版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
湖北省孝感市2025屆高二上數學期末統(tǒng)考試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設AB是橢圓()的長軸,若把AB一百等分,過每個分點作AB的垂線,交橢圓的上半部分于P1、P2、…、P99,F1為橢圓的左焦點,則的值是()A. B.C. D.2.若是函數的極值點,則函數()A.有最小值,無最大值 B.有最大值,無最小值C.有最小值,最大值 D.無最大值,無最小值3.如圖在平行六面體中,與的交點記為.設,,,則下列向量中與相等的向量是()A. B.C. D.4.函數在上單調遞增,則k的取值范圍是()A B.C. D.5.方程有兩個不同的解,則實數k的取值范圍為()A. B.C. D.6.已知空間向量,,且,則的值為()A. B.C. D.7.雙曲線的焦點到漸近線的距離為()A.1 B.2C. D.8.設,直線與直線平行,則()A. B.C. D.9.已知函數,則的單調遞增區(qū)間為().A. B.C. D.10.已知等比數列滿足,則q=()A.1 B.-1C.3 D.-311.從1,2,3,4,5中任取2個不同的數,兩數和為偶數的概率為()A. B.C. D.12.若直線與直線平行,則()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若、是雙曲線的左右焦點,過的直線與雙曲線的左右兩支分別交于,兩點.若為等邊三角形,則雙曲線的離心率為________.14.雙曲線的焦點在圓上,圓O與雙曲線C的漸近線在第一、四象限分別交于P,Q兩點滿足(其中O是坐標原點),則的面積是_________15.某校開展“讀書月”朗誦比賽,9位評委為選手A給出的分數如右邊莖葉圖所示.記分員在去掉一個最高分和一個最低分后算得平均分為91,復核員在復核時發(fā)現有一個數字(莖葉圖中的x)無法看清,若記分員計算無誤,則數字x應該是___________.選手A87899924x1516.已知點和,M是橢圓上一動點,則的最大值為________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知拋物線的焦點為F,點是拋物線上的點,且.(1)求拋物線方程;(2)直線與拋物線交于、兩點,且.求△OPQ面積的最小值.18.(12分)設曲線在點(1,0)處的切線方程為.(1)求a,b的值;(2)求證:;(3)當,求a的取值范圍.19.(12分)如圖,已知拋物線的焦點為,點是軸上一定點,過的直線交與兩點.(1)若過的直線交拋物線于,證明縱坐標之積為定值;(2)若直線分別交拋物線于另一點,連接交軸于點.證明:成等比數列.20.(12分)解下列不等式:(1);(2).21.(12分)已知是公差不為0的等差數列,,且成等比數列(1)求數列通項公式;(2)設,求數列的前項和22.(10分)已知直線方程為(1)若直線的傾斜角為,求的值;(2)若直線分別與軸、軸的負半軸交于、兩點,為坐標原點,求面積的最小值及此時直線的方程
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】根據橢圓的定義,寫出,可求出的和,又根據關于縱軸成對稱分布,得到結果詳解】設橢圓右焦點為F2,由橢圓的定義知,2,,,由題意知,,,關于軸成對稱分布,又,故所求的值為故選:D2、A【解析】對求導,根據極值點求參數a,再由導數研究其單調性并判斷其最值情況.【詳解】由題設,且,∴,可得.∴且,當時,遞減;當時,遞增;∴有極小值,無極大值.綜上,有最小值,無最大值.故選:A3、B【解析】利用空間向量的加法和減法法則可得出關于、、的表達式.【詳解】故選:B.4、A【解析】對函數求導,由于函數在給定區(qū)間上單調遞增,故恒成立.【詳解】由題意可得,,,,.故選:A5、C【解析】轉化為圓心在原點半徑為1的上半圓和表示恒過定點的直線始終有兩個公共點,結合圖形可得答案.【詳解】令,平方得表示圓心在原點半徑為1的上半圓,表示恒過定點的直線,方程有兩個不同的解即半圓和直線要始終有兩個公共點,如圖圓心到直線的距離為,解得,當直線經過時由得,當直線經過時由得,所以實數k的取值范圍為.故選:C.6、B【解析】根據向量垂直得,即可求出的值.【詳解】.故選:B.7、A【解析】分別求出雙曲線的焦點坐標和漸近線方程,利用點到直線的距離公式求出結果【詳解】雙曲線中,焦點坐標為漸近線方程為:∴雙曲線的焦點到漸近線的距離故選:A8、C【解析】根據直線平行求解即可.【詳解】因為直線與直線平行,所以,即,經檢驗,滿足題意.故選:C9、D【解析】利用導數分析函數單調性【詳解】的定義域為,,令,解得故的單調遞增區(qū)間為故選:D10、C【解析】根據已知條件,利用等比數列的基本量列出方程,即可求得結果.【詳解】因為,故可得;解得.故選:C.11、B【解析】利用列舉法,結合古典概型概率計算公式,計算出所求概率.【詳解】從中任取個不同的數的方法有,共種,其中和為偶數的有共種,所以所求的概率為.故選:B【點睛】本小題主要考查古典概型概率計算,屬于基礎題.12、D【解析】根據兩直線平行可得出關于實數的等式,由此可解得實數的值.【詳解】由于直線與直線平行,則,解得.故選:D.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】根據雙曲線的定義算出△AF1F2中,|AF1|=2a,|AF2|=4a,由△ABF2是等邊三角形得∠F1AF2=120°,利用余弦定理算出c=a,結合雙曲線離心率公式即可算出雙曲線C的離心率.【詳解】因為△ABF2為等邊三角形,可知,A為雙曲線上一點,,B為雙曲線上一點,則,即,∴由,則,已知,在△F1AF2中應用余弦定理得:,得c2=7a2,則e2=7?e=故答案為:【點睛】方法點睛:求雙曲線的離心率,常常不能經過條件直接得到a,c的值,這時可將或視為一個整體,把關系式轉化為關于或的方程,從而得到離心率的值.14、【解析】根據雙曲線的焦點在圓上可求出的值,設線段與軸的交點坐標為,進而根據求出的坐標,代入圓中,求出的值,即可求出結果.【詳解】因為雙曲線的焦點在圓上,所以,設線段與軸的交點坐標為,結合雙曲線與圓的對稱性可知為線段的中點,又因為,即,且,則,又因為直線的方程為,所以,又因為在圓上,所以,又因為,則,所以,從而,故,故答案為:.15、4【解析】根據題意分和兩種情況討論,再根據平均分公式計算即可得出答案.【詳解】解:當時,則去掉的最低分數為87分,最高分數為95分,則,所以,當時,則去掉的最低分數為87分,最高分數為分,則平均分為,與題意矛盾,綜上.故答案為:4.16、【解析】由題設條件可知,.當M在直線與橢圓交點上時,在第一象限交點時有,在第三象限交點時有.顯然當M在直線與橢圓第三象限交點時有最大值,其最大值.由此能夠求出的最大值.【詳解】解:A為橢圓右焦點,設左焦點為,則由橢圓定義,于是.當M不在直線與橢圓交點上時,M、F、B三點構成三角形,于是,而當M在直線與橢圓交點上時,在第一象限交點時,有,在第三象限交點時有.顯然當M在直線與橢圓第三象限交點時有最大值,其最大值為.故答案為:.【點睛】本題考查橢圓的基本性質,解題時要熟練掌握基本公式.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】(1)根據拋物線的定義列方程,由此求得,進而求得拋物線方程.(2)聯(lián)立直線的方程和拋物線方程,寫出根與系數關系,結合求得的值,求得三角形面積的表達式,進而求得面積的最小值.【詳解】(1)依題意.(2)與聯(lián)立得,,得,又,又m>0,m=4.且,,當k=0時,S最小,最小值為.18、(1)(2)證明見解析(3)【解析】(1)求導,根據導數的幾何意義,令x=1處的切線的斜率等1,結合,即可求得a和b的值;(2)利用(1)的結論,構造函數,求求導數,判斷單調性,求出最小值即可證明;(3)根據條件構造函數,求出其導數,分類討論導數的值的情況,根據單調性,判斷函數的最小值情況,即可求得答案.【小問1詳解】由題意知:,因為曲線在點(1,0)處的切線方程為,故,即;【小問2詳解】證明:由(1)知:,令,則,當時,,單調遞減,當時,,單調遞增,所以當時,取得極小值,也即最小值,最小值為,故,即成立;【小問3詳解】當,即,(),設,(),則,當時,由得,此時,此時在時單調遞增,,適合題意;當時,,此時在時單調遞增,,適合題意;當時,,此時,此時在時單調遞增,,適合題意;當時,,此時在內,,在內,,故,顯然時,,不滿足當恒成立,綜上述:.19、(1)證明見解析(2)證明見解析【解析】(1)設直線方程為,聯(lián)立拋物線方程用韋達定理可得;(2)借助(1)中結論可得各點縱坐標之積,進而得到F、T、Q三點橫坐標關系,然后可證.【小問1詳解】顯然過T的直線斜率不為0,設方程為,聯(lián)立,消元得到,.【小問2詳解】由(1)設,因為AP與BQ均過T(t,0)點,可知,又AB過F點,所以,如圖:,,設M(n,0),由(1)類比可得.,且,成等比數列.20、(1)(2)【解析】(1)利用十字相乘解題即可(2)利用分子分母同號為正,異號為負思想,注意討論分母不為0【小問1詳解】由題,即,解得或,即;【小問2詳解】由題,解得或,即21、(1)(2)【解析】(1)設等差數列的公差為,依題意得到方程組,解得、,即可求出數列的通項公式;(2)由(1)可得,再利用分組求和法求和即可;【小問1詳解】解:設等差數列的公差為,由題意,得,解得或,因為,所以【小問2詳解】解:當
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度采光井玻璃更換與維護合同3篇
- 二零二五年度氣象站氣象數據安全保障合同3篇
- 2024蘇州租賃合同含寵物飼養(yǎng)及養(yǎng)護服務條款3篇
- 2024版民間借貸合同范例
- 2025年度茶樓裝修工程消防設施合同范本4篇
- 2025年度10kv配電站施工期間質量檢測與驗收合同正規(guī)范本3篇
- 2025年度教育機構LOGO知識產權許可合同范本3篇
- 2025年度智能物流系統(tǒng)全國代理銷售合同4篇
- 2025年度廠房施工合同施工人員培訓協(xié)議(新版)3篇
- 2025年度智能工廠改造裝修合同模板3篇
- 小學四年級數學知識點總結(必備8篇)
- GB/T 893-2017孔用彈性擋圈
- GB/T 11072-1989銻化銦多晶、單晶及切割片
- GB 15831-2006鋼管腳手架扣件
- 醫(yī)學會自律規(guī)范
- 商務溝通第二版第4章書面溝通
- 950項機電安裝施工工藝標準合集(含管線套管、支吊架、風口安裝)
- 微生物學與免疫學-11免疫分子課件
- 《動物遺傳育種學》動物醫(yī)學全套教學課件
- 弱電工程自檢報告
- 民法案例分析教程(第五版)完整版課件全套ppt教學教程最全電子教案
評論
0/150
提交評論