版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
甘肅省白銀市靖遠縣第二中學(xué)2025屆數(shù)學(xué)高三第一學(xué)期期末檢測模擬試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.函數(shù)的值域為()A. B. C. D.2.一個算法的程序框圖如圖所示,若該程序輸出的結(jié)果是,則判斷框中應(yīng)填入的條件是()A. B. C. D.3.已知等比數(shù)列滿足,,則()A. B. C. D.4.如圖,正方體的棱長為1,動點在線段上,、分別是、的中點,則下列結(jié)論中錯誤的是()A., B.存在點,使得平面平面C.平面 D.三棱錐的體積為定值5.集合,,則()A. B. C. D.6.已知集合,若,則實數(shù)的取值范圍為()A. B. C. D.7.已知函數(shù)的圖像與一條平行于軸的直線有兩個交點,其橫坐標分別為,則()A. B. C. D.8.已知三棱錐且平面,其外接球體積為()A. B. C. D.9.2019年末,武漢出現(xiàn)新型冠狀病毒肺炎()疫情,并快速席卷我國其他地區(qū),傳播速度很快.因這種病毒是以前從未在人體中發(fā)現(xiàn)的冠狀病毒新毒株,所以目前沒有特異治療方法,防控難度很大.武漢市出現(xiàn)疫情最早,感染人員最多,防控壓力最大,武漢市從2月7日起舉全市之力入戶上門排查確診的新冠肺炎患者、疑似的新冠肺炎患者、無法明確排除新冠肺炎的發(fā)熱患者和與確診患者的密切接觸者等“四類”人員,強化網(wǎng)格化管理,不落一戶、不漏一人.在排查期間,一戶6口之家被確認為“與確診患者的密切接觸者”,這種情況下醫(yī)護人員要對其家庭成員隨機地逐一進行“核糖核酸”檢測,若出現(xiàn)陽性,則該家庭為“感染高危戶”.設(shè)該家庭每個成員檢測呈陽性的概率均為()且相互獨立,該家庭至少檢測了5個人才能確定為“感染高危戶”的概率為,當(dāng)時,最大,則()A. B. C. D.10.的展開式中,項的系數(shù)為()A.-23 B.17 C.20 D.6311.已知數(shù)列為等差數(shù)列,為其前項和,,則()A.7 B.14 C.28 D.8412.已知正方體的體積為,點,分別在棱,上,滿足最小,則四面體的體積為A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.如圖,在等腰三角形中,已知,,分別是邊上的點,且,其中且,若線段的中點分別為,則的最小值是_____.14.在的二項展開式中,所有項的二項式系數(shù)之和為256,則_______,項的系數(shù)等于________.15.的展開式中二項式系數(shù)最大的項的系數(shù)為_________(用數(shù)字作答).16.設(shè)命題:,,則:__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在平面四邊形中,,,.(1)求;(2)求四邊形面積的最大值.18.(12分)已知函數(shù).(Ⅰ)當(dāng)時,求不等式的解集;(Ⅱ)若存在滿足不等式,求實數(shù)的取值范圍.19.(12分)已知函數(shù).(1)當(dāng)時,求曲線在點處的切線方程;(2)若在上恒成立,求的取值范圍.20.(12分)已知動圓E與圓外切,并與直線相切,記動圓圓心E的軌跡為曲線C.(1)求曲線C的方程;(2)過點的直線l交曲線C于A,B兩點,若曲線C上存在點P使得,求直線l的斜率k的取值范圍.21.(12分)已知雙曲線及直線.(1)若l與C有兩個不同的交點,求實數(shù)k的取值范圍;(2)若l與C交于A,B兩點,O是原點,且,求實數(shù)k的值.22.(10分)隨著現(xiàn)代社會的發(fā)展,我國對于環(huán)境保護越來越重視,企業(yè)的環(huán)保意識也越來越強.現(xiàn)某大型企業(yè)為此建立了5套環(huán)境監(jiān)測系統(tǒng),并制定如下方案:每年企業(yè)的環(huán)境監(jiān)測費用預(yù)算定為1200萬元,日常全天候開啟3套環(huán)境監(jiān)測系統(tǒng),若至少有2套系統(tǒng)監(jiān)測出排放超標,則立即檢查污染源處理系統(tǒng);若有且只有1套系統(tǒng)監(jiān)測出排放超標,則立即同時啟動另外2套系統(tǒng)進行1小時的監(jiān)測,且后啟動的這2套監(jiān)測系統(tǒng)中只要有1套系統(tǒng)監(jiān)測出排放超標,也立即檢查污染源處理系統(tǒng).設(shè)每個時間段(以1小時為計量單位)被每套系統(tǒng)監(jiān)測出排放超標的概率均為,且各個時間段每套系統(tǒng)監(jiān)測出排放超標情況相互獨立.(1)當(dāng)時,求某個時間段需要檢查污染源處理系統(tǒng)的概率;(2)若每套環(huán)境監(jiān)測系統(tǒng)運行成本為300元/小時(不啟動則不產(chǎn)生運行費用),除運行費用外,所有的環(huán)境監(jiān)測系統(tǒng)每年的維修和保養(yǎng)費用需要100萬元.現(xiàn)以此方案實施,問該企業(yè)的環(huán)境監(jiān)測費用是否會超過預(yù)算(全年按9000小時計算)?并說明理由.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】
由計算出的取值范圍,利用正弦函數(shù)的基本性質(zhì)可求得函數(shù)的值域.【詳解】,,,因此,函數(shù)的值域為.故選:A.【點睛】本題考查正弦型函數(shù)在區(qū)間上的值域的求解,解答的關(guān)鍵就是求出對象角的取值范圍,考查計算能力,屬于基礎(chǔ)題.2、D【解析】
首先判斷循環(huán)結(jié)構(gòu)類型,得到判斷框內(nèi)的語句性質(zhì),然后對循環(huán)體進行分析,找出循環(huán)規(guī)律,判斷輸出結(jié)果與循環(huán)次數(shù)以及的關(guān)系,最終得出選項.【詳解】經(jīng)判斷此循環(huán)為“直到型”結(jié)構(gòu),判斷框為跳出循環(huán)的語句,第一次循環(huán):;第二次循環(huán):;第三次循環(huán):,此時退出循環(huán),根據(jù)判斷框內(nèi)為跳出循環(huán)的語句,,故選D.【點睛】題主要考查程序框圖的循環(huán)結(jié)構(gòu)流程圖,屬于中檔題.解決程序框圖問題時一定注意以下幾點:(1)不要混淆處理框和輸入框;(2)注意區(qū)分程序框圖是條件分支結(jié)構(gòu)還是循環(huán)結(jié)構(gòu);(3)注意區(qū)分當(dāng)型循環(huán)結(jié)構(gòu)和直到型循環(huán)結(jié)構(gòu);(4)處理循環(huán)結(jié)構(gòu)的問題時一定要正確控制循環(huán)次數(shù);(5)要注意各個框的順序,(6)在給出程序框圖求解輸出結(jié)果的試題中只要按照程序框圖規(guī)定的運算方法逐次計算,直到達到輸出條件即可.3、B【解析】由a1+a3+a5=21得a3+a5+a7=,選B.4、B【解析】
根據(jù)平行的傳遞性判斷A;根據(jù)面面平行的定義判斷B;根據(jù)線面垂直的判定定理判斷C;由三棱錐以三角形為底,則高和底面積都為定值,判斷D.【詳解】在A中,因為分別是中點,所以,故A正確;在B中,由于直線與平面有交點,所以不存在點,使得平面平面,故B錯誤;在C中,由平面幾何得,根據(jù)線面垂直的性質(zhì)得出,結(jié)合線面垂直的判定定理得出平面,故C正確;在D中,三棱錐以三角形為底,則高和底面積都為定值,即三棱錐的體積為定值,故D正確;故選:B【點睛】本題主要考查了判斷面面平行,線面垂直等,屬于中檔題.5、A【解析】
計算,再計算交集得到答案.【詳解】,,故.故選:.【點睛】本題考查了交集運算,屬于簡單題.6、A【解析】
解一元二次不等式化簡集合的表示,求解函數(shù)的定義域化簡集合的表示,根據(jù)可以得到集合、之間的關(guān)系,結(jié)合數(shù)軸進行求解即可.【詳解】,.因為,所以有,因此有.故選:A【點睛】本題考查了已知集合運算的結(jié)果求參數(shù)取值范圍問題,考查了解一元二次不等式,考查了函數(shù)的定義域,考查了數(shù)學(xué)運算能力.7、A【解析】
畫出函數(shù)的圖像,函數(shù)對稱軸方程為,由圖可得與關(guān)于對稱,即得解.【詳解】函數(shù)的圖像如圖,對稱軸方程為,,又,由圖可得與關(guān)于對稱,故選:A【點睛】本題考查了正弦型函數(shù)的對稱性,考查了學(xué)生綜合分析,數(shù)形結(jié)合,數(shù)學(xué)運算的能力,屬于中檔題.8、A【解析】
由,平面,可將三棱錐還原成長方體,則三棱錐的外接球即為長方體的外接球,進而求解.【詳解】由題,因為,所以,設(shè),則由,可得,解得,可將三棱錐還原成如圖所示的長方體,則三棱錐的外接球即為長方體的外接球,設(shè)外接球的半徑為,則,所以,所以外接球的體積.故選:A【點睛】本題考查三棱錐的外接球體積,考查空間想象能力.9、A【解析】
根據(jù)題意分別求出事件A:檢測5個人確定為“感染高危戶”發(fā)生的概率和事件B:檢測6個人確定為“感染高危戶”發(fā)生的概率,即可得出的表達式,再根據(jù)基本不等式即可求出.【詳解】設(shè)事件A:檢測5個人確定為“感染高危戶”,事件B:檢測6個人確定為“感染高危戶”,∴,.即設(shè),則∴當(dāng)且僅當(dāng)即時取等號,即.故選:A.【點睛】本題主要考查概率的計算,涉及相互獨立事件同時發(fā)生的概率公式的應(yīng)用,互斥事件概率加法公式的應(yīng)用,以及基本不等式的應(yīng)用,解題關(guān)鍵是對題意的理解和事件的分解,意在考查學(xué)生的數(shù)學(xué)運算能力和數(shù)學(xué)建模能力,屬于較難題.10、B【解析】
根據(jù)二項式展開式的通項公式,結(jié)合乘法分配律,求得的系數(shù).【詳解】的展開式的通項公式為.則①出,則出,該項為:;②出,則出,該項為:;③出,則出,該項為:;綜上所述:合并后的項的系數(shù)為17.故選:B【點睛】本小題考查二項式定理及展開式系數(shù)的求解方法等基礎(chǔ)知識,考查理解能力,計算能力,分類討論和應(yīng)用意識.11、D【解析】
利用等差數(shù)列的通項公式,可求解得到,利用求和公式和等差中項的性質(zhì),即得解【詳解】,解得..故選:D【點睛】本題考查了等差數(shù)列的通項公式、求和公式和等差中項,考查了學(xué)生綜合分析,轉(zhuǎn)化劃歸,數(shù)學(xué)運算的能力,屬于中檔題.12、D【解析】
由題意畫出圖形,將所在的面延它們的交線展開到與所在的面共面,可得當(dāng)時最小,設(shè)正方體的棱長為,得,進一步求出四面體的體積即可.【詳解】解:如圖,
∵點M,N分別在棱上,要最小,將所在的面延它們的交線展開到與所在的面共面,三線共線時,最小,
∴
設(shè)正方體的棱長為,則,∴.
取,連接,則共面,在中,設(shè)到的距離為,
設(shè)到平面的距離為,
.
故選D.【點睛】本題考查多面體體積的求法,考查了多面體表面上的最短距離問題,考查計算能力,是中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
根據(jù)條件及向量數(shù)量積運算求得,連接,由三角形中線的性質(zhì)表示出.根據(jù)向量的線性運算及數(shù)量積公式表示出,結(jié)合二次函數(shù)性質(zhì)即可求得最小值.【詳解】根據(jù)題意,連接,如下圖所示:在等腰三角形中,已知,則由向量數(shù)量積運算可知線段的中點分別為則由向量減法的線性運算可得所以因為,代入化簡可得因為所以當(dāng)時,取得最小值因而故答案為:【點睛】本題考查了平面向量數(shù)量積的綜合應(yīng)用,向量的線性運算及模的求法,二次函數(shù)最值的應(yīng)用,屬于中檔題.14、81【解析】
根據(jù)二項式系數(shù)和的性質(zhì)可得n,再利用展開式的通項公式求含項的系數(shù)即可.【詳解】由于所有項的二項式系數(shù)之和為,,故的二項展開式的通項公式為,令,求得,可得含x項的系數(shù)等于,故答案為:8;1.【點睛】本題主要考查二項式定理的應(yīng)用,二項式系數(shù)的性質(zhì),二項式展開式的通項公式,屬于中檔題.15、5670【解析】
根據(jù)二項式展開的通項,可得二項式系數(shù)的最大項,可求得其系數(shù).【詳解】二項展開式一共有項,所以由二項式系數(shù)的性質(zhì)可知二項式系數(shù)最大的項為第5項,系數(shù)為.故答案為:5670【點睛】本題考查了二項式定理展開式的應(yīng)用,由通項公式求二項式系數(shù),屬于中檔題.16、,【解析】
存在符號改任意符號,結(jié)論變相反.【詳解】命題是特稱命題,則為全稱命題,故將“”改為“”,將“”改為“”,故:,.故答案為:,.【點睛】本題考查全(特)稱命題.對全(特)稱命題進行否定的方法:(1)改寫量詞:全稱量詞改寫為存在量詞,存在量詞改寫為全稱量詞;(2)否定結(jié)論:對于一般命題的否定只需直接否定結(jié)論即可.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)【解析】
(1)根據(jù)同角三角函數(shù)式可求得,結(jié)合正弦和角公式求得,即可求得,進而由三角函數(shù)(2)設(shè)根據(jù)余弦定理及基本不等式,可求得的最大值,結(jié)合三角形面積公式可求得的最大值,即可求得四邊形面積的最大值.【詳解】(1),則由同角三角函數(shù)關(guān)系式可得,則,則,所以.(2)設(shè)在中由余弦定理可得,代入可得,由基本不等式可知,即,當(dāng)且僅當(dāng)時取等號,由三角形面積公式可得,所以四邊形面積的最大值為.【點睛】本題考查了正弦和角公式化簡三角函數(shù)式的應(yīng)用,余弦定理及不等式式求最值的綜合應(yīng)用,屬于中檔題.18、(Ⅰ)或.(Ⅱ)【解析】
(Ⅰ)分類討論解絕對值不等式得到答案.(Ⅱ)討論和兩種情況,得到函數(shù)單調(diào)性,得到只需,代入計算得到答案.【詳解】(Ⅰ)當(dāng)時,不等式為,變形為或或,解集為或.(Ⅱ)當(dāng)時,,由此可知在單調(diào)遞減,在單調(diào)遞增,當(dāng)時,同樣得到在單調(diào)遞減,在單調(diào)遞增,所以,存在滿足不等式,只需,即,解得.【點睛】本題考查了解絕對值不等式,不等式存在性問題,意在考查學(xué)生的計算能力和綜合應(yīng)用能力.19、(1);(2)【解析】
(1),對函數(shù)求導(dǎo),分別求出和,即可求出在點處的切線方程;(2)對求導(dǎo),分、和三種情況討論的單調(diào)性,再結(jié)合在上恒成立,可求得的取值范圍.【詳解】(1)因為,所以,所以,則,故曲線在點處的切線方程為.(2)因為,所以,①當(dāng)時,在上恒成立,則在上單調(diào)遞增,從而成立,故符合題意;②當(dāng)時,令,解得,即在上單調(diào)遞減,則,故不符合題意;③當(dāng)時,在上恒成立,即在上單調(diào)遞減,則,故不符合題意.綜上,的取值范圍為.【點睛】本題考查了曲線的切線方程的求法,考查了利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,考查了不等式恒成立問題,利用分類討論是解決本題的較好方法,屬于中檔題.20、(1);(2).【解析】
(1)根據(jù)拋物線的定義,結(jié)合已知條件,即可容易求得結(jié)果;(2)設(shè)出直線的方程,聯(lián)立拋物線方程,根據(jù)直線與拋物線相交則,結(jié)合由得到的斜率關(guān)系,即可求得斜率的范圍.【詳解】(1)因為動圓與圓外切,并與直線相切,所以點到點的距離比點到直線的距離大.因為圓的半徑為,所以點到點的距離等于點到直線的距離,所以圓心的軌跡為拋物線,且焦點坐標為.所以曲線的方程.(2)設(shè),,由得,由得且.,,同理由,得,即,所以,由,得且,又且,所以的取值范圍為.【點睛】本題考查由拋物線定義求拋物線方程,涉及直線與拋物線相交結(jié)合垂直關(guān)系求斜率的范圍,屬綜合中檔題.21、(1);(2)或.【解析】
(1)聯(lián)立直線方程與雙曲線方程,消去,得到關(guān)于的一元二次方程,根據(jù)根的判別式,即可求出結(jié)論;(2)設(shè),由(1)可得關(guān)系,再由直線l過點,可得,進而建立
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度不動產(chǎn)抵押擔(dān)保房地產(chǎn)抵押登記合同樣本3篇
- 金屬護欄施工方案
- 2025年度綠色能源產(chǎn)品研發(fā)與市場拓展合同4篇
- 2025版塔吊司機與司索工安全操作雇傭協(xié)議書10篇
- 二零二四年度小程序與在線教育平臺合作開發(fā)合同3篇
- 2025房屋租賃合同以及注意事項
- 二零二四年度醫(yī)藥產(chǎn)品研發(fā)與臨床試驗合同
- 鋼框架結(jié)構(gòu)施工方案
- 2025版平方家具買賣合同范本(含運輸安裝)3篇
- 《盛明雜劇》評點研究
- 《色彩基礎(chǔ)》課程標準
- 人力資源 -人效評估指導(dǎo)手冊
- 大疆80分鐘在線測評題
- 2023年成都市青白江區(qū)村(社區(qū))“兩委”后備人才考試真題
- 2024中考復(fù)習(xí)必背初中英語單詞詞匯表(蘇教譯林版)
- 《現(xiàn)代根管治療術(shù)》課件
- 肩袖損傷的護理查房課件
- 2023屆北京市順義區(qū)高三二模數(shù)學(xué)試卷
- 公司差旅費報銷單
- 2021年上海市楊浦區(qū)初三一模語文試卷及參考答案(精校word打印版)
- 八年級上冊英語完形填空、閱讀理解100題含參考答案
評論
0/150
提交評論