衡中同卷2025屆高二上數(shù)學(xué)期末監(jiān)測模擬試題含解析_第1頁
衡中同卷2025屆高二上數(shù)學(xué)期末監(jiān)測模擬試題含解析_第2頁
衡中同卷2025屆高二上數(shù)學(xué)期末監(jiān)測模擬試題含解析_第3頁
衡中同卷2025屆高二上數(shù)學(xué)期末監(jiān)測模擬試題含解析_第4頁
衡中同卷2025屆高二上數(shù)學(xué)期末監(jiān)測模擬試題含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

衡中同卷2025屆高二上數(shù)學(xué)期末監(jiān)測模擬試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知向量,滿足條件,則的值為()A.1 B.C.2 D.2.曲線為四葉玫瑰線,這種曲線在苜蓿葉型立交橋的布局中有非常廣泛的應(yīng)用,苜蓿葉型立交橋有兩層,將所有原來需要穿越相交道路的轉(zhuǎn)向都由環(huán)形匝道來實現(xiàn),即讓左轉(zhuǎn)車輛行駛環(huán)道后自右側(cè)切向匯入高速公路,四條環(huán)形匝道就形成了苜蓿葉的形狀.下列結(jié)論正確的個數(shù)是()①曲線C關(guān)于點(0,0)對稱;②曲線C關(guān)于直線y=x對稱;③曲線C的面積超過4π.A.0 B.1C.2 D.33.已知,,直線:,:,且,則的最小值為()A.2 B.4C.8 D.94.設(shè)為雙曲線與橢圓的公共的左右焦點,它們在第一象限內(nèi)交于點是以線段為底邊的等腰三角形,若橢圓的離心率范圍為,則雙曲線的離心率取值范圍是()A. B.C. D.5.在空間直角坐標(biāo)系中,點關(guān)于軸的對稱點為點,則點到直線的距離為()A. B.C. D.66.已知三棱錐的各頂點都在同一球面上,且平面,若該棱錐的體積為,,,,則此球的表面積等于()A. B.C. D.7.如圖在中,,,在內(nèi)作射線與邊交于點,則使得的概率是()A. B.C. D.8.有下列四個命題,其中真命題是()A., B.,,C.,, D.,9.在等差數(shù)列{an}中,已知a1=2,a2+a3=13,則a4+a5+a6等于()A.40 B.42C.43 D.4510.已知函數(shù)是區(qū)間上的可導(dǎo)函數(shù),且導(dǎo)函數(shù)為,則“對任意的,”是“在上為增函數(shù)”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件11.如圖,從氣球A上測得正前方的河流的兩岸B,C的俯角分別為、,其中,.如果這時氣球的高度,則河流的寬度BC為()A. B.C. D.12.已知圓:,是直線的一點,過點作圓的切線,切點為,,則的最小值為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知函數(shù),則滿足實數(shù)的取值范圍是__14.設(shè),,,則動點P的軌跡方程為______,P到坐標(biāo)原點的距離的最小值為______15.某高中高二年級學(xué)生在學(xué)習(xí)完成數(shù)學(xué)選擇性必修一后進(jìn)行了一次測試,總分為100分.現(xiàn)用分層隨機(jī)抽樣方法從學(xué)生的數(shù)學(xué)成績中抽取一個樣本量為40的樣本,再將40個成績樣本數(shù)據(jù)分為6組:40,50),50,60),60,70),70,80),80,90),90,100,繪制得到如圖所示的頻率分布直方圖.(1)從所給的頻率分布直方圖中估計成績樣本數(shù)據(jù)眾數(shù),平均數(shù),中位數(shù);(2)在區(qū)間40,50)和90,100內(nèi)的兩組學(xué)生成績樣本數(shù)據(jù)中,隨機(jī)抽取兩個進(jìn)調(diào)查,求調(diào)查對象來自不同分組的概率.16.定義在上的函數(shù)滿足,且對任意都有,則不等式的解集為__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在四棱錐中,底面ABCD為菱形,,側(cè)面為等腰直角三角形,,,點E為棱AD的中點(1)求證:平面ABCD;(2)求直線AB與平面PBC所成角的正弦值18.(12分)在①成等差數(shù)列;②成等比數(shù)列;③這三個條件中任選一個,補(bǔ)充在下面的問題中,并對其求解.問題:已知為數(shù)列的前項和,,且___________.(1)求數(shù)列的通項公式;(2)記,求數(shù)列的前項和.注:如果選擇多個條件分別解答,按第一個解答計分.19.(12分)已知數(shù)列的前n項和為,且.(1)求數(shù)列的通項公式;(2)若,設(shè),求數(shù)列的前n項和.20.(12分)已知橢圓過點,離心率.(1)求橢圓的方程;(2)設(shè)直線與橢圓相交于A、B兩點,求.21.(12分)著名的“康托爾三分集”是由德國數(shù)學(xué)家康托爾構(gòu)造的,是人類理性思維的產(chǎn)物,其操作過程如下:將閉區(qū)間均分為三段,去掉中間的區(qū)間段記為第一次操作;再將剩下的兩個閉區(qū)間,分別均分為三段,并各自去掉中間的區(qū)間段,記為第二次操作;…,如此這樣,每次在上一次操作的基礎(chǔ)上,將剩下的各個區(qū)間分別均分為三段,同樣各自去掉中間的區(qū)間段.操作過程不斷地進(jìn)行下去,以至無窮.每次操作后剩下的閉區(qū)間構(gòu)成的集合即是“康托爾三分集”.例如第一次操作后的“康托爾三分集”為.(1)求第二次操作后的“康托爾三分集”;(2)定義的區(qū)間長度為,記第n次操作后剩余的各區(qū)間長度和為,求;(3)記n次操作后“康托爾三分集”的區(qū)間長度總和為,若使不大于原來的,求n的最小值.(參考數(shù)據(jù):,)22.(10分)已知圓C經(jīng)過點,,且它的圓心C在直線上.(1)求圓C的方程;(2)過點作圓C的兩條切線,切點分別為M,N,求三角形PMN的面積.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】先求出坐標(biāo),進(jìn)而根據(jù)空間向量垂直的坐標(biāo)運算求得答案.【詳解】因為,所以,解得.故選:A.2、C【解析】根據(jù)圖像或解析式即可判斷對稱性①②;估算第一象限內(nèi)圖像面積即可判斷③.【詳解】①將點(-x,-y)代入后依然為,故曲線C關(guān)于原點對稱;②將點(y,x)代入后依然為,故曲線C關(guān)于y=x對稱;③曲線C在四個象限的圖像是完全相同的,不妨只研究第一象限的部分,∵,∴曲線C上離原點最遠(yuǎn)的點的距離為顯然第一象限內(nèi)曲線C的面積小于以為直徑的圓的面積,又∵,∴第一象限內(nèi)曲線C的面積小于,則曲線C的總面積小于4π.故③錯誤.故選:C.3、C【解析】由,可求得,再由,利用基本不等式求出最小值即可.【詳解】因為,所以,即,因為,,所以,當(dāng)且僅當(dāng),即時等號成立,所以的最小值為8.故選:C.【點睛】本題考查垂直直線的性質(zhì),考查利用基本不等式求最值,考查學(xué)生的計算求解能力,屬于中檔題.4、A【解析】設(shè)橢圓的標(biāo)準(zhǔn)方程為,根據(jù)橢圓和雙曲線的定義可得到兩圖形離心率之間的關(guān)系,再根據(jù)橢圓的離心率范圍可得雙曲線的離心率取值范圍.【詳解】設(shè)橢圓的標(biāo)準(zhǔn)方程為,,則有已知,兩式相減得,即,,因為,解得故選:A.5、C【解析】按照空間中點到直線的距離公式直接求解.【詳解】由題意,,,的方向向量,,則點到直線的距離為.故選:C.6、D【解析】由條件確定三棱錐的外接球的球心位置及球的半徑,再利用球的表面積公式求外接球的表面積.【詳解】由已知,,,可得三棱錐的底面是直角三角形,,由平面可得就是三棱錐外接球的直徑,,,即,則,故三棱錐外接球的半徑為,所以三棱錐外接球的表面積為故選:D.【點睛】與球有關(guān)的組合體問題,一種是內(nèi)切,一種是外接.解題時要認(rèn)真分析圖形,明確切點和接點的位置,確定有關(guān)元素間的數(shù)量關(guān)系,并作出合適的截面圖,如球內(nèi)切于正方體,切點為正方體各個面的中心,正方體的棱長等于球的直徑;球外接于正方體,正方體的頂點均在球面上,正方體的體對角線長等于球的直徑.7、C【解析】由題意可得,根據(jù)三角形中“大邊對大角,小邊對小角”的性質(zhì),將轉(zhuǎn)化為求的概率,又因為,,從而可得的概率【詳解】解:在中,,,所以,即,要使得,則,又因為,,則的概率是故選:C【點睛】本題考查幾何概型及其計算方法的知識,屬于基礎(chǔ)題8、B【解析】對于選項A,令即可驗證其不正確;對于選項C、選項D,令,即可驗證其均不正確,進(jìn)而可得出結(jié)果.【詳解】對于選項A,令,則,故A錯;對于選項B,令,則,顯然成立,故B正確;對于選項C,令,則顯然無解,故C錯;對于選項D,令,則顯然不成立,故D錯.故選B【點睛】本題主要考查命題真假的判定,用特殊值法驗證即可,屬于常考題型.9、B【解析】根據(jù)已知求出公差即可得出.【詳解】設(shè)等差數(shù)列的公差為,因為,,所以,則.故選:B.10、A【解析】根據(jù)充分條件與必要條件的概念,由導(dǎo)函數(shù)的正負(fù)與函數(shù)單調(diào)性之間關(guān)系,即可得出結(jié)果.【詳解】因為函數(shù)是區(qū)間上的可導(dǎo)函數(shù),且導(dǎo)函數(shù)為,若“對任意的,”,則在上為增函數(shù);若在上為增函數(shù),則對任意的恒成立,即由“對任意的,”能推出“在上為增函數(shù)”;由“在上為增函數(shù)”不能推出“對任意的,”,因此“對任意的,”是“在上為增函數(shù)”的充分不必要條件.故選:A11、D【解析】由題意得,,,然后在和求出,從而可求出的值【詳解】如圖,由題意得,,,在中,,在中,,所以,故選:D12、A【解析】根據(jù)題意,為四邊形的面積的2倍,即,然后利用切線長定理,將問題轉(zhuǎn)化為圓心到直線的距離求解.【詳解】圓:的圓心為,半徑,設(shè)四邊形的面積為,由題設(shè)及圓的切線性質(zhì)得,,∵,∴,圓心到直線的距離為,∴的最小值為,則的最小值為,故選:A二、填空題:本題共4小題,每小題5分,共20分。13、【解析】分別對,分別大于1,等于1,小于1的討論,即可.【詳解】對,分別大于1,等于1,小于1的討論,當(dāng),解得當(dāng),不存在,當(dāng)時,,解得,故x的范圍為點睛】本道題考查了分段函數(shù)問題,分類討論,即可,難度中等14、①.②.l【解析】根據(jù)雙曲線的定義得到動點的軌跡方程,從而求出到坐標(biāo)原點的距離的最小值;【詳解】解:因為,所以動點P的軌跡為以A,B為焦點,實軸長為2的雙曲線的下支.因為,,所以,,,所以動點P的軌跡方程為故P到坐標(biāo)原點的距離的最小值為故答案為:;;15、(1)眾數(shù);平均數(shù),中位數(shù).(2).【解析】(1)按“眾數(shù),平均數(shù),中位數(shù)”的公式求解.(2)由頻率分布直方圖得到各區(qū)間的頻率,再用古典概型求解.【小問1詳解】眾數(shù)取頻率分布直方圖中最高矩形對應(yīng)區(qū)間的中點75;平均數(shù);因為,所以中位數(shù)在區(qū)間上,且中位數(shù)【小問2詳解】由頻率分布直方圖得出在區(qū)間40,50)和90,100內(nèi)的成績樣本數(shù)據(jù)分別有4個和2個,從6個樣本選2個共有個結(jié)果,記事件A=“調(diào)查對象來自不同分組”,結(jié)果有所以.16、【解析】利用構(gòu)造函數(shù)法,結(jié)合導(dǎo)數(shù)來求得不等式的解集.【詳解】構(gòu)造函數(shù),,所以在上遞減,由,得,即,所以,即等式的解集為.故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析,(2)【解析】(1)題中易得,,利用勾股定理可得,從而可證得線面垂直;(2)以E為原點,EA為x軸,EB為y軸,EP為z軸,建立空間直角坐標(biāo)系,用空間向量法求線面角的正弦值【詳解】(1)證明:在四棱錐中,底面ABCD為菱形,,側(cè)面為等腰直角三角形,,,點E為棱AD的中點,,,,,,,平面ABCD(2)以E為原點,EA為x軸,EB為y軸,EP為z軸,建立空間直角坐標(biāo)系,0,,,0,,,,,,設(shè)平面PBC的法向量y,,則,取,得1,,設(shè)直線AB與平面PBC所成角,直線AB與平面PBC所成角的正弦值為:【點睛】本題考查線面垂直的證明,考查空間向量法求線面角.空間角的求法一般都是建立空間直角坐標(biāo)系,用空間向量法求得空間角18、(1)(2)【解析】(1)由可知數(shù)列是公比為的等比數(shù)列,若選①:結(jié)合等差數(shù)列等差中項的性質(zhì)計算求解;若選②:利用等比數(shù)列等比中項的性質(zhì)計算求解,若選③:利用直接計算;(2)根據(jù)對數(shù)的運算,可知數(shù)列為等差數(shù)列,直接求和即可.小問1詳解】由,當(dāng)時,,即,即,所以數(shù)列是公比為的等比數(shù)列,若選①:由,即,,所以數(shù)列的通項公式為;若選②:由,所以,所以數(shù)列的通項公式為;若選③:由,即,所以數(shù)列的通項公式為;【小問2詳解】由(1)得,所以數(shù)列等差數(shù)列,所以.19、(1)(2).【解析】(1)由數(shù)列的前n項和與通項公式之間的關(guān)系即可完成.(2)由錯位相減法即可解決此類“差比”數(shù)列的求和.【小問1詳解】由,得當(dāng)時,,上下兩式相減得,,又當(dāng)時,滿足上式,所以數(shù)列的通項公式;【小問2詳解】由(1)可知,所以,則,上下兩式相減得,所以.20、(1);(2).【解析】(1)根據(jù)題意得,,再結(jié)合即可求得答案.(2)設(shè),,直接聯(lián)立方程得,再結(jié)合韋達(dá)定理,利用弦長公式和點到線的距離公式得,點M到直線的距離,進(jìn)而可得.【詳解】解:(1)由題意得,,結(jié)合,解得所以橢圓的方程為:.(2)由得即,經(jīng)驗證.設(shè),.所以,,故因為點M到直線的距離,所以.【點睛】本題考查直線與橢圓位置關(guān)系,橢圓的方程,弦長公式等,考查運算能力,是基礎(chǔ)題.21、(1)(2)(3)【解析】(1)根據(jù)“康托爾三分集”的定義,即可求得第二次操作后的“康托爾三分集”;(2)根據(jù)“康托爾三分集”的定義,分別求得前幾次的剩余區(qū)間長度的和,求得其通項公式,即可求解;(3)由(2)可得第次操作剩余區(qū)間的長度和為,結(jié)合題意,得到,利用對數(shù)的運算公式,即可求解.【小問1詳解】解:根據(jù)“康托爾三分集”的定義可得:第一次操作后的“康托爾三分集”為,第二次操作后的“康托爾三分集”為;【小問2詳解】解:將定義的區(qū)間長度為,根據(jù)“康托爾三分集”的定義可得:每次去掉的區(qū)間長后組成的數(shù)為以為首項,為公比的等比數(shù)列,第1次操作去掉的區(qū)間長為,剩余區(qū)間的長度和為,第2次操作去掉兩個區(qū)間長為的區(qū)間,剩余區(qū)間的長度和為,第3次操作去掉四個區(qū)間長為的區(qū)間,剩余區(qū)間的長度和為,第4次操作去掉個區(qū)間長為,剩余區(qū)間的長度和為,第次操作去掉個區(qū)間長為,剩余區(qū)間的長度和為,所以第次操作后剩余的各區(qū)間長度和為;【小問3詳解】解:設(shè)定義

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論