![浙江省錢清中學2025屆高二數(shù)學第一學期期末質(zhì)量檢測模擬試題含解析_第1頁](http://file4.renrendoc.com/view7/M02/0E/10/wKhkGWcGzdyAZyyXAAG9WNwlyKg465.jpg)
![浙江省錢清中學2025屆高二數(shù)學第一學期期末質(zhì)量檢測模擬試題含解析_第2頁](http://file4.renrendoc.com/view7/M02/0E/10/wKhkGWcGzdyAZyyXAAG9WNwlyKg4652.jpg)
![浙江省錢清中學2025屆高二數(shù)學第一學期期末質(zhì)量檢測模擬試題含解析_第3頁](http://file4.renrendoc.com/view7/M02/0E/10/wKhkGWcGzdyAZyyXAAG9WNwlyKg4653.jpg)
![浙江省錢清中學2025屆高二數(shù)學第一學期期末質(zhì)量檢測模擬試題含解析_第4頁](http://file4.renrendoc.com/view7/M02/0E/10/wKhkGWcGzdyAZyyXAAG9WNwlyKg4654.jpg)
![浙江省錢清中學2025屆高二數(shù)學第一學期期末質(zhì)量檢測模擬試題含解析_第5頁](http://file4.renrendoc.com/view7/M02/0E/10/wKhkGWcGzdyAZyyXAAG9WNwlyKg4655.jpg)
版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
浙江省錢清中學2025屆高二數(shù)學第一學期期末質(zhì)量檢測模擬試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.函數(shù)的大致圖象是()A. B.C. D.2.已知,,,則,,的大小關系是A. B.C. D.3.已知,,若直線上存在點P,滿足,則l的傾斜角的取值范圍是()A. B.C D.4.如圖,從氣球A上測得正前方的河流的兩岸B,C的俯角分別為、,其中,.如果這時氣球的高度,則河流的寬度BC為()A. B.C. D.5.已知數(shù)列滿足,且,為其前n項的和,則()A. B.C. D.6.設等差數(shù)列的前項和為,若,則的值為()A.28 B.39C.56 D.1177.過雙曲線(,)的左焦點作圓:的兩條切線,切點分別為,,雙曲線的左頂點為,若,則雙曲線的漸近線方程為()A. B.C. D.8.五行學說是中華民族創(chuàng)造的哲學思想.古代先民認為,天下萬物皆由五種元素組成,分別是金、木、水、火、土,彼此之間存在如圖所示的相生相克關系.若從金、木、水、火、土五種元素中任取兩種,則這兩種元素恰是相生關系的概率是()A. B.C. D.9.某公司門前有一排9個車位的停車場,從左往右數(shù)第三個,第七個車位分別停著A車和B車,同時進來C,D兩車.在C,D不相鄰的情況下,C和D至少有一輛與A和B車相鄰的概率是()A. B.C. D.10.已知一個幾何體的三視圖如圖,則其外接球的體積為()A. B.C. D.11.如圖,樣本和分別取自兩個不同的總體,它們的平均數(shù)分別為和,標準差分別為和,則()AB.C.D.12.以下命題是真命題的是()A.方差和標準差都是刻畫樣本數(shù)據(jù)分散程度的統(tǒng)計量B.若m為數(shù)據(jù)(i=1,2,3,····,2021)的中位數(shù),則C.回歸直線可能不經(jīng)過樣本點的中心D.若“”為假命題,則均為假命題二、填空題:本題共4小題,每小題5分,共20分。13.已知點為雙曲線的左焦點,過原點的直線l與雙曲線C相交于P,Q兩點.若,則______14.已知函數(shù),則f(e)=__.15.將數(shù)列{n}按“第n組有n個數(shù)”的規(guī)則分組如下:(1),(2,3),(4,5,6),…,則第22組中的第一個數(shù)是_________16.橢圓的離心率是______三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓C:,右焦點為F(,0),且離心率為(1)求橢圓C的標準方程;(2)設M,N是橢圓C上不同的兩點,且直線MN與圓O:相切,若T為弦MN的中點,求|OT||MN|的取值范圍18.(12分)如圖,在四棱錐中,為平行四邊形,,平面,且,點是的中點.(1)求證:平面;(2)在線段上(不含端點)是否存在一點,使得二面角的余弦值為?若存在,確定的位置;若不存在,請說明理由.19.(12分)已知橢圓上的點到焦點的最大距離為3,離心率為.(1)求橢圓的標準方程;(2)設直線與橢圓交于不同兩點,與軸交于點,且滿足,若,求實數(shù)的取值范圍.20.(12分)2021年國慶期間,某電器商場為了促銷,給出了兩種優(yōu)惠方案,顧客只能選擇其中的一種,方案一:每消費滿8千元,可減8百元.方案二:消費金額超過8千元(含8千元),可抽取小球三次,其規(guī)則是依次從裝有2個紅色小球、2個黃色小球的一號箱子,裝有2個紅色小球、2個黃色小球的二號箱子,裝有1個紅色小球、3個黃色小球的三號箱子各抽一個小球(這些小球除顏色外完全相同),其優(yōu)惠情況為:若抽出3個紅色小球則打6折;若抽出2個紅色小球則打7折;若抽出1個紅色小球則打8折;若沒有抽出紅色小球則不打折.(1)若有兩名顧客恰好消費8千元,他們都選中第二方案,求至少有一名顧客比選擇方案一更優(yōu)惠的概率;(2)若你朋友在該商場消費了1萬元,請用所學知識幫助你朋友分析一下應選擇哪種付款方案.21.(12分)兩人下棋,每局均無和棋且獲勝的概率為,某一天這兩個人要進行一場五局三勝的比賽,勝者贏得2700元獎金,(1)分別求以獲勝、以獲勝的概率;(2)若前兩局雙方戰(zhàn)成,后因為其他要事而終止比賽,間,怎么分獎金才公平?22.(10分)在數(shù)列中,,是與的等差中項,(1)求證:數(shù)列是等差數(shù)列(2)令,求數(shù)列的前項的和
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】由得出函數(shù)是奇函數(shù),再求得,,運用排除法可得選項.【詳解】法一:由函數(shù),則,所以函數(shù)為奇函數(shù),圖象關于原點對稱,所以排除B;因為,所以排除D;因為,所以排除C,故選:A.【點睛】思路點睛:函數(shù)圖象的辨識可從以下方面入手:(1)從函數(shù)的定義域,判斷圖象的左右位置;從函數(shù)的值域,判斷圖象的上下位置(2)從函數(shù)的單調(diào)性,判斷圖象的變化趨勢;(3)從函數(shù)的奇偶性,判斷圖象的對稱性;(4)從函數(shù)的特征點,排除不合要求的圖象.2、B【解析】若對數(shù)式的底相同,直接利用對數(shù)函數(shù)的性質(zhì)判斷即可,若底不同,則根據(jù)結構構造函數(shù),利用函數(shù)的單調(diào)性判斷大小【詳解】對于的大?。?,,明顯;對于的大?。簶嬙旌瘮?shù),則,當時,在上單調(diào)遞增,當時,在上單調(diào)遞減,即對于的大?。海?,,故選B【點睛】將兩兩變成結構相同的對數(shù)形式,然后利用對數(shù)函數(shù)的性質(zhì)判斷,對于結構類似的,可以通過構造函數(shù)來來比較大小,此題是一道中等難度的題目3、A【解析】根據(jù)題意,求得直線恒過的定點,數(shù)形結合只需求得線段與直線有交點時的斜率,結合斜率和傾斜角的關系即可求得結果.【詳解】對直線,變形為,故其恒過定點,若直線存在點P,滿足,只需直線與線段有交點即可.數(shù)形結合可知,當直線過點時,其斜率取得最大值,此時,對應傾斜角;當直線過點時,其斜率取得最小值,此時,對應傾斜角為.根據(jù)斜率和傾斜角的關系,要滿足題意,直線的傾斜角的范圍為:.故選:A.4、D【解析】由題意得,,,然后在和求出,從而可求出的值【詳解】如圖,由題意得,,,在中,,在中,,所以,故選:D5、B【解析】根據(jù)等比數(shù)列的前n項和公式即可求解.【詳解】由題可知是首項為2,公比為3的等比數(shù)列,則.故選:B.6、B【解析】由已知結合等差數(shù)列的求和公式及等差數(shù)列的性質(zhì)即可求解.【詳解】因為等差數(shù)列中,,則.故選:B.7、C【解析】根據(jù),,可以得到,從而得到與的關系式,再由,,的關系,進而可求雙曲線的漸近線方程【詳解】解:由,,則是圓的切線,,,,所以,因為雙曲線的漸近線方程為,即為故選:C8、C【解析】先計算從金、木、水、火、土五種元素中任取兩種的所有基本事件數(shù),再計算其中兩種元素恰是相生關系的基本事件數(shù),利用古典概型概率公式,即得解【詳解】由題意,從金、木、水、火、土五種元素中任取兩種,共有(金,木),(金,水),(金,火),(金,土),(木,水),(木,火),(木土),(水,火),(水,土),(火,土),共10個基本事件,其中兩種元素恰是相生關系包含(金,木),(木,土),(土,水),(水,火)(火,金)共5個基本事件,所以所求概率.故選:C9、B【解析】先求出基本事件總數(shù),和至少有一輛與和車相鄰的對立事件是和都不與和車相鄰,由此能求出和至少有一輛與和車相鄰的概率【詳解】解:某公司門前有一排9個車位的停車場,從左往右數(shù)第三個,第七個車位分別停著車和車,同時進來,兩車,在,不相鄰的條件下,基本事件總數(shù),和至少有一輛與和車相鄰的對立事件是和都不與和車相鄰,和至少有一輛與和車相鄰的概率:故選:B10、D【解析】根據(jù)三視圖還原幾何體,將幾何體補成長方體,計算出幾何體的外接球直徑,結合球體體積公式即可得解.【詳解】根據(jù)三視圖還原原幾何體,如下圖所示:由圖可知,該幾何體三棱錐,且平面,將三棱錐補成長方體,所以,三棱錐的外接球直徑為,故,因此,該幾何體的外接球的體積為.故選:D【點睛】方法點睛:空間幾何體與球接、切問題的求解方法(1)求解球與棱柱、棱錐接、切問題時,一般過球心及接、切點作截面,把空間問題轉化為平面圖形與圓的接、切問題,再利用平面幾何知識尋找?guī)缀沃性亻g的關系求解(2)若球面上四點P,A,B,C構成的三條線段兩兩互相垂直,一般把有關元素“補形”成為一個球內(nèi)接長方體,利用求解11、B【解析】直接根據(jù)圖表得到答案.【詳解】根據(jù)圖表:樣本數(shù)據(jù)均小于等于10,樣本數(shù)據(jù)均大于等于10,故;樣本數(shù)據(jù)波動大于樣本數(shù)據(jù),故.故選:B.12、A【解析】A:根據(jù)方差和標準差的定義進行判斷;B:根據(jù)中位數(shù)的定義判斷;C:根據(jù)回歸直線必過樣本中心點進行判斷;D:根據(jù)“且”命題真假關系進行判斷.【詳解】對于A,方差和標準差都是刻畫樣本數(shù)據(jù)分散程度的統(tǒng)計量,故A正確;對于B,若為數(shù)據(jù),2,3,,的中位數(shù),需先將數(shù)據(jù)從小到大排列,此時數(shù)據(jù)里面之間的數(shù)順序可能發(fā)生變化,則為排序后的第1010個數(shù)據(jù)的值,這個數(shù)不一定是原來的,故B錯誤;對于C,回歸直線一定經(jīng)過樣本點的中心,,故C錯誤;對于D,若“”為假命題,則、中至少有一個是假命題,故D錯誤;故選:A二、填空題:本題共4小題,每小題5分,共20分。13、7【解析】先證明四邊形是平行四邊形,再根據(jù)雙曲線的定義可求解.【詳解】由雙曲線的對稱性,可知,又,所以四邊形是平行四邊形,所以,由,可知點在雙曲線的左支,如下圖所示:由雙曲線定義有,又,所以.故答案為:14、【解析】由導數(shù)得出,再求.【詳解】∵,∴,,解得,,,故答案為:.15、【解析】由已知,第組中最后一個數(shù)即為前組數(shù)的個數(shù)和,由此可求得第21組的最后一個數(shù),從而就可得第22組的第一個數(shù).【詳解】由條件可知,第21組的最后一個數(shù)為,所以第22組的第1個數(shù)為.故答案為:16、【解析】求出、、的值,即可得出橢圓的離心率.【詳解】在橢圓中,,,,因此,橢圓的離心率是.故答案為:.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2)[,3].【解析】(1)由題可得,即求;(2)當直線的斜率不存在或為0,易求,當直線MN斜率存在且不為0時,設直線MN的方程為:,利用直線與圓相切可得,再聯(lián)立橢圓方程并應用韋達定理求得,然后利用基本不等式即得.【小問1詳解】由題可得,∴??=2,??=∴橢圓C的方程為:;小問2詳解】當直線MN斜率為0時,不妨取直線MN為??=,則,此時,則;當直線MN斜率不存在,不妨取直線MN為x=,則,此時,則;當直線MN斜率存在且不為0時,設直線MN的方程為:,,因為直線MN與圓相切,所以,即,又因為直線MN與橢圓C交于M,N兩點:由,得,則,所以MN中點T坐標為,則,,所以又,當且僅當,即取等號,∴|OT||MN|;綜上所述:|OT|?|MN|的取值范圍為[,3].18、(1)見解析(2)存在,【解析】(1)連接交于點,由三角形中位線性質(zhì)知,由線面平行判定定理證得結論;(2)以為原點建立空間直角坐標系,假設,可用表示出點坐標;根據(jù)二面角的向量求法可根據(jù)二面角的余弦值構造出關于的方程,從而解得結果.【詳解】(1)連接交于點,連接,四邊形為平行四邊形,為中點,又為中點,,平面,平面,平面;(2)平面,,兩兩互相垂直,則以為坐標原點,可建立如下圖所示的空間直角坐標系:則,,,,,,設,且,則,,即,設平面的法向量,又,,則,令,則,,;設平面的一個法向量,又,,則,令,則,,;,解得:或,二面角的余弦值為,二面角為銳二面角,不滿足題意,舍去,即.在線段上存在點,時,二面角的余弦值為.【點睛】本題考查立體幾何中的線面平行關系的證明、存在性問題的求解;求解存在性問題的關鍵是能夠利用共線向量的方式將所求點坐標表示出來,進而利用二面角的向量求法構造方程;易錯點是忽略二面角的范圍,造成參數(shù)值求解錯誤.19、(1)(2),或【解析】(1)由橢圓的性質(zhì)可知:,解得a和c的值,即可求得橢圓C的標準方程;(2)將直線方程代入橢圓方程,由韋達定理求得:,,λ,根據(jù)向量的坐標坐標,(x1+1,y1)=λ(x2+1,y2),求得,由,代入即可求得實數(shù)m的取值范圍【詳解】(1)由已知,解得,所以,所以橢圓的標準方程為.(2)由已知,設,聯(lián)立方程組,消得,由韋達定理得①②因為,所以,所以③,將③代入①②,,消去得,所以.因為,所以,即,解得,所以,或.【點睛】本題考查橢圓的標準方程及簡單性質(zhì),直線與橢圓的位置關系,韋達定理,向量的坐標表示,不等式的解法,考查計算能力,屬于中檔題20、(1)(2)選擇方案二更劃算【解析】(1)要使方案二比方案一優(yōu)惠,則需要抽出至少一個紅球,求出沒有抽出紅色小球的概率,再根據(jù)對立事件的概率公式即可得出答案;(2)若選擇方案一,則需付款(元),若選擇方案二,設付款金額為元,則可取6000,7000,8000,10000,求出對應概率,從而可求得的期望,在比較的期望與9200的大小即可得出結論.【小
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- PTX-PEG-Cy3-生命科學試劑-MCE-5984
- Methyl-lucidenate-L-生命科學試劑-MCE-3864
- 19-R-Hydroxy-prostaglandin-F1α-生命科學試劑-MCE-5137
- 5-Fluoro-PB-22-5-hydroxyquinoline-isomer-生命科學試劑-MCE-6038
- 2-Chloromethyl-3-2-methylphenyl-quinazolin-4-3H-one-生命科學試劑-MCE-5287
- 二零二五年度汽車指標租賃與綠色出行獎勵計劃合同
- 二零二五年度特色門面租賃合同范本
- 2025年度住宅小區(qū)車位租賃及物業(yè)管理服務協(xié)議
- 2025年度試用期勞動合同范本-高科技研發(fā)團隊
- 2025年度電焊工用工技能鑒定與職業(yè)發(fā)展合同書二零二五年度
- 教體局校車安全管理培訓
- 湖北省十堰市城區(qū)2024-2025學年九年級上學期期末質(zhì)量檢測綜合物理試題(含答案)
- 導播理論知識培訓班課件
- 空氣能安裝合同
- 電廠檢修安全培訓課件
- 四大名繡課件-高一上學期中華傳統(tǒng)文化主題班會
- 起重機械生產(chǎn)單位題庫質(zhì)量安全員
- 高中生物選擇性必修1試題
- 電氣工程及其自動化專業(yè)《畢業(yè)設計(論文)及答辯》教學大綱
- 《客艙安全管理與應急處置》課件-第14講 應急撤離
- 危險化學品押運員培訓
評論
0/150
提交評論