北京八中怡海分校2025屆高二數(shù)學(xué)第一學(xué)期期末統(tǒng)考試題含解析_第1頁
北京八中怡海分校2025屆高二數(shù)學(xué)第一學(xué)期期末統(tǒng)考試題含解析_第2頁
北京八中怡海分校2025屆高二數(shù)學(xué)第一學(xué)期期末統(tǒng)考試題含解析_第3頁
北京八中怡海分校2025屆高二數(shù)學(xué)第一學(xué)期期末統(tǒng)考試題含解析_第4頁
北京八中怡海分校2025屆高二數(shù)學(xué)第一學(xué)期期末統(tǒng)考試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

北京八中怡海分校2025屆高二數(shù)學(xué)第一學(xué)期期末統(tǒng)考試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.方程與的曲線在同一坐標(biāo)系中的示意圖應(yīng)是()A. B.C. D.2.已知中心在坐標(biāo)原點(diǎn),焦點(diǎn)在軸上的雙曲線的離心率為,則其漸近線方程為()A. B.C. D.3.是雙曲線:上一點(diǎn),已知,則的值()A. B.C.或 D.4.已知數(shù)列的前n項(xiàng)和為,則“數(shù)列是等比數(shù)列”為“存在,使得”的()A.既不充分也不必要條件 B.必要不充分條件C.充要條件 D.充分不必要條件5.“且”是“”的()A.充分不必要條件 B.必要不充分條件C充要條件 D.既不充分也不必要條件6.已知橢圓的長軸長為10,焦距為8,則該橢圓的短軸長等于()A.3 B.6C.8 D.127.某企業(yè)為節(jié)能減排,用萬元購進(jìn)一臺(tái)新設(shè)備用于生產(chǎn).第一年需運(yùn)營費(fèi)用萬元,從第二年起,每年運(yùn)營費(fèi)用均比上一年增加萬元,該設(shè)備每年生產(chǎn)的收入均為萬元.設(shè)該設(shè)備使用了年后,年平均盈利額達(dá)到最大值(盈利額等于收入減去成本),則等于()A. B.C. D.8.橢圓的焦點(diǎn)為F1,F(xiàn)2,點(diǎn)P在橢圓上,若|PF1|=4,則∠F1PF2的余弦值為A. B.C. D.9.已知點(diǎn),,則經(jīng)過點(diǎn)且經(jīng)過線段AB的中點(diǎn)的直線方程為()A. B.C. D.10.已知p、q是兩個(gè)命題,若“(¬p)∨q”是假命題,則()A.p、q都是假命題 B.p、q都是真命題C.p是假命題q是真命題 D.p是真命題q是假命題11.若命題p為真命題,命題q為假命題,則下列命題為真命題的是()A. B.C. D.12.已知f(x)=x3+(a-1)x2+x+1沒有極值,則實(shí)數(shù)a的取值范圍是()A.[0,1] B.(-∞,0]∪[1,+∞)C.[0,2] D.(-∞,0]∪[2,+∞)二、填空題:本題共4小題,每小題5分,共20分。13.一道數(shù)學(xué)難題,在半小時(shí)內(nèi),甲能解決的概率是,乙能解決的概率是,兩人試圖獨(dú)立地在半小時(shí)內(nèi)解決它,則問題得到解決的概率是________.14.已知雙曲線的左,右焦點(diǎn)分別為,,右焦點(diǎn)到一條漸近線的距離是,則其離心率的值是______;若點(diǎn)P是雙曲線C上一點(diǎn),滿足,,則雙曲線C的方程為______15.如圖,在棱長為2的正方體中,E為BC的中點(diǎn),點(diǎn)P在線段上,分別記四棱錐,的體積為,,則的最小值為______16.隨機(jī)變量X的取值為0,1,2,若,,則_________三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知拋物線的焦點(diǎn)為,點(diǎn)在拋物線上,且的面積為(為坐標(biāo)原點(diǎn))(1)求拋物線的標(biāo)準(zhǔn)方程;(2)點(diǎn)、是拋物線上異于原點(diǎn)的兩點(diǎn),直線、的斜率分別為、,若,求證:直線恒過定點(diǎn)18.(12分)已知,C是圓B:(B是圓心)上一動(dòng)點(diǎn),線段AC的垂直平分線交BC于點(diǎn)P(1)求動(dòng)點(diǎn)P的軌跡的方程;(2)設(shè)E,F(xiàn)為與x軸的兩交點(diǎn),Q是直線上動(dòng)點(diǎn),直線QE,QF分別交于M,N兩點(diǎn),求證:直線MN過定點(diǎn)19.(12分)已知命題p:點(diǎn)在橢圓內(nèi);命題q:函數(shù)在R上單調(diào)遞增(1)若p為真命題,求m的取值范圍;(2)若為假命題,求實(shí)數(shù)m的取值范圍20.(12分)如圖,水平桌面上放置一個(gè)棱長為4的正方體的水槽,水面高度恰為正方體棱長的一半,在該正方體側(cè)面有一個(gè)小孔(小孔的大小忽略不計(jì))E,E點(diǎn)到CD的距離為3,若該正方體水槽繞CD傾斜(CD始終在桌面上).(1)證明圖2中的水面也是平行四邊形;(2)當(dāng)水恰好流出時(shí),側(cè)面與桌面所成的角的大小.21.(12分)已知命題;命題.(1)若p是q的充分條件,求m的取值范圍;(2)當(dāng)時(shí),已知是假命題,是真命題,求x的取值范圍.22.(10分)已知圓C的圓心在直線上,且圓C經(jīng)過,兩點(diǎn).(1)求圓C的標(biāo)準(zhǔn)方程.(2)設(shè)直線與圓C交于A,B(異于坐標(biāo)原點(diǎn)O)兩點(diǎn),若以AB為直徑的圓過原點(diǎn),試問直線l是否過定點(diǎn)?若是,求出定點(diǎn)坐標(biāo);若否,請說明理由.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】方程即,表示拋物線,方程表示橢圓或雙曲線,當(dāng)和同號時(shí),拋物線開口向左,方程表示焦點(diǎn)在軸的橢圓,無符合條件的選項(xiàng);當(dāng)和異號時(shí),拋物線開口向右,方程表示雙曲線,本題選擇A選項(xiàng).2、A【解析】根據(jù)離心率求出的值,再根據(jù)漸近線方程求解即可.【詳解】因雙曲線焦點(diǎn)在軸上,所以漸近線方程為:,又因?yàn)殡p曲線離心率為,且,所以,解得,即漸近線方程為:.故選:A.3、B【解析】根據(jù)雙曲線定義,結(jié)合雙曲線上的點(diǎn)到焦點(diǎn)的距離的取值范圍,即可求解.【詳解】雙曲線方程為:,是雙曲線:上一點(diǎn),,,或,又,.故選:B4、D【解析】由充分必要條件的定義,結(jié)合等比數(shù)列的通項(xiàng)公式和求和公式,以及利用特殊數(shù)列的分法,即可求解.【詳解】由題意,數(shù)列是等比數(shù)列,設(shè)等比數(shù)列的公比為,則,所以存在,使得,即充分性成立;若存在,使得,可取,即,可得,當(dāng),可得,此時(shí)數(shù)列不是等比數(shù)列,即必要性不成立,所以數(shù)列是等比數(shù)列為存在,使得的充分不必要條件.故選:D.5、A【解析】按照充分必要條件的判斷方法判斷,“且”能否推出“”,以及“”能否推出“且”,判斷得到正確答案,【詳解】當(dāng)且時(shí),成立,反過來,當(dāng)時(shí),例:,不能推出且.所以“且”是“”的充分不必要條件.故選:A【點(diǎn)睛】本題考查充分不必要條件的判斷,重點(diǎn)考查基本判斷方法,屬于基礎(chǔ)題型.6、B【解析】根據(jù)橢圓中的關(guān)系即可求解.【詳解】橢圓的長軸長為10,焦距為8,所以,,可得,,所以,可得,所以該橢圓的短軸長,故選:B.7、D【解析】設(shè)該設(shè)備第年的營運(yùn)費(fèi)為萬元,利用為等差數(shù)列可求年平均盈利額,利用基本不等式可求其最大值.【詳解】設(shè)該設(shè)備第年的營運(yùn)費(fèi)為萬元,則數(shù)列是以2為首項(xiàng),2為公差的等差數(shù)列,則,則該設(shè)備使用年的營運(yùn)費(fèi)用總和為,設(shè)第n年的盈利總額為,則,故年平均盈利額為,因?yàn)?,?dāng)且僅當(dāng)時(shí),等號成立,故當(dāng)時(shí),年平均盈利額取得最大值4.故選:D.【點(diǎn)睛】本題考查等差數(shù)列在實(shí)際問題中的應(yīng)用,注意根據(jù)題設(shè)條件概括出數(shù)列的類型,另外用基本不等式求最值時(shí)注意檢驗(yàn)等號成立的條件.8、B【解析】根據(jù)題意,橢圓的標(biāo)準(zhǔn)方程為,其中則,則有|F1F2|=2,若a=3,則|PF1|+|PF2|=2a=6,又由|PF1|=4,則|PF2|=6-|PF1|=2,則cos∠F1PF2==.故選B9、C【解析】求AB的中點(diǎn)坐標(biāo),根據(jù)直線所過的兩點(diǎn)坐標(biāo)求直線方程即可.【詳解】由已知,AB中點(diǎn)為,又,∴所求直線斜率為,故直線方程為,即故選:C.10、D【解析】由已知可得¬p,q都是假命題,從而可分析判斷各選項(xiàng)【詳解】∵“(¬p)∨q”是假命題,∴¬p,q都是假命題,∴p真,q假,故選:D.11、B【解析】根據(jù)邏輯聯(lián)結(jié)詞“且”,一假則假,對四個(gè)選項(xiàng)一一判斷直接即可判斷.【詳解】邏輯聯(lián)結(jié)詞“且”,一假則假.因?yàn)槊}p為真命題,命題q為假命題,所以為假命題,為真命題.所以,為假,故A錯(cuò)誤;為真,故B正確;為假,故C錯(cuò)誤;為假,故D錯(cuò)誤.故選:B12、C【解析】求導(dǎo)得,再解不等式即得解.【詳解】由得,根據(jù)題意得,解得故選:C二、填空題:本題共4小題,每小題5分,共20分。13、【解析】分甲解決乙不能解決,甲不能解決乙能解決,甲能解決乙也能解決三類,利用獨(dú)立事件的概率求解.【詳解】因?yàn)榧啄芙鉀Q的概率是,乙能解決的概率是,所以問題得到解決的概率是,故答案為:14、①.##1.5②.【解析】求得焦點(diǎn)到漸近線的距離可得,計(jì)算即可求得離心率,由雙曲線的定義可求得,計(jì)算即可得出結(jié)果.【詳解】雙曲線的漸近線方程為,即,焦點(diǎn)到漸近線的距離為,又,,,,.雙曲線上任意一點(diǎn)到兩焦點(diǎn)距離之差的絕對值為,即,,即,解得:,由,解得:,.雙曲線C的方程為.故答案為:;.15、【解析】設(shè),用參數(shù)表示目標(biāo)函數(shù),利用均值不等式求最值即可.【詳解】取線段AD中點(diǎn)為F,連接EF、D1F,過P點(diǎn)引于M,于N,則平面,平面,則,∴,設(shè),則,,即,,∴,當(dāng)且僅當(dāng)時(shí),等號成立,故答案為:16、##0.4【解析】設(shè)出概率,利用期望求出相應(yīng)的概率,進(jìn)而利用求方差公式進(jìn)行求解.【詳解】設(shè),則,從而,解得:,所以故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)證明見解析.【解析】(1)由點(diǎn)在拋物線上可得出,再利用三角形的面積公式可得出關(guān)于的等式,解出正數(shù)的值,即可得出拋物線的標(biāo)準(zhǔn)方程;(2)設(shè)點(diǎn)、,利用斜率公式結(jié)合已知條件可得出的值,分析可知直線不與軸垂直,可設(shè)直線的方程為,將該直線方程與拋物線的方程聯(lián)立,利用韋達(dá)定理求出的值,即可得出結(jié)論.【小問1詳解】解:拋物線的焦點(diǎn)為,由已知可得,則,,,解得,因此,拋物線的方程為.【小問2詳解】證明:設(shè)點(diǎn)、,則,可得.若直線軸,則該直線與拋物線只有一個(gè)交點(diǎn),不合乎題意.設(shè)直線的方程為,聯(lián)立,可得,由韋達(dá)定理可得,可得,此時(shí),合乎題意.所以,直線的方程為,故直線恒過定點(diǎn).18、(1)(2)證明見解析【解析】(1)根據(jù),利用橢圓的定義求解;(2)(解法1)設(shè),得到,的方程,與橢圓方程聯(lián)立,求得M,N的坐標(biāo),寫出直線的方程求解;(解法2)上同解法1,由對稱性分析知?jiǎng)又本€MN所過定點(diǎn)一定在x軸上,設(shè)所求定點(diǎn)為,由C,D,T三點(diǎn)共線,然后由求解;(解法3)設(shè),由,,設(shè):,:,其中,與橢圓方程聯(lián)立,整理得,由F,M,N三點(diǎn)的橫坐標(biāo)為該方程的三個(gè)根,得到:求解.【小問1詳解】解:由題知,則,由橢圓的定義知?jiǎng)狱c(diǎn)P的軌跡為以A,B為焦點(diǎn),6為長軸長的橢圓,所以軌跡的方程為【小問2詳解】(解法1)易知E,F(xiàn)為橢圓的長軸兩端點(diǎn),不妨設(shè),,設(shè),則,,于是:,:,聯(lián)立得,解得或,易得,同理當(dāng),即時(shí),:;當(dāng)時(shí),有,于是:,即綜上直線MN過定點(diǎn)(解法2)上同解法1,得,,由對稱性分析知?jiǎng)又本€MN所過定點(diǎn)一定在x軸上,設(shè)所求定點(diǎn)為,由C,D,T三點(diǎn)共線,得,即,于是,整理得,由t的任意性知,即,所以直線MN過定點(diǎn)(解法3)設(shè),則,,當(dāng)時(shí),直線MN即為x軸;當(dāng)時(shí),因?yàn)?,所以,則,設(shè):,:,其中,聯(lián)立,得,整理得,易知F,M,N三點(diǎn)的橫坐標(biāo)為該方程的三個(gè)根,所以:,由及的任意性,知直線MN過定點(diǎn)19、(1)(2)【解析】(1)根據(jù)題意列不等式組求解(2)判斷的真假性后分別求解【小問1詳解】由題意得,解得且故m的取值范圍是【小問2詳解】∵為假命題,∴p和q都是真命題,對于命題q,由題意得:恒成立,∴,∴,∴,解得故m的取值范圍是20、(1)證明見解析(2)【解析】(1)由水的體積得出,進(jìn)而得出,,從而證明圖2中的水面也是平行四邊形;(2)在平面內(nèi),過點(diǎn)作,交于,由四邊形是平行四邊形,得出側(cè)面與桌面所成的角即側(cè)面與水面所成的角,再由直角三角形的邊角關(guān)系得出其夾角.【小問1詳解】由題意知,水的體積為,如圖所示,設(shè)正方體水槽傾斜后,水面分別與棱,,,交于,,,,則,水的體積為,,即,,故四邊形為平行四邊形,即,且又,,,四邊形為平行四邊形,即圖2中的水面也是平行四邊形;【小問2詳解】在平面內(nèi),過點(diǎn)作,交于,則四邊形是平行四邊形,,,側(cè)面與桌面所成的角即側(cè)面與水面所成的角,即側(cè)面與平面所成的角,即為所求,而,在中,,側(cè)面與桌面所成角的為21、(1);(2).【解析】(1)解不等式組即得解;(2)由題得p、q一真一假,分兩種情況討論得解.【小問1詳解】解:由題意知p是q的充分條件,即p集合包含于q集合,有;【小問2

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論