




版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
甘肅省定西市渭源縣2025屆高二上數(shù)學期末質(zhì)量檢測試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知向量,,則以下說法不正確的是()A. B.C. D.2.下列說法正確的是()A.“若,則,全為0”的否命題為“若,則,全不為0”B.“若方程有實根,則”的逆命題是假命題C.命題“,”的否定是“,”D.“”是“直線與直線平行”的充要條件3.已知橢圓:的離心率為,則實數(shù)()A. B.C. D.4.過拋物線的焦點引斜率為1的直線,交拋物線于,兩點,則()A.4 B.6C.8 D.105.已知空間向量,,,則()A.4 B.-4C.0 D.26.已知函數(shù)的圖象如圖所示,則其導函數(shù)的圖象可能是()A. B.C. D.7.“若”為真命題,那么p是(
)A. B.C. D.8.圓心在x軸負半軸上,半徑為4,且與直線相切的圓的方程為()A. B.C. D.9.甲乙兩個雷達獨立工作,它們發(fā)現(xiàn)飛行目標的概率分別是0.9和0.8,飛行目標被雷達發(fā)現(xiàn)的概率為()A.0.72 B.0.26C.0.7 D.0.9810.已知等差數(shù)列{an}的前n項和為Sn,且S7=28,則a4=()A.4 B.7C.8 D.1411.已知等差數(shù)列滿足,則其前10項之和為()A.140 B.280C.68 D.5612.七巧板是中國古代勞動人民發(fā)明的一種傳統(tǒng)智力玩具,被譽為“東方魔板”,它是由五塊等腰直角三角形,一塊正方形和一塊平行四邊形共七塊板組成的.如圖是一個用七巧板拼成的正方形,若在此正方形中隨機地取一點,則該點恰好取自白色部分的概率為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.用1,2,3,4排成的無重復數(shù)字的四位數(shù)中,其中1和2不能相鄰的四位數(shù)的個數(shù)為___________(用數(shù)字作答).14.命題“,”為假命題,則實數(shù)a的取值范圍是______15.已知雙曲線的兩條漸近線的夾角為,則_______16.如圖所示的莖葉圖記錄了甲、乙兩組各5名工人某日的產(chǎn)量數(shù)據(jù)(單位:件).若這兩組數(shù)據(jù)的中位數(shù)相等,且平均值也相等,則x=_____________,y=_____________三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知在長方形ABCD中,AD=2AB=2,點E是AD的中點,沿BE折起平面ABE,使平面ABE⊥平面BCDE.(1)求證:在四棱錐A-BCDE中,AB⊥AC.(2)在線段AC上是否存在點F,使二面角A-BE-F的余弦值為?若存在,找出點F的位置;若不存在,說明理由.18.(12分)在平面直角坐標系中,過點的直線的參數(shù)方程為(為參數(shù)).以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為(1)求直線的普通方程和曲線的直角坐標方程;(2)設曲線與直線交于,兩點,求線段的中點的直角坐標及的值19.(12分)已知命題:方程有實數(shù)解,命題:,.(1)若是真命題,求實數(shù)的取值范圍;(2)若為假命題,且為真命題,求實數(shù)的取值范圍.20.(12分)已知拋物線的焦點為,點在第一象限且為拋物線上一點,點在點右側,且△恰為等邊三角形(1)求拋物線的方程;(2)若直線與交于兩點,向量的夾角為(其中為坐標原點),求實數(shù)的取值范圍.21.(12分)(1)證明:;(2)已知:,,且,求證:.22.(10分)如圖,四棱錐中,平面、底面為菱形,為的中點.(1)證明:平面;(2)設,菱形的面積為,求二面角的余弦值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】可根據(jù)已知的和的坐標,通過計算向量數(shù)量積、向量的模,即可做出判斷.【詳解】因為向量,,所以,故,所以選項A正確;,,所以,故選項B正確;,所以,故選項C錯誤;,所以,,故,所以選項D正確.故選:C.2、D【解析】A選項,全為0的否定是不全為0;B選項,先寫出逆命題,再判斷出真假;C選項,命題“,”的否定是“,”,D選項,根據(jù)直線平行,列出方程和不等式,求出,進而判斷出充要條件.【詳解】“若,則,全為0”的否命題為“若,則,不全為0”,A錯誤;若方程有實根,則的逆命題是若,則方程有實根,由得:,其中,所以若,則方程有實根是真命題,故B錯誤;命題“,”的否定是“,”,C錯誤;直線與直線平行,需要滿足且,解得:,所以“”是“直線與直線平行”的充要條件,D正確;故選:D3、C【解析】根據(jù)題意,先求得的值,代入離心率公式,即可得答案.【詳解】因為,所以所以,解得.故選:C4、C【解析】由題意可得,的方程為,設、,聯(lián)立直線與拋物線方程可求,利用拋物線的定義計算即可求解.【詳解】由上可得:焦點,直線的方程為,設,,由,可得,則有,由拋物線的定義可得:,故選:C.5、A【解析】根據(jù)空間向量平行求出x,y,進而求得答案.【詳解】因為,所以存在實數(shù),使得,則.故選:A.6、A【解析】根據(jù)原函數(shù)圖象判斷出函數(shù)單調(diào)性,由此判斷導函數(shù)的圖象.【詳解】原函數(shù)在上從左向右有增、減、增,個單調(diào)區(qū)間;在上遞減.所以導函數(shù)在上從左向右應為:正、負、正;在上應為負.所以A選項符合.故選:A7、A【解析】求不等式的解集,根據(jù)解集判斷p.【詳解】由解得-2<x<4,所以p是.故選:A.8、A【解析】根據(jù)題意,設圓心為坐標為,,由直線與圓相切的判斷方法可得圓心到直線的距離,解得的值,即可得答案【詳解】根據(jù)題意,設圓心為坐標為,,圓的半徑為4,且與直線相切,則圓心到直線的距離,解得:或13(舍,則圓的坐標為,故所求圓的方程為,故選:A9、D【解析】利用對立事件的概率求法求飛行目標被雷達發(fā)現(xiàn)的概率.【詳解】由題設,飛行目標不被甲、乙發(fā)現(xiàn)的概率分別為、,所以飛行目標被雷達發(fā)現(xiàn)的概率為.故選:D10、A【解析】由等差數(shù)列的性質(zhì)可知,再代入等差數(shù)列的前項和公式求解.【詳解】數(shù)列{an}是等差數(shù)列,,那么,所以.故選:A.【點睛】本題考查等差數(shù)列的性質(zhì)和前項和,屬于基礎題型.11、A【解析】根據(jù)等差數(shù)列的性質(zhì),可得,結合等差數(shù)列的求和公式,即可求解.【詳解】由題意,等差數(shù)列滿足,根據(jù)等差數(shù)列的性質(zhì),可得,所以數(shù)列的前10項和為.故選:A.12、A【解析】設七巧板正方形邊長為4,求出陰影部分的面積,再利用幾何概型概率公式計算作答.【詳解】設七巧板正方形邊長為4,則大陰影等腰三角形底邊長為4,底邊上的高為2,可得小正方形對角線長為2,小正方形邊長為,小陰影等腰直角三角形腰長為,小白色等腰直角三角形底邊長為2,則左上角陰影等腰直角三角形腰長為2,因此,圖中陰影部分面積,而七巧板正方形面積,于是得七巧板中白色部分面積為,所以在此正方形中隨機地取一點,則該點恰好取自白色部分的概率為.故選:A二、填空題:本題共4小題,每小題5分,共20分。13、【解析】利用插空法計算出正確答案.【詳解】先排,形成個空位,然后將排入,所以符合題意的四位數(shù)的個數(shù)為.故答案為:14、【解析】寫出原命題的否定,再利用二次型不等式恒成立求解作答.【詳解】因命題“,”為假命題,則命題“,”為真命題,當時,恒成立,則,當時,必有,解得,所以實數(shù)a的取值范圍是.故答案為:15、或【解析】首先判斷漸近線的傾斜角,再求的值.【詳解】由條件可知雙曲線的其中一條漸近線方程是,因為兩條漸近線的夾角是,所以直線的傾斜角是或,即或.故答案為:或16、①.3②.5【解析】根據(jù)莖葉圖進行數(shù)據(jù)分析,列方程求出x、y.【詳解】由題意,甲組數(shù)據(jù)為56,62,65,70+x,74;乙組數(shù)據(jù)為59,61,67,60+y,78.要使兩組數(shù)據(jù)中位數(shù)相等,有65=60+y,所以y=5.又平均數(shù)相同,則,解得x=3.故答案為:3;5.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)證明見解析(2)點F為線段AC的中點【解析】(1)由平面幾何知識證得CE⊥BE,再根據(jù)面面垂直的性質(zhì),線面垂直的判定和性質(zhì)可得證;(2)取BE的中點O,以O為原點,分別以的方向為x軸,y軸,z軸建立空間直角坐標系,假設在線段AC上存在點F,設=λ,運用二面角的向量求解方法可求得,可得點F的位置.【小問1詳解】證明:因為在長方形ABCD中,AD=2AB=2,點E是AD的中點,所以BE=CE=2,又BC=2,所以,所以CE⊥BE,又平面ABE⊥平面BCDE,面面,所以CE⊥平面ABE,所以AB⊥CE.又AB⊥AE,,所以AB⊥平面AEC,即得AB⊥AC.【小問2詳解】解:存在點F,F(xiàn)為線段AC的中點.由(1)得△ABE和△BEC均為等腰直角三角形,取BE的中點O,則,又平面ABE⊥平面BCDE,面面,所以面,以O為原點,分別以的方向為x軸,y軸,z軸建立空間直角坐標系,如圖所示,取平面ABE的一個法向量為.假設在線段AC上存在點F,使二面角A-BE-F的余弦值為.則A(0,0,1),B(1,0,0),C(-1,2,0),E(-1,0,0),=(1,0,1),=(-1,2,-1),設=λ,則+λ=(1-λ,2λ,1-λ),又=(2,0,0),設平面BEF的法向量為,可得,即得,可取y=1,得,所以,解得λ=,即當點F為線段AC的中點時,二面角A-BE-F的余弦值為.18、(1)直線的普通方程為,曲線的直角坐標方程.(2)【解析】(1)直接利用轉換關系,在參數(shù)方程、極坐標方程和直角坐標方程之間進行轉換;(2)利用中點坐標公式和一元二次方程根和系數(shù)關系式的應用求出結果【小問1詳解】解:過點的直線的參數(shù)方程為為參數(shù)),轉換為普通方程為,即直線的普通方程為;曲線的極坐標方程為,即,即,根據(jù),轉換為直角坐標方程為,即曲線的直角坐標方程【小問2詳解】解:把代入,整理得,所以,設,,;故,代入,解得,故中點坐標為;把直線的參數(shù)方程為為參數(shù))代入,設和對應的參數(shù)為和,得到,整理得,所以19、(1)或;(2)【解析】(1)由方程有實數(shù)根則,可求出實數(shù)的取值范圍.(2)為真命題,即從而得出的取值范圍,由(1)可得出為假命題時實數(shù)的取值范圍.即可得出答案.【詳解】解:(1)方程有實數(shù)解得,,解之得或;(2)為假命題,則,為真命題時,,,則故.故為假命題且為真命題時,.【點睛】本題考查命題為真時求參數(shù)的范圍和兩個命題同時滿足條件時,求參數(shù)的范圍,屬于基礎題.20、(1)(2)【解析】(1)根據(jù)△恰為等邊三角形由題意知:得到,再利用拋物線的定義求解;(2)聯(lián)立,結合韋達定理,根據(jù)的夾角為,由求解.【小問1詳解】解:由題意知:,由拋物線的定義知:,由,解得,所以拋物線方程為;【小問2詳解】設,由,得,則,,則,,因為向量的夾角為,所以,,則,且,所以,解得,所以實數(shù)的取值范圍.21、(1)證明見解析;(2)證明見解析.【解析】(1)利用分析法證明即可;(2)將與相乘,展開后利用基本不等式可證明所證不等式成立.【詳解】(1)要證成立,即證,即證,即證,而顯然成立,故成立;(2)已知,,且,則,當且僅當時,等號成立,故.22、(1)證明見解析;(2).【解析】(1)連接交于點,連接,則,利用線面平行的判定定理,即可得證;(2)根據(jù)題意,求得菱形的邊長,取中點,可證,如圖建系,求得點坐標及坐標,即可求得平面的法向量,根據(jù)平面PAD,可求得面的法向量,利用空間向量的夾角公式,即可求得答案.【詳解】(1)連接交于點,連接,則、E分
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 內(nèi)蒙古呼和浩特實驗中學2024-2025學年下學期初三數(shù)學試題第一次月考考試試卷含解析
- 四川航天職業(yè)技術學院《歷史影視劇鑒賞》2023-2024學年第一學期期末試卷
- 攀枝花學院《素描2》2023-2024學年第一學期期末試卷
- 商洛學院《非營利組織管理》2023-2024學年第二學期期末試卷
- 2025年圖書館學與信息學考試卷及答案
- 2025年市場研究與分析專業(yè)考研試題及答案
- 2025年中醫(yī)執(zhí)業(yè)醫(yī)師考試試卷及答案
- 山西省呂梁地區(qū)離石區(qū)2024-2025學年三下數(shù)學期末監(jiān)測試題含解析
- 上海視覺藝術學院《臨床藥學》2023-2024學年第二學期期末試卷
- 微信小程序電商運營培訓及用戶體驗優(yōu)化協(xié)議
- 互聯(lián)網(wǎng)技術支持的新型健康管理模式對慢病人群的應用研究
- 2024年湖北省武漢市高考數(shù)學一調(diào)試卷
- 愿站成一棵樹金波
- JJG 4-2015鋼卷尺行業(yè)標準
- 脫貧攻堅戰(zhàn)在2024年取得全面勝利
- 天津市2022-2023學年八年級下學期物理期中試卷(含答案)1
- 數(shù)學與人工智能
- 消防廉政建設教育課件
- ISO27001標準培訓課件
- 2023年許昌職業(yè)技術學院教師招聘考試歷年真題庫
- 掘進隊管理制度
評論
0/150
提交評論