




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
甘肅省涇川縣第三中學2025屆數(shù)學高二上期末復習檢測試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知函數(shù)f(x)的定義域為[-1,5],其部分自變量與函數(shù)值的對應情況如下表:x-10245f(x)312.513f(x)的導函數(shù)的圖象如圖所示.給出下列四個結論:①f(x)在區(qū)間[-1,0]上單調遞增;②f(x)有2個極大值點;③f(x)的值域為[1,3];④如果x∈[t,5]時,f(x)的最小值是1,那么t的最大值為4其中,所有正確結論的序號是()A.③ B.①④C.②③ D.③④2.設,則曲線在點處的切線的傾斜角是()A. B.C. D.3.已知平面向量,且,向量滿足,則的最小值為()A. B.C. D.4.已知x是上的一個隨機的實數(shù),則使x滿足的概率為()A. B.C. D.5.過點且與拋物線只有一個公共點的直線有()A.1條 B.2條C.3條 D.0條6.魏晉時期數(shù)學家劉徽首創(chuàng)割圓術,他在《九章算術》方田章圓田術中指出:“割之彌細,所失彌少,割之又割,以至于不可割,則與圓周合體而無所失矣.”這是注述中所用的割圓術是一種無限與有限的轉化過程,比如在正數(shù)中的“”代表無限次重復,設,則可以利用方程求得,類似地可得到正數(shù)()A.2 B.3C. D.7.已知直線交圓于A,B兩點,若點滿足,則直線l被圓C截得線段的長是()A.3 B.2C. D.48.在空間直角坐標系中,已知,,則MN的中點P到坐標原點О的距離為()A. B.C.2 D.39.橢圓的焦點坐標為()A.和 B.和C.和 D.和10.已知數(shù)列滿足,則滿足的的最大取值為()A.6 B.7C.8 D.911.已知a,b是互不重合直線,,是互不重合的平面,下列命題正確的是()A.若,,則B.若,,,則C.若,,則D.若,,,則12.設函數(shù),則()A.1 B.5C. D.0二、填空題:本題共4小題,每小題5分,共20分。13.在某次海軍演習中,已知甲驅逐艦在航母的南偏東15°方向且與航母的距離為12海里,乙護衛(wèi)艦在甲驅逐艦的正西方向,若測得乙護衛(wèi)艦在航母的南偏西45°方向,則甲驅逐艦與乙護衛(wèi)艦的距離為___________海里.14.已知,,且,則的最小值為______.15.某高中高二年級學生在學習完成數(shù)學選擇性必修一后進行了一次測試,總分為100分.現(xiàn)用分層隨機抽樣方法從學生的數(shù)學成績中抽取一個樣本量為40的樣本,再將40個成績樣本數(shù)據(jù)分為6組:40,50),50,60),60,70),70,80),80,90),90,100,繪制得到如圖所示的頻率分布直方圖.(1)從所給的頻率分布直方圖中估計成績樣本數(shù)據(jù)眾數(shù),平均數(shù),中位數(shù);(2)在區(qū)間40,50)和90,100內的兩組學生成績樣本數(shù)據(jù)中,隨機抽取兩個進調查,求調查對象來自不同分組的概率.16.已知實數(shù),,,滿足,,,則的最大值是______三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知拋物線的焦點為F,以F和準線上的兩點為頂點的三角形是邊長為的等邊三角形,過的直線交拋物線E于A,B兩點(1)求拋物線E的方程;(2)是否存在常數(shù),使得,如果存在,求的值,如果不存在,請說明理由;(3)證明:內切圓的面積小于18.(12分)已知橢圓(a>b>0)的右焦點為F2(3,0),離心率為e.(1)若e=,求橢圓的方程;(2)設直線y=kx與橢圓相交于A,B兩點,M,N分別為線段AF2,BF2的中點,若坐標原點O在以MN為直徑的圓上,且<e≤,求k的取值范圍.19.(12分)已知圓與x軸交于A,B兩點,P是該圓上任意一點,AP,PB的延長線分別交直線于M,N兩點.(1)若弦AP長為2,求直線PB的方程;(2)以線段MN為直徑作圓C,當圓C面積最小時,求此時圓C的方程.20.(12分)已知函數(shù).(1)求函數(shù)f(x)的單調區(qū)間;(2)若f(x)≥0對定義域內的任意x恒成立,求實數(shù)a的取值范圍.21.(12分)某工廠修建一個長方體無蓋蓄水池,其容積為4800立方米,深度為3米.池底每平方米的造價為150元,池壁每平方米的造價為120元.設池底長方形長為x米(1)求底面積,并用含x的表達式表示池壁面積;(2)怎樣設計水池能使總造價最低?最低造價是多少?22.(10分)已知函數(shù)f(x)+alnx,實數(shù)a>0(1)當a=2時,求函數(shù)f(x)在x=1處的切線方程;(2)討論函數(shù)f(x)在區(qū)間(0,10)上的單調性和極值情況;(3)若存在x∈(0,+∞),使得關于x的不等式f(x)<2+a2x成立,求實數(shù)a的取值范圍
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】直接利用函數(shù)的導函數(shù)的圖像,進一步畫出函數(shù)的圖像,進一步利用函數(shù)的性質的應用求出函數(shù)的單調區(qū)間,函數(shù)的極值和端點值可得結論【詳解】解:由f(x)的導函數(shù)的圖像,畫出的圖像,如圖所示,對于①,在區(qū)間上單調遞減,所以①錯誤,對于②,有1個極大值點,2個極小值點,所以②錯誤,對于③,根據(jù)函數(shù)的極值和端點值可知的值域為,所以③正確,對于④,如果x∈[t,5]時,由圖像可知,當f(x)的最小值是1時,t的最大值為4,所以④正確,故選:D2、C【解析】根據(jù)導數(shù)的概念可得,再利用導數(shù)的幾何意義即可求解.【詳解】因為,所以,則曲線在點處的切線斜率為,故所求切線的傾斜角為.故選:C3、B【解析】由題設可得,又,易知,,將問題轉化為平面點線距離關系:向量的終點為圓心,1為半徑的圓上的點到向量所在射線的距離最短,即可求的最小值.【詳解】解:∵,而,∴,又,即,又,,∴,若,則,∴在以為圓心,1為半徑的圓上,若,則,∴問題轉化為求在圓上的哪一點時,使最小,又,∴當且僅當三點共線且時,最小為.故選:B.【點睛】關鍵點點睛:由已知確定,,構成等邊三角形,即可將問題轉化為圓上動點到射線的距離最短問題.4、B【解析】先解不等式得到的范圍,再利用幾何概型的概率公式進行求解.【詳解】由得,即,所以使x滿足的概率為故選:B.5、B【解析】過的直線的斜率存在和不存在兩種情況分別討論即可得出答案.【詳解】易知過點,且斜率不存在的直線為,滿足與拋物線只有一個公共點.當直線的斜率存在時,設直線方程為,與聯(lián)立得,當時,方程有一個解,即直線與擾物線只有一個公共點.故滿足題意的直線有2條.故選:B6、A【解析】設,則,解方程可得結果.【詳解】設,則且,所以,所以,所以,所以或(舍).所以.故選:A【點睛】關鍵點點睛:設是解題關鍵.7、B【解析】由題設知為圓的圓心且A、B在圓上,根據(jù)已知及向量數(shù)量積的定義求的大小,進而判斷△的形狀,即可得直線l被圓C截得線段的長.【詳解】∵點為圓的圓心且A、B在圓上,又,∴,∴,又,∴,故△為等邊三角形,∴直線l被圓C截得線段的長是2故選:B8、A【解析】利用中點坐標公式及空間中兩點之間的距離公式可得解.【詳解】,,由中點坐標公式,得,所以.故選:A9、D【解析】本題是焦點在x軸的橢圓,求出c,即可求得焦點坐標.【詳解】,可得焦點坐標為和.故選:D10、B【解析】首先地推公式變形,得,,求得數(shù)列的通項公式后,再解不等式.【詳解】因為,兩邊取倒數(shù),得,整理為:,,所以數(shù)列是首項為1,公差為4的等差數(shù)列,,,因為,即,得,解得:,,所以的最大值是7.故選:B11、B【解析】根據(jù)線線,線面,面面位置關系的判定方法即可逐項判斷.【詳解】A:若,,則或a,故A錯誤;B:若,,則a⊥β,又,則a⊥b,故B正確;C:若,,則或α與β相交,故C錯誤;D:若,,,則不能判斷α與β是否垂直,故D錯誤.故選:B.12、B【解析】由題意結合導數(shù)的運算可得,再由導數(shù)的概念即可得解.【詳解】由題意,所以,所以原式等于.故選:B.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】利用正弦定理求得甲驅逐艦與乙護衛(wèi)艦的距離.【詳解】,設甲乙距離,由正弦定理得.故答案為:14、4【解析】利用“1”的妙用,運用基本不等式即可求解.【詳解】∵,即,∴又∵,,∴,當且僅當且,即,時,等號成立,則的最小值為4.故答案為:.15、(1)眾數(shù);平均數(shù),中位數(shù).(2).【解析】(1)按“眾數(shù),平均數(shù),中位數(shù)”的公式求解.(2)由頻率分布直方圖得到各區(qū)間的頻率,再用古典概型求解.【小問1詳解】眾數(shù)取頻率分布直方圖中最高矩形對應區(qū)間的中點75;平均數(shù);因為,所以中位數(shù)在區(qū)間上,且中位數(shù)【小問2詳解】由頻率分布直方圖得出在區(qū)間40,50)和90,100內的成績樣本數(shù)據(jù)分別有4個和2個,從6個樣本選2個共有個結果,記事件A=“調查對象來自不同分組”,結果有所以.16、10【解析】采用數(shù)形結合法,將所求問題轉化為兩點到直線的距離和的倍,結合梯形中位線性質和三角形三邊關系可求得答案.【詳解】由,,,可知,點在圓上,由,即為等腰直角三角形,結合點到直線距離公式可理解為圓心到直線的距離,變形得,即所求問題可轉化為兩點到直線的距離和的倍,作于于,中點為,中點為,由梯形中位線性質可得,,作于,于,連接,則,當且僅當與重合,三點共線時,有最大值,由點到直線距離公式可得,由幾何性質可得,,此時,故的最大值為.故答案為:10.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2)存在,1;(3)證明見解析.【解析】(1)根據(jù)幾何關系即可求p;(2)求解為定值1,即可求λ=1;(3)先求的面積,再由(為三角周長)可求內切圓半徑r.【小問1詳解】由題意焦點到準線的距離等于該正三角形一條邊上的高線,因此,∴拋物線E的方程為【小問2詳解】設直線的斜率為,直線方程為,記,,消去,得由,得且,,,,因此,即存在實數(shù)滿足要求【小問3詳解】由(2)知,,點F到直線AB的距離,∴的面積記的內切圓半徑為r,∵,∴∴內切圓的面積小于18、(1);(2)【解析】(1)根據(jù)右焦點為F2(3,0),以及,求得a,b,c即可.(2)聯(lián)立,根據(jù)M,N分別為線段AF2,BF2中點,且坐標原點O在以MN為直徑的圓上,易得OM⊥ON,則四邊形OMF2N為矩形,從而AF2⊥BF2,然后由0,結合韋達定理求解.【詳解】(1)由題意得c=3,,所以.又因為a2=b2+c2,所以b2=3.所以橢圓的方程為.(2)由,得(b2+a2k2)x2-a2b2=0.設A(x1,y1),B(x2,y2),所以x1+x2=0,x1x2=,依題意易知,OM⊥ON,四邊形OMF2N為矩形,所以AF2⊥BF2.因為(x1-3,y1),(x2-3,y2),所以(x1-3)(x2-3)+y1y2=(1+k2)x1x2+9=0.即,將其整理為k2==-1-.因為<e≤,所以2≤a<3,12≤a2<18.所以k2≥,即k∈【點睛】關鍵點點睛:本題第二問的關鍵是由O在以MN為直徑的圓上,即OM⊥ON,得到四邊形OMF2N為矩形,推出AF2⊥BF2,結合韋達定理得出斜率k與離心率e的關系.19、(1)或;(2).【解析】(1)根據(jù)圓的直徑的性質,結合銳角三角函數(shù)定義進行求解即可;(2)根據(jù)題意,結合基本不等式和圓的標準方程進行求解即可.【小問1詳解】在方程中,令,解得,或,因為AP,PB的延長線分別交直線于M,N兩點,所以,圓心在x軸上,所以,因為,,所以有,當P在x軸上方時,直線PB的斜率為:,所以直線PB的方程為:,當P在x軸下方時,直線PB的斜率為:,所以直線PB的方程為:,因此直線PB的方程為或;【小問2詳解】由(1)知:,,所以設直線的斜率為,因此直線的斜率為,于是直線的方程為:,令,,即直線的方程為:,令,,即,因為同號,所以,當且僅當時取等號,即當時取等號,于是有以線段MN為直徑作圓C,當圓C面積最小時,此時最小,當時,和,中點坐標為:,半徑為,所以圓的方程為:,同理當時,和,中點坐標為:,半徑為,所以圓的方程為:,綜上所述:圓C的方程為.20、(1)答案見解析(2)【解析】(1)求導數(shù),然后對進行分類討論,利用導數(shù)的正負,可得函數(shù)的單調區(qū)間;(2)利用(1)中函數(shù)的單調性,求得函數(shù)在處取得最小值,即可求實數(shù)的取值范圍.【小問1詳解】解:求導可得①時,令可得,由于知;令,得∴函數(shù)在上單調遞減,在上單調遞增;②時,令可得;令,得或,由于知或;∴函數(shù)在上單調遞減,在上單調遞增;③時,,函數(shù)在上單調遞增;④時,令可得;令,得或,由于知或∴函數(shù)在上單調遞減,在上單調遞增;【小問2詳解】由(1)時,,(不符合,舍去)當時,在上單調遞減,在上單調遞增,故函數(shù)在處取得最小值,所以函數(shù)對定義域內的任意x恒成立時,只需要即可∴.綜上,.21、(1)1600,(平方米);(2)池底設計為邊長40米的正方形時總造價最低,最低造價為268800元.【解析】(1)根據(jù)題意,由于修建一個長方體無蓋蓄水池,其容積為4800立方米,深度為3米可得底面積為1600,池壁面積s=.(2)同時池底每平方米的造價為150元,池壁每平方米的造價為120元設池底長方形長為x米,則可知總造價s=,x=40時,則.故可知當x=40時,則有可使得總造價最低,最低造價是268800元.考點:不等式求解最值點評:主要是考查了不等式求解最值的運用,屬于基礎題.22、(1)4x﹣y+2=0(2)答案見解析(3)(0,2)∪(2,+∞)【解析】(1)求出f(x)的導數(shù),可得切線的斜率和切點坐標,由直線的點斜式方程可得所求切線的方程;(2)求得f(x)的導數(shù),分a、0<a兩種情況討論求出答案即可;(3)由題意可得存在x∈(0,+∞),使得不等式成立,令,x>0,求得其最小值,再把最小值看成關
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- T-ZZB Q071-2024 酶底物法微生物智能培養(yǎng)計數(shù)一體機
- T-ZJHIA 16-2024 特殊醫(yī)學用途配方食品臨床營養(yǎng)治療營養(yǎng)篩查數(shù)據(jù)集
- 二零二五年度離婚協(xié)議中夫妻共同財產清算補充協(xié)議
- 二零二五年度直播帶貨主播合作權益保障合同
- 2025年度智能制造合作伙伴協(xié)議書
- 二零二五年度木制家具生產廠木工用工協(xié)議書
- 二零二五年度車輛掛靠運輸合同車輛運輸合同安全保障協(xié)議
- 二零二五年度個人租賃帶太陽能熱水系統(tǒng)住宅合同
- 二零二五年度餐飲行業(yè)知識產權保護協(xié)議
- 二零二五年度兼職攝影師聘用合同模板
- 家校共育之道
- DeepSeek入門寶典培訓課件
- 西安2025年陜西西安音樂學院專職輔導員招聘2人筆試歷年參考題庫附帶答案詳解
- 《作文中間技巧》課件
- 廣東省2025年中考物理仿真模擬卷(深圳)附答案
- 2025屆八省聯(lián)考 新高考適應性聯(lián)考英語試題(原卷版)
- 新蘇教版一年級下冊數(shù)學第1單元第3課時《8、7加幾》作業(yè)
- 2024年山東電力高等??茖W校高職單招職業(yè)技能測驗歷年參考題庫(頻考版)含答案解析
- 2024年電力交易員(高級工)職業(yè)鑒定理論考試題庫(單選題、多選題、判斷題)
- 《平面廣告賞析》課件
- 【公開課】同一直線上二力的合成+課件+2024-2025學年+人教版(2024)初中物理八年級下冊+
評論
0/150
提交評論