詳解】解:(Ⅰ)由定義法可得,點的軌跡為橢圓且,.因此橢圓的方程為.(Ⅱ)設(shè)直線的方程為與橢圓交于點,,聯(lián)立直線與橢圓的方程消去可得,即,.面積可表示為令,則,上式可化為,當(dāng)且僅當(dāng),即時等號成立,因此面積的最大值為,此時直線的方程為.【點睛】常見的利用定義法求解曲線的軌跡方程問題:(1)已知點,若點滿足且,則的軌跡是橢圓;(2)已知點,若點滿足且,則的軌跡是雙曲線.20、(1)見解析;(2)【解析】

分析:(1)先構(gòu)造函數(shù),再求導(dǎo)函數(shù),根據(jù)導(dǎo)函數(shù)不大于零得函數(shù)單調(diào)遞減,最后根據(jù)單調(diào)性證得不等式;(2)研究零點,等價研究的零點,先求導(dǎo)數(shù):,這里產(chǎn)生兩個討論點,一個是a與零,一個是x與2,當(dāng)時,,沒有零點;當(dāng)時,先減后增,從而確定只有一個零點的必要條件,再利用零點存在定理確定條件的充分性,即得a的值.詳解:(1)當(dāng)時,等價于.設(shè)函數(shù),則.當(dāng)時,,所以在單調(diào)遞減.而,故當(dāng)時,,即.(2)設(shè)函數(shù).在只有一個零點當(dāng)且僅當(dāng)在只有一個零點.(i)當(dāng)時,,沒有零點;(ii)當(dāng)時,.當(dāng)時,;當(dāng)時,.所以在單調(diào)遞減,在單調(diào)遞增.故是在的最小值.①若,即,在沒有零點;②若,即,在只有一個零點;③若,即,由于,所以在有一個零點,由(1)知,當(dāng)時,,所以.故在有一個零點,因此在有兩個零點.綜上,在只有一個零點時,.點睛:利用函數(shù)零點的情況求參數(shù)值或取值范圍的方法(1)利用零點存在的判定定理構(gòu)建不等式求解.(2)分離參數(shù)后轉(zhuǎn)化為函數(shù)的值域(最值)問題求解.(3)轉(zhuǎn)化為兩熟悉的函數(shù)圖象的上、下關(guān)系問題,從而構(gòu)建不等式求解.21、(1)(2)直線過定點【解析】

(1),再由,解方程組即可;(2)設(shè),,由,得,由直線MN的方程與橢圓方程聯(lián)立得到根與系數(shù)的關(guān)系,代入計算即可.【詳解】(1)由題意知:,又,且解得,,∴橢圓方程為,(2)當(dāng)直線的斜率存在時,設(shè)其方程為,設(shè),,由,得.則,(*)由,得,整理可得(*)代入得,整理可得,又,∴,即,∴直線過點當(dāng)直線的斜率不存在時,設(shè)直線的方程為,,,其中,∴,由,得,所以∴當(dāng)直線的斜率不存在時,直線也過定點綜上所述,直線過定點.【點睛】本題考查求橢圓的標(biāo)準(zhǔn)方程以及直線與橢圓位置關(guān)系中的定點問題,在處理直線與橢圓的位置關(guān)系

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論