2025屆江蘇省鎮(zhèn)江市重點(diǎn)名校高二上數(shù)學(xué)期末統(tǒng)考模擬試題含解析_第1頁(yè)
2025屆江蘇省鎮(zhèn)江市重點(diǎn)名校高二上數(shù)學(xué)期末統(tǒng)考模擬試題含解析_第2頁(yè)
2025屆江蘇省鎮(zhèn)江市重點(diǎn)名校高二上數(shù)學(xué)期末統(tǒng)考模擬試題含解析_第3頁(yè)
2025屆江蘇省鎮(zhèn)江市重點(diǎn)名校高二上數(shù)學(xué)期末統(tǒng)考模擬試題含解析_第4頁(yè)
2025屆江蘇省鎮(zhèn)江市重點(diǎn)名校高二上數(shù)學(xué)期末統(tǒng)考模擬試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩15頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2025屆江蘇省鎮(zhèn)江市重點(diǎn)名校高二上數(shù)學(xué)期末統(tǒng)考模擬試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)填寫(xiě)清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書(shū)寫(xiě),字體工整、筆跡清楚。3.請(qǐng)按照題號(hào)順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書(shū)寫(xiě)的答案無(wú)效;在草稿紙、試題卷上答題無(wú)效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知空間向量,,,下列命題中正確的個(gè)數(shù)是()①若與共線,與共線,則與共線;②若,,非零且共面,則它們所在的直線共面;⑧若,,不共面,那么對(duì)任意一個(gè)空間向量,存在唯一有序?qū)崝?shù)組,使得;④若,不共線,向量,則可以構(gòu)成空間的一個(gè)基底.A.0 B.1C.2 D.32.等比數(shù)列的前項(xiàng)和為,若,則()A. B.8C.1或 D.或3.已知函數(shù),則()A. B.C. D.4.雙曲線的漸近線方程為()A. B.C. D.5.等比數(shù)列的第4項(xiàng)與第6項(xiàng)分別為12和48,則公比的值為()A. B.2C.或2 D.或6.已知數(shù)列滿足,在任意相鄰兩項(xiàng)與(k=1,2,…)之間插入個(gè)2,使它們和原數(shù)列的項(xiàng)構(gòu)成一個(gè)新的數(shù)列.記為數(shù)列的前n項(xiàng)和,則的值為()A.162 B.163C.164 D.1657.直線在y軸上的截距是A. B.C. D.8.如圖,是對(duì)某位同學(xué)一學(xué)期次體育測(cè)試成績(jī)(單位:分)進(jìn)行統(tǒng)計(jì)得到的散點(diǎn)圖,關(guān)于這位同學(xué)的成績(jī)分析,下列結(jié)論錯(cuò)誤的是()A.該同學(xué)的體育測(cè)試成績(jī)總的趨勢(shì)是在逐步提高,且次測(cè)試成績(jī)的極差超過(guò)分B.該同學(xué)次測(cè)試成績(jī)的眾數(shù)是分C.該同學(xué)次測(cè)試成績(jī)的中位數(shù)是分D.該同學(xué)次測(cè)試成績(jī)與測(cè)試次數(shù)具有相關(guān)性,且呈正相關(guān)9.已知三棱柱的所有棱長(zhǎng)均為2,平面,則異面直線,所成角的余弦值為()A. B.C. D.10.已知雙曲線:的左、右焦點(diǎn)分別為,,過(guò)點(diǎn)且斜率為的直線與雙曲線在第二象限的交點(diǎn)為,若,則雙曲線的離心率是()A B.C. D.11.已知雙曲線的兩個(gè)焦點(diǎn)為,,是此雙曲線上的一點(diǎn),且滿足,,則該雙曲線的方程是()A. B.C. D.12.從某個(gè)角度觀察籃球(如圖1),可以得到一個(gè)對(duì)稱的平面圖形,如圖2所示,籃球的外輪形為圓O,將籃球表面的粘合線看成坐標(biāo)軸和雙曲線,若坐標(biāo)軸和雙曲線與圓O的交點(diǎn)將圓O的周長(zhǎng)八等分,AB=BC=CD,則該雙曲線的離心率為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.直線l過(guò)拋物線的焦點(diǎn)F,與拋物線交于A,B兩點(diǎn),與其準(zhǔn)線交于點(diǎn)C,若,則直線l的斜率為_(kāi)_____.14.將參加冬季越野跑的名選手編號(hào)為:,采用系統(tǒng)抽樣方法抽取一個(gè)容量為的樣本,把編號(hào)分為組后,第一組的到這個(gè)編號(hào)中隨機(jī)抽得的號(hào)碼為,這名選手穿著三種顏色的衣服,從到穿紅色衣服,從到穿白色衣服,從到穿黃色衣服,則抽到穿白色衣服的選手人數(shù)為_(kāi)_________15.已知實(shí)數(shù)滿足,則的取值范圍是____________16.?dāng)?shù)學(xué)家歐拉年在其所著的《三角形幾何學(xué)》一書(shū)中提出:任意三角形的外心、重心、垂心在同一條直線上,后人稱這條直線為歐拉線,已知的頂點(diǎn)、,其歐拉線的方程為,則的外接圓方程為_(kāi)_____.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知數(shù)列是遞增的等比數(shù)列,滿足,(1)求數(shù)列的通項(xiàng)公式;(2)若,求數(shù)列的前n項(xiàng)和18.(12分)已知拋物線的方程為,點(diǎn),過(guò)點(diǎn)的直線交拋物線于,兩點(diǎn)(1)是否為定值?若是,求出該定值;若不是,說(shuō)明理由;(2)若點(diǎn)是直線上的動(dòng)點(diǎn),且,求面積的最小值19.(12分)已知圓M過(guò)C(1,﹣1),D(﹣1,1)兩點(diǎn),且圓心M在x+y﹣2=0上.(1)求圓M的方程;(2)設(shè)P是直線3x+4y+8=0上的動(dòng)點(diǎn),PA,PB是圓M的兩條切線,A,B為切點(diǎn),求四邊形PAMB面積的最小值.20.(12分)平面直角坐標(biāo)系中,曲線與坐標(biāo)軸交點(diǎn)都在圓上.(1)求圓的方程;(2)圓與直線交于,兩點(diǎn),在圓上是否存在一點(diǎn),使得四邊形為菱形?若存在,求出此時(shí)直線的方程;若不存在,說(shuō)明理由.21.(12分)已知.(1)討論的單調(diào)性;(2)當(dāng)有最大值,且最大值大于時(shí),求取值范圍.22.(10分)如圖,在四棱錐P-ABCD中,底面ABCD是一個(gè)直角梯形,其中∠BAD=90°,AB∥DC,PA⊥底面ABCD,AB=AD=PA=2,DC=1,點(diǎn)M和點(diǎn)N分別為PA和PC的中點(diǎn)(1)證明:直線DM∥平面PBC;(2)求直線BM和平面BDN所成角的余弦值;(3)求二面角M-BD-N正弦值;(4)求點(diǎn)P到平面DBN距離;(5)設(shè)點(diǎn)N在平面BDM內(nèi)的射影為點(diǎn)H,求線段HA的長(zhǎng)

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】用向量共線或共面的基本定理即可判斷.【詳解】若與,與共線,,則不能判定,故①錯(cuò)誤;若非零向量共面,則向量可以在一個(gè)與組成的平面平行的平面上,故②錯(cuò)誤;不共面,意味著它們都是非零向量,可以作為一組基底,故③正確;,∴與共面,故不能組成一個(gè)基底,故④錯(cuò)誤;故選:C.2、C【解析】根據(jù)等比數(shù)列的前項(xiàng)和公式及等比數(shù)列通項(xiàng)公式即可求解.【詳解】設(shè)等比數(shù)列的公比為,則因?yàn)?,所以,即,解得或,所以?故選:C.3、B【解析】求出,代值計(jì)算可得的值.【詳解】因?yàn)椋瑒t,故.故選:B.4、A【解析】直接求出,,進(jìn)而求出漸近線方程.【詳解】中,,,所以漸近線方程為,故.故選:A5、C【解析】根據(jù)等比數(shù)列的通項(xiàng)公式計(jì)算可得;詳解】解:依題意、,所以,即,所以;故選:C6、C【解析】確定數(shù)列的前70項(xiàng)含有的前6項(xiàng)和64個(gè)2,從而求出前70項(xiàng)和.【詳解】,其中之間插入2個(gè)2,之間插入4個(gè)2,之間插入8個(gè)2,之間插入16個(gè)2,之間插入32個(gè)2,之間插入64個(gè)2,由于,,故數(shù)列的前70項(xiàng)含有的前6項(xiàng)和64個(gè)2,故故選:C7、D【解析】在y軸上的截距只需令x=0求出y的值即可得出.【詳解】令x=0,則y=-2,即直線在y周上的截距為-2,故選D.8、C【解析】根據(jù)給定的散點(diǎn)圖,逐一分析各個(gè)選項(xiàng)即可判斷作答.【詳解】對(duì)于A,由散點(diǎn)圖知,8次測(cè)試成績(jī)總體是依次增大,極差為,A正確;對(duì)于B,散點(diǎn)圖中8個(gè)數(shù)據(jù)的眾數(shù)是48,B正確;對(duì)于C,散點(diǎn)圖中的8個(gè)數(shù)由小到大排列,最中間兩個(gè)數(shù)都是48,則次測(cè)試成績(jī)的中位數(shù)是分,C不正確;對(duì)于D,散點(diǎn)圖中8個(gè)點(diǎn)落在某條斜向上的直線附近,則次測(cè)試成績(jī)與測(cè)試次數(shù)具有相關(guān)性,且呈正相關(guān),D正確.故選:C9、A【解析】建立空間直角坐標(biāo)系,利用向量法求解【詳解】以為坐標(biāo)原點(diǎn),平面內(nèi)過(guò)點(diǎn)且垂直于的直線為軸,所在直線為軸,所在直線為軸建立空間直角坐標(biāo)系,如圖所示,則,,,,∴,,∴,∴異面直線,所成角的余弦值為.故選:A10、B【解析】根據(jù)得到三角形為等腰三角形,然后結(jié)合雙曲線的定義得到,設(shè),進(jìn)而作,得出,由此求出結(jié)果【詳解】因?yàn)?,所以,即所以,由雙曲線的定義,知,設(shè),則,易得,如圖,作,為垂足,則,所以,即,即雙曲線的離心率為.故選:B11、A【解析】由,可得進(jìn)一步求出,由此得到,則該雙曲線的方程可求【詳解】,即,則.即,則該雙曲線的方程是:故選:A【點(diǎn)睛】方法點(diǎn)睛:求圓錐曲線的方程,常用待定系數(shù)法,先定式(根據(jù)已知確定焦點(diǎn)所在的坐標(biāo)軸,設(shè)出曲線的方程),再定式(根據(jù)已知建立方程組解方程組得解).12、D【解析】設(shè)出雙曲線方程,通過(guò)做標(biāo)準(zhǔn)品和雙曲線與圓O的交點(diǎn)將圓的周長(zhǎng)八等分,且AB=BC=CD,推出點(diǎn)在雙曲線上,然后求出離心率即可.【詳解】設(shè)雙曲線的方程為,則,因?yàn)锳B=BC=CD,所以,所以,因?yàn)樽鴺?biāo)軸和雙曲線與圓O的交點(diǎn)將圓O的周長(zhǎng)八等分,所以在雙曲線上,代入可得,解得,所以雙曲線的離心率為.故選:D二、填空題:本題共4小題,每小題5分,共20分。13、【解析】由拋物線方程求出焦點(diǎn)坐標(biāo)與準(zhǔn)線方程,設(shè)直線為,、,即可得到的坐標(biāo),再聯(lián)立直線與拋物線方程,消元列出韋達(dá)定理,表示出、的坐標(biāo),根據(jù)得到方程,求出,即可得解;【詳解】解:拋物線方程為,則焦點(diǎn),準(zhǔn)線為,設(shè)直線為,、,則,由,消去得,所以,,則,,因?yàn)椋?,所以,所以,解得,所以,即直線為,所以直線的斜率為;故答案為:14、【解析】,所以抽到穿白色衣服的選手號(hào)碼為,共15、【解析】去絕對(duì)值分別列出每個(gè)象限解析式,數(shù)形結(jié)合利用距離求解范圍.【詳解】當(dāng),表示橢圓第一象限部分;當(dāng),表示雙曲線第四象限部分;當(dāng),表示雙曲線第二象限部分;當(dāng),不表示任何圖形;以及兩點(diǎn),作出大致圖象如圖:曲線上的點(diǎn)到的距離為,根據(jù)雙曲線方程可得第二四象限雙曲線漸近線方程都是,與距離為2,曲線二四象限上的點(diǎn)到的距離為小于且無(wú)限接近2,考慮曲線第一象限的任意點(diǎn)設(shè)為到的距離,當(dāng)時(shí)取等號(hào),所以,則的取值范圍是故答案為:16、【解析】求出線段的垂直平分線方程,與歐拉線方程聯(lián)立,求出的外接圓圓心坐標(biāo),并求出外接圓的半徑,由此可得出的外接圓方程.【詳解】直線的斜率為,線段的中點(diǎn)為,所以,線段的垂直平分線的斜率為,則線段垂直平分線方程為,即,聯(lián)立,解得,即的外心為,所以,的外接圓的半徑為,因此,的外接圓方程為.故答案為:.【點(diǎn)睛】方法點(diǎn)睛:求圓的方程,主要有兩種方法:(1)幾何法:具體過(guò)程中要用到初中有關(guān)圓的一些常用性質(zhì)和定理如:①圓心在過(guò)切點(diǎn)且與切線垂直的直線上;②圓心在任意弦的中垂線上;③兩圓相切時(shí),切點(diǎn)與兩圓心三點(diǎn)共線;(2)待定系數(shù)法:根據(jù)條件設(shè)出圓的方程,再由題目給出的條件,列出等式,求出相關(guān)量.一般地,與圓心和半徑有關(guān),選擇標(biāo)準(zhǔn)式,否則,選擇一般式.不論是哪種形式,都要確定三個(gè)獨(dú)立參數(shù),所以應(yīng)該有三個(gè)獨(dú)立等式三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)(2)【解析】(1)由等比數(shù)列的通項(xiàng)公式計(jì)算基本量從而得出的通項(xiàng)公式;(2)由(1)可得,再由裂項(xiàng)相消法求和即可.【小問(wèn)1詳解】設(shè)等比數(shù)列的公比為q,所以有,,聯(lián)立兩式解得或又因?yàn)閿?shù)列是遞增的等比數(shù)列,所以,所以數(shù)列的通項(xiàng)公式為;【小問(wèn)2詳解】∵,∴,∴18、(1)是,;(2)【解析】(1)由題意設(shè)出所在直線方程,與拋物線方程聯(lián)立,化為關(guān)于的一元二次方程,由根與系數(shù)的關(guān)系即可求得為定值;(2)當(dāng)?shù)男甭蕿?時(shí),求得三角形的面積為;當(dāng)?shù)男甭什粸?時(shí),由弦長(zhǎng)公式求解,再由點(diǎn)到直線的距離公式求到的距離,代入三角形面積公式,利用函數(shù)單調(diào)性可得三角形的面積大于,由此可得面積的最小值【詳解】(1)由題意知,直線斜率存在,不妨設(shè)其方程為,聯(lián)立拋物線的方程可得,設(shè),,則,,所以,,所以,所以是定值(2)當(dāng)直線的斜率為0時(shí),,又,,此時(shí)當(dāng)直線的斜率不力0時(shí),,又因?yàn)?,且直線的斜率不為0,所以,即,所以點(diǎn)到直線的距離,此時(shí),因?yàn)?,所以,綜上,面積的最小值為19、(1);(2).【解析】(1)設(shè)圓的方程為:,由已知列出方程組,解之可得圓的方程;(2)由已知得四邊形的面積為,即有,又有.因此要求的最小值,只需求的最小值即可,根據(jù)點(diǎn)到直線的距離公式可求得答案.【詳解】解:(1)設(shè)圓方程為:,根據(jù)題意得,故所求圓M的方程為:;(2)如圖,四邊形的面積為,即又,所以,而,即.因此要求的最小值,只需求的最小值即可,的最小值即為點(diǎn)到直線的距離所以,四邊形面積的最小值為.20、(1);(2)存在,直線方程為或.【解析】(1)利用待定系數(shù)法即求;(2)利用直線與圓的位置關(guān)系可得,然后利用菱形的性質(zhì)可得圓心到直線的距離,即得.【小問(wèn)1詳解】曲線與軸的交點(diǎn)為,與軸的交點(diǎn)為,,設(shè)圓的方程為,則,解得.∴圓的方程為;【小問(wèn)2詳解】∵圓與直線交于,兩點(diǎn),圓化為,圓心坐標(biāo)為,半徑為.∴圓心到直線的距離,解得.假設(shè)存在點(diǎn),使得四邊形為菱形,則與互相平分,∴圓心到直線的距離,即,解得,經(jīng)驗(yàn)證滿足條件.∴存在點(diǎn),使得四邊形為菱形,此時(shí)的直線方程為或.21、(1)時(shí),在是單調(diào)遞增;時(shí),在單調(diào)遞增,在單調(diào)遞減.(2).【解析】(Ⅰ)由,可分,兩種情況來(lái)討論;(II)由(I)知當(dāng)時(shí)在無(wú)最大值,當(dāng)時(shí)最大值為因此.令,則在是增函數(shù),當(dāng)時(shí),,當(dāng)時(shí),因此a的取值范圍是.試題解析:(Ⅰ)的定義域?yàn)?,若,則,在是單調(diào)遞增;若,則當(dāng)時(shí),當(dāng)時(shí),所以在單調(diào)遞增,在單調(diào)遞減.(Ⅱ)由(Ⅰ)知當(dāng)時(shí)在無(wú)最大值,當(dāng)時(shí)在取得最大值,最大值為因此.令,則在是增函數(shù),,于是,當(dāng)時(shí),,當(dāng)時(shí),因此a取值范圍是.考點(diǎn):本題主要考查導(dǎo)數(shù)在研究函數(shù)性質(zhì)方面的應(yīng)用及分類討論思想.22、(1)證明見(jiàn)解析(2)(3)(4)(5)【解析】(1)以為原點(diǎn),建立空間直角坐標(biāo)系,利用向量法,證明與平面的法向量垂直,從而證明直線平面(2)求出平面的法向量,利用向量法,求出直線和平面所成角的余弦值(3)求出平面的法向量和平面的法向量,利用向量法,求出二面角的正弦值(4)求出的坐標(biāo),再求出平面的法向量,利用向量法,求出點(diǎn)到平面的距離;(5)設(shè)點(diǎn)在平面內(nèi)的射影為點(diǎn),從而表示出的坐標(biāo),求出到平面的距離,列出方程組,求出點(diǎn)坐標(biāo),從

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論