版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
江蘇省南京市九中2025屆高二上數(shù)學(xué)期末復(fù)習(xí)檢測試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知函數(shù)(為自然對數(shù)的底數(shù)),若的零點為,極值點為,則()A. B.0C.1 D.22.已知是橢圓兩個焦點,P在橢圓上,,且當(dāng)時,的面積最大,則橢圓的標(biāo)準(zhǔn)方程為()A. B.C. D.3.如圖,已知,分別是橢圓的左、右焦點,現(xiàn)以為圓心作一個圓恰好經(jīng)過橢圓的中心并且交橢圓于點,.若過點的直線是圓的切線,則橢圓的離心率為()A. B.C. D.4.設(shè)等差數(shù)列的前n項和為,且,則()A.64 B.72C.80 D.1445.在正方體中,E,F(xiàn)分別為AB,CD的中點,則與平面所成的角的正弦值為()A. B.C. D.6.已知曲線與直線總有公共點,則m的取值范圍是()A. B.C. D.7.若圓與直線相切,則實數(shù)的值為()A. B.或3C. D.或8.已知命題p:函數(shù)在(0,1)內(nèi)恰有一個零點;命題q:函數(shù)在上是減函數(shù),若p且為真命題,則實數(shù)的取值范圍是A. B.2C.1<≤2 D.≤l或>29.設(shè)等差數(shù)列的前項和為,已知,,則的公差為()A.2 B.3C.4 D.510.函數(shù)圖象的一個對稱中心為()A. B.C. D.11.已知等差數(shù)列{an}的前n項和為Sn,且S7=28,則a4=()A.4 B.7C.8 D.1412.將直線繞著原點逆時針旋轉(zhuǎn),得到新直線的斜率是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.圓錐的母線長為2,母線所在直線與圓錐的軸所成角為,則該圓錐的側(cè)面積大小為____________.(結(jié)果保留)14.已知拋物線:上有兩動點,,且,則線段的中點到軸距離的最小值是___________.15.已知春季里,甲地每天下雨的概率為,乙地每天下雨的概率大于0,且甲、乙兩地下雨相互獨立,則春季的一天里,已知乙地下雨的條件下,甲地也下雨的概率為___________.16.已知數(shù)列滿足,,則______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知直線過點(1)若直線與直線垂直,求直線的方程;(2)若直線在兩坐標(biāo)軸的截距相等,求直線的方程18.(12分)已知數(shù)列的前n項和為,且(1)求證:數(shù)列為等比數(shù)列;(2)記,求數(shù)列的前n項和為19.(12分)在△ABC中,角A,B,C所對的邊分別a,b,c.已知2bcosB=ccosA+acosC(1)求B;(2)若a=2,,設(shè)D為CB延長線上一點,且AD⊥AC,求線段BD的長20.(12分)有一種魚的身體吸收汞,當(dāng)這種魚身體中的汞含量超過其體重的1.00ppm(即百萬分之一)時,人食用它,就會對人體產(chǎn)生危害.現(xiàn)從一批該魚中隨機選出30條魚,檢驗魚體中的汞含量與其體重的比值(單位:ppm),數(shù)據(jù)統(tǒng)計如下:0.070.240.390.540.610.660.730.820.820.820.870.910.950.980.981.021.021.081.141.201.201.261.291.311.371.401.441.581.621.68(1)求上述數(shù)據(jù)的眾數(shù),并估計這批魚該項數(shù)據(jù)的80%分位數(shù);(2)有A,B兩個水池,兩水池之間有8個完全相同的小孔聯(lián)通,所有的小孔均在水下,且可以同時通過2條魚①將其中汞的含量最低的2條魚分別放入A水池和B水池中,若這2條魚的游動相互獨立,均有的概率進入另一水池且不再游回,求這兩條魚最終在同一水池的概率;②將其中汞的含量最低的2條魚都先放入A水池中,若這2條魚均會獨立地且等可能地從其中任意一個小孔由A水池進入B水池且不再游回A水池,求這兩條魚由不同小孔進入B水池的概率21.(12分)已知命題p:實數(shù)x滿足(其中);命題q:實數(shù)x滿足(1)若,為真命題,求實數(shù)x的取值范圍;(2)若p是q的充分條件,求實數(shù)的取值范圍22.(10分)從甲、乙兩名學(xué)生中選拔一人參加射擊比賽,現(xiàn)對他們的射擊水平進行測試,兩人在相同條件下各射靶10次,每次命中的環(huán)數(shù)如下:甲:7,8,6,8,6,5,9,10,7,乙:9,5,7,8,7,6,8,6,7,(1)求,,,(2)你認(rèn)為應(yīng)該選哪名學(xué)生參加比賽?為什么?
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】令可求得其零點,即的值,再利用導(dǎo)數(shù)可求得其極值點,即的值,從而可得答案【詳解】解:,當(dāng)時,,即,解得;當(dāng)時,恒成立,的零點為又當(dāng)時,為增函數(shù),故在,上無極值點;當(dāng)時,,,當(dāng)時,,當(dāng)時,,時,取到極小值,即的極值點,故選:C【點睛】本題考查利用導(dǎo)數(shù)研究函數(shù)的極值,考查函數(shù)的零點,考查分段函數(shù)的應(yīng)用,突出分析運算能力的考查,屬于中檔題2、A【解析】由題意知c=3,當(dāng)△F1PF2的面積最大時,點P與橢圓在y軸上的頂點重合,即可解出【詳解】由題意知c=3,當(dāng)△F1PF2的面積最大時,點P與橢圓在y軸上的頂點重合,∵時,△F1PF2的面積最大,∴a==,b=∴橢圓的標(biāo)準(zhǔn)方程為故選:A3、A【解析】由切線的性質(zhì),可得,,再結(jié)合橢圓定義,即得解【詳解】因為過點的直線圓的切線,,,所以由橢圓定義可得,可得橢圓的離心率故選:A4、B【解析】利用等差數(shù)列下標(biāo)和性質(zhì),求得,再用等差數(shù)列前項和公式即可求解.【詳解】根據(jù)等差數(shù)列的下標(biāo)和性質(zhì),,解得,.故選:B.5、B【解析】作出線面角構(gòu)造三角形直接求解,建立空間直角坐標(biāo)系用向量法求解.【詳解】設(shè)正方體棱長為2,、F分別為AB、CD的中點,由正方體性質(zhì)知平面,所以平面平面,在平面作,則平面,因為,所以即為所求角,所以.故選:B6、D【解析】對曲線化簡可知曲線表示以點為圓心,2為半徑的圓的下半部分,對直線方程化簡可得直線過定點,畫出圖形,由圖可知,,然后求出直線的斜率即可【詳解】由,得,因為,所以曲線表示以點為圓心,2為半徑的圓的下半部分,由,得,所以,得,所以直線過定點,如圖所示設(shè)曲線與軸的兩個交點分別為,直線過定點,為曲線上一動點,根據(jù)圖可知,若曲線與直線總有公共點,則,得,設(shè)直線為,則,解得,或,所以,所以,所以,故選:D7、D【解析】利用圓心到直線的距離等于半徑可得答案.【詳解】若圓與直線相切,則到直線的距離為,所以,解得,或.故選:D.8、C【解析】命題p為真時:;命題q為真時:,因為p且為真命題,所以命題p為真,命題q為假,即,選C考點:命題真假9、B【解析】由以及等差數(shù)列的性質(zhì),可得的值,再結(jié)合即可求出公差.【詳解】解:,得,,又,兩式相減得,則.故選:B.10、D【解析】要求函數(shù)圖象的一個對稱中心的坐標(biāo),關(guān)鍵是求函數(shù)時的的值;令,根據(jù)余弦函數(shù)圖象性質(zhì)可得,此時可求出,然后對進行取值,進而結(jié)合選項即可得到答案.【詳解】解:令,則解得,即,圖象的對稱中心為,令,即可得到圖象的一個對稱中心為故選:D【點睛】本題考查三角函數(shù)的對稱中心,正弦函數(shù)的對稱中心為,余弦函數(shù)的對稱中心為.11、A【解析】由等差數(shù)列的性質(zhì)可知,再代入等差數(shù)列的前項和公式求解.【詳解】數(shù)列{an}是等差數(shù)列,,那么,所以.故選:A.【點睛】本題考查等差數(shù)列的性質(zhì)和前項和,屬于基礎(chǔ)題型.12、B【解析】由題意知直線的斜率為,設(shè)其傾斜角為,將直線繞著原點逆時針旋轉(zhuǎn),得到新直線的斜率為,化簡求值即可得到答案.【詳解】由知斜率為,設(shè)其傾斜角為,則,將直線繞著原點逆時針旋轉(zhuǎn),則故新直線的斜率是.故選:B.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】由題設(shè)知:圓錐的軸截面為等邊三角形,進而求圓錐的底面周長,由扇形面積公式求圓錐的側(cè)面積大小.【詳解】由題設(shè),圓錐的軸截面為等邊三角形,又圓錐的母線長為2,∴底面半徑為1,則底面周長為,∴圓錐的側(cè)面積大小為.故答案為:.14、2【解析】設(shè)拋物線的焦點為,由,結(jié)合拋物線的定義可得線段的中點到軸距離的最小值.【詳解】設(shè)拋物線的焦點為,點在拋物線的準(zhǔn)線上的投影為,點在直線上的投影為,線段的中點為,點到軸的距離為,則,∴,當(dāng)且僅當(dāng)即三點共線時等號成立,∴線段的中點到軸距離的最小值是2,故答案為:2.15、##0.5【解析】根據(jù)條件概率求概率的方法即可求得答案.【詳解】設(shè)A表示“甲地每天下雨”,B表示“乙地每天下雨”,乙地每天下雨的概率為p,則,因為甲乙兩地下雨相互獨立,所以,于是在乙地下雨的條件下,甲地也下雨的概率為.故答案為:.16、1023【解析】由數(shù)列遞推公式求特定項,依次求下去即可解決.【詳解】數(shù)列中,則,,,,,,故答案為:1023三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)或【解析】(1)由兩條直線垂直可設(shè)直線的方程為,將點的坐標(biāo)代入計算即可;(2)當(dāng)直線過原點時,根據(jù)直線的點斜式方程即可得出結(jié)果;當(dāng)直線不過原點時可設(shè)直線的方程為,將點的坐標(biāo)代入計算即可.【小問1詳解】解:因為直線與直線垂直所以,設(shè)直線的方程為,因為直線過點,所以,解得,所以直線的方程為【小問2詳解】解:當(dāng)直線過原點時,斜率為,由點斜式求得直線的方程是,即當(dāng)直線不過原點時,設(shè)直線的方程為,把點代入方程得,所以直線的方程是綜上,所求直線的方程為或18、(1)證明見解析;(2).【解析】(1)由已知得,當(dāng)時,兩式作差整理得,根據(jù)等比數(shù)列的定義可得證;(2)由(1)求得,,再運用錯位相減法可求得答案.【小問1詳解】證明:因為,……①,所以當(dāng)時,,當(dāng)時……②,則①-②可得,所以,因為,所以數(shù)列是以2為首項,2為公比的等比數(shù)列【小問2詳解】解:由(1)知,即,因為所以,則……①,①得……②,①-②得,所以.19、(1)(2)【解析】(1)利用正弦定理化簡已知條件,求得,由此求得.(2)利用正弦定理求得,由列方程來求得.【小問1詳解】,由正弦定理得,因為,所以,.【小問2詳解】由(1)知,,由正弦定理:得,,或(舍去),,,所以由得,,20、(1)眾數(shù)為0.82,8%分位數(shù)約為1.34(2)①;②【解析】(1)根據(jù)題中表格數(shù)據(jù)即可求得答案;(2)①兩條魚有可能均在A水池也可能都在B水池,故可根據(jù)互斥事件的概率結(jié)合相互獨立事件的概率計算求得答案;②先求出這兩條魚由同一個小孔進入B水池的概率,然后根據(jù)對立事件的概率計算方法,求得答案.【小問1詳解】由題意知,數(shù)據(jù)的眾數(shù)為0.82,估計這批魚該項數(shù)據(jù)的80%分位數(shù)約為【小問2詳解】①記“兩魚最終均在A水池”為事件A,則,記“兩魚最終均在B水池”為事件B,則,∵事件A與事件B互斥,∴兩條魚最終在同一水池的概率為②記“兩魚同時從第一個小孔通過”為事件,“兩魚同時從第二個小孔通過”為事件,…依次類推,而兩魚的游動獨立,∴,記“兩條魚由不同小孔進入B水池”為事件C,則C與對立,又由事件,事件
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 房屋出售代理人合同(2篇)
- 2024音響設(shè)備展會展覽策劃及組織服務(wù)合同3篇
- 2024石材加工廠安全生產(chǎn)與風(fēng)險管理的合同范本
- 二零二五版農(nóng)產(chǎn)品市場調(diào)研與營銷策劃合同4篇
- 2025年度婚紗攝影情侶寫真拍攝服務(wù)合同2篇
- 2025年版智慧社區(qū)門衛(wèi)及智能安防系統(tǒng)運營合同4篇
- 二零二五年度面粉質(zhì)量檢測與認(rèn)證合同4篇
- 二零二五年度土地租賃抵押借款合同范本
- 2025年度土地儲備開發(fā)合同范本3篇
- 2025版新能源行業(yè)農(nóng)民工勞動合同示范文本3篇
- SYT 6968-2021 油氣輸送管道工程水平定向鉆穿越設(shè)計規(guī)范-PDF解密
- 冷庫制冷負(fù)荷計算表
- 肩袖損傷護理查房
- 設(shè)備運維管理安全規(guī)范標(biāo)準(zhǔn)
- 辦文辦會辦事實務(wù)課件
- 大學(xué)宿舍人際關(guān)系
- 2023光明小升初(語文)試卷
- GB/T 14600-2009電子工業(yè)用氣體氧化亞氮
- 申請使用物業(yè)專項維修資金征求業(yè)主意見表
- 房屋買賣合同簡單范本 房屋買賣合同簡易范本
- 無抽搐電休克治療規(guī)范
評論
0/150
提交評論