陜西省西安市電子科技大學(xué)附屬中學(xué)2025屆高二上數(shù)學(xué)期末學(xué)業(yè)質(zhì)量監(jiān)測試題含解析_第1頁
陜西省西安市電子科技大學(xué)附屬中學(xué)2025屆高二上數(shù)學(xué)期末學(xué)業(yè)質(zhì)量監(jiān)測試題含解析_第2頁
陜西省西安市電子科技大學(xué)附屬中學(xué)2025屆高二上數(shù)學(xué)期末學(xué)業(yè)質(zhì)量監(jiān)測試題含解析_第3頁
陜西省西安市電子科技大學(xué)附屬中學(xué)2025屆高二上數(shù)學(xué)期末學(xué)業(yè)質(zhì)量監(jiān)測試題含解析_第4頁
陜西省西安市電子科技大學(xué)附屬中學(xué)2025屆高二上數(shù)學(xué)期末學(xué)業(yè)質(zhì)量監(jiān)測試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

陜西省西安市電子科技大學(xué)附屬中學(xué)2025屆高二上數(shù)學(xué)期末學(xué)業(yè)質(zhì)量監(jiān)測試題注意事項(xiàng)1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準(zhǔn)考證號(hào)用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認(rèn)真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號(hào)與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項(xiàng)的方框涂滿、涂黑;如需改動(dòng),請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號(hào)等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知A為拋物線C:y2=2px(p>0)上一點(diǎn),點(diǎn)A到C的焦點(diǎn)的距離為12,到y(tǒng)軸的距離為9,則p=()A.2 B.3C.6 D.92.已知數(shù)列的通項(xiàng)公式為,按項(xiàng)的變化趨勢,該數(shù)列是()A.遞增數(shù)列 B.遞減數(shù)列C.擺動(dòng)數(shù)列 D.常數(shù)列3.下列函數(shù)求導(dǎo)錯(cuò)誤的是()A.B.C.D.4.如圖為學(xué)生做手工時(shí)畫的橢圓(其中網(wǎng)格是由邊長為1的正方形組成),它們的離心率分別為,則()A. B.C. D.5.已知函數(shù),那么“”是“在上為增函數(shù)”的A.充分而不必要條件 B.必要而不充分條件C.充分必要條件 D.既不充分也不必要條件6.若平面的一個(gè)法向量為,點(diǎn),,,,到平面的距離為()A.1 B.2C.3 D.47.已知過點(diǎn)的直線與圓相切,且與直線平行,則()A.2 B.1C. D.8.某口罩生產(chǎn)商為了檢驗(yàn)產(chǎn)品質(zhì)量,從總體編號(hào)為001,002,003,…,499,500的500盒口罩中,利用下面的隨機(jī)數(shù)表選取10個(gè)樣本進(jìn)行抽檢,選取方法是從下面的隨機(jī)數(shù)表第1行第5列的數(shù)字開始由左向右讀取,則選出的第3個(gè)樣本的編號(hào)為()160011661490844511657388059052274114862298122208075274958035696832506128473975345862A.148 B.116C.222 D.3259.已知是雙曲線的左、右焦點(diǎn),點(diǎn)P在C上,,則等于()A.2 B.4C.6 D.810.在公比為的等比數(shù)列中,前項(xiàng)和,則()A.1 B.2C.3 D.411.已知函數(shù)與,則它們的圖象交點(diǎn)個(gè)數(shù)為()A.0 B.1C.2 D.不確定12.已知?jiǎng)狱c(diǎn)的坐標(biāo)滿足方程,則的軌跡方程是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.設(shè)是同一個(gè)半徑為4的球的球面上四點(diǎn),為等邊三角形且其面積為,則三棱錐體積的最大值為___________.14.已知拋物線:,過焦點(diǎn)作傾斜角為的直線與交于,兩點(diǎn),,在的準(zhǔn)線上的投影分別為,兩點(diǎn),則__________.15.甲口袋中裝有2個(gè)黑球和1個(gè)白球,乙口袋中裝有3個(gè)白球.現(xiàn)同時(shí)從甲、乙兩口袋中各任取一個(gè)球交換放入對方口袋,共進(jìn)行了2次這樣的操作后,甲口袋中恰有2個(gè)黑球的概率為__________________.16.直線l過拋物線的焦點(diǎn)F,與拋物線交于A,B兩點(diǎn),若,則直線l的斜率為______三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓的左、右焦點(diǎn)分別為,,且橢圓過點(diǎn),離心率,為坐標(biāo)原點(diǎn),過且不平行于坐標(biāo)軸的動(dòng)直線與有兩個(gè)交點(diǎn),,線段的中點(diǎn)為.(1)求的標(biāo)準(zhǔn)方程;(2)記直線斜率為,直線的斜率為,證明:為定值;(3)軸上是否存在點(diǎn),使得為等邊三角形?若存在,求出點(diǎn)的坐標(biāo);若不存在,請說明理由.18.(12分)已知拋物線C:()的焦點(diǎn)為F,原點(diǎn)O關(guān)于點(diǎn)F的對稱點(diǎn)為Q,點(diǎn)關(guān)于點(diǎn)Q的對稱點(diǎn),也在拋物線C上(1)求p的值;(2)設(shè)直線l交拋物線C于不同兩點(diǎn)A、B,直線、與拋物線C的另一個(gè)交點(diǎn)分別為M、N,,,且,求直線l的橫截距的最大值.19.(12分)設(shè)數(shù)列滿足,數(shù)列的前項(xiàng)和為,且(1)求證:數(shù)列為等差數(shù)列,并求的通項(xiàng)公式;(2)設(shè),若對任意正整數(shù),當(dāng)時(shí),恒成立,求實(shí)數(shù)的取值范圍.20.(12分)某市對排污水進(jìn)行綜合治理,征收污水處理費(fèi),系統(tǒng)對各廠一個(gè)月內(nèi)排出的污水量x噸收取的污水處理費(fèi)y元,運(yùn)行程序如圖所示:INPUTxIFTHENELSEIFTHENELSEENDIFENDIFPRINTyEND(1)請寫出y與x的函數(shù)關(guān)系式;(2)求排放污水150噸的污水處理費(fèi)用.21.(12分)2020年3月20日,中共中央、國務(wù)院印發(fā)了《關(guān)于全面加強(qiáng)新時(shí)代大中小學(xué)勞動(dòng)教育的意見》(以下簡稱《意見》),《意見》中確定了勞動(dòng)教育內(nèi)容要求,要求普通高中要注重圍繞豐富職業(yè)體驗(yàn),開展服務(wù)性勞動(dòng)、參加生產(chǎn)勞動(dòng),使學(xué)生熟練掌握一定勞動(dòng)技能,理解勞動(dòng)創(chuàng)造價(jià)值,具有勞動(dòng)自立意識(shí)和主動(dòng)服務(wù)他人、服務(wù)社會(huì)的情懷.我市某中學(xué)鼓勵(lì)學(xué)生暑假期間多參加社會(huì)公益勞動(dòng),在實(shí)踐中讓學(xué)生利用所學(xué)知識(shí)技能,服務(wù)他人和社會(huì),強(qiáng)化社會(huì)責(zé)任感,為了調(diào)查學(xué)生參加公益勞動(dòng)的情況,學(xué)校從全體學(xué)生中隨機(jī)抽取100名學(xué)生,經(jīng)統(tǒng)計(jì)得到他們參加公益勞動(dòng)的總時(shí)間均在15~65小時(shí)內(nèi),其數(shù)據(jù)分組依次為:,,,,,得到頻率分布直方圖如圖所示,其中(1)求,的值,估計(jì)這100名學(xué)生參加公益勞動(dòng)的總時(shí)間的平均數(shù)(同一組中的每一個(gè)數(shù)據(jù)可用該組區(qū)間的中點(diǎn)值代替);(2)學(xué)校要在參加公益勞動(dòng)總時(shí)間在、這兩組的學(xué)生中用分層抽樣的方法選取5人進(jìn)行感受交流,再從這5人中隨機(jī)抽取2人進(jìn)行感受分享,求這2人來自不同組的概率22.(10分)雙曲線,離心率,虛軸長為2(1)求雙曲線的標(biāo)準(zhǔn)方程;(2)經(jīng)過點(diǎn)的直線與雙曲線相交于兩點(diǎn),且為的中點(diǎn),求直線的方程

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】利用拋物線的定義建立方程即可得到答案.【詳解】設(shè)拋物線的焦點(diǎn)為F,由拋物線的定義知,即,解得.故選:C.【點(diǎn)晴】本題主要考查利用拋物線的定義計(jì)算焦半徑,考查學(xué)生轉(zhuǎn)化與化歸思想,是一道容易題.2、B【解析】分析的單調(diào)性,即可判斷和選擇.【詳解】因?yàn)?,顯然隨著的增大,是遞增的,故是遞減的,則數(shù)列是遞減數(shù)列.故選:B.3、C【解析】每一個(gè)選項(xiàng)根據(jù)求導(dǎo)公式及法則來運(yùn)算即可判斷.【詳解】對于A,,正確;對于B,,正確;對于C,,不正確;對于D,,正確.故選:C4、D【解析】根據(jù)圖知分別得到橢圓、、的半長軸和半短軸,再由求解比較即可.【詳解】由圖知橢圓的半長軸和半短軸分別為:,橢圓的半長軸和半短軸分別為:,橢圓的半長軸和半短軸分別為:,所以,,,所以,故選:D5、A【解析】對函數(shù)進(jìn)行求導(dǎo)得,進(jìn)而得時(shí),,在上為增函數(shù),然后判斷充分性和必要性即可.【詳解】解:因?yàn)榈亩x域是,所以,當(dāng)時(shí),,在上為增函數(shù).所以在上為增函數(shù),是充分條件;反之,在上為增函數(shù)或,不是必要條件.故選:A.【點(diǎn)睛】本題主要考查充分條件和必要條件的判斷,屬于中檔題.6、B【解析】求出,點(diǎn)A到平面的距離:,由此能求出結(jié)果【詳解】解:,,,,∴為平面的一條斜線,且∴點(diǎn)到平面的距離:故選:B.7、C【解析】先根據(jù)垂直關(guān)系設(shè)切線方程,再根據(jù)圓心到切線距離等于半徑列式解得結(jié)果.【詳解】因?yàn)榍芯€與直線平行,所以切線方程可設(shè)為因?yàn)榍芯€過點(diǎn)P(2,2),所以因?yàn)榕c圓相切,所以故選:C8、A【解析】按隨機(jī)數(shù)表法逐個(gè)讀取數(shù)字即可得到答案.【詳解】根據(jù)隨機(jī)數(shù)表法讀取的數(shù)字分別為:116,614(舍),908(舍),445,116(舍),573(舍),880(舍),590(舍),522(舍),741(舍),148,故選出的第3個(gè)樣本的編號(hào)為148.故選:A.9、D【解析】根據(jù)雙曲線定義寫出,兩邊平方代入焦點(diǎn)三角形的余弦定理中即可求解【詳解】雙曲線,,所以,根據(jù)雙曲線的對稱性,可假設(shè)在第一象限,設(shè),則,所以,,在中,根據(jù)余弦定理:,即,解得:,所以故選:D10、C【解析】先利用和的關(guān)系求出和,再求其公比.【詳解】由,得,,所以,,則.故選:C.11、B【解析】令,判斷的單調(diào)性并計(jì)算的極值,根據(jù)極值與0的大小關(guān)系判斷的零點(diǎn)個(gè)數(shù),得出答案.【詳解】令,則,由,得,∴當(dāng)時(shí),,當(dāng)時(shí),.∴當(dāng)時(shí),取得最小值,∴只有一個(gè)零點(diǎn),即與的圖象只有1個(gè)交點(diǎn).故選:B.12、C【解析】此方程表示點(diǎn)到點(diǎn)的距離與到點(diǎn)的距離之差為8,而這正好符合雙曲線的定義,點(diǎn)的軌跡是雙曲線的右支,,的軌跡方程是,故選C.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】求出等邊的邊長,畫出圖形,判斷D的位置,然后求解即可.【詳解】為等邊三角形且其面積為,則,如圖所示,設(shè)點(diǎn)M為的重心,E為AC中點(diǎn),當(dāng)點(diǎn)在平面上的射影為時(shí),三棱錐的體積最大,此時(shí),,點(diǎn)M為三角形ABC的重心,,中,有,,所以三棱錐體積的最大值故答案為:【點(diǎn)睛】思路點(diǎn)睛:本題考查球的內(nèi)接多面體,棱錐的體積的求法,要求內(nèi)接三棱錐體積的最大值,底面是面積一定的等邊三角形,需要該三棱錐的高最大,故需要底面,再利用內(nèi)接球,求出高,即可求出體積的最大值,考查學(xué)生的空間想象能力與數(shù)形結(jié)合思想,及運(yùn)算能力,屬于中檔題.14、【解析】設(shè),則,將直線方程與拋物線方程聯(lián)立,結(jié)合韋達(dá)定理即得.【詳解】由拋物線:可知?jiǎng)t焦點(diǎn)坐標(biāo)為,∴過焦點(diǎn)且斜率為的直線方程為,化簡可得,設(shè),則,由可得,所以則故答案為:15、【解析】分兩類:兩次都互相交換白球的概率和第一次甲交出黑球收到白球,且第二次甲交出白球收到黑球的概率求和可得答案.【詳解】分兩類:①兩次都互相交換白球的概率為;②第一次甲交出黑球收到白球,且第二次甲交出白球收到黑球的概率為.故答案為:.16、【解析】如圖,設(shè),兩點(diǎn)的拋物線的準(zhǔn)線上的射影分別為,,過作的垂線,在三角形中,等于直線的傾斜角,其正切值即為值,利用在直角三角形中,求得,從而得出直線的斜率【詳解】解:如圖,當(dāng)在第一象限時(shí),設(shè),兩點(diǎn)的拋物線的準(zhǔn)線上的射影分別為,,過作的垂線,在三角形中,等于直線的傾斜角,其正切值即為值,由拋物線的定義可知:設(shè),則,,,在直角三角形中,,所以,則直線的斜率;當(dāng)在第四象限時(shí),同理可得,直線的斜率,綜上可得直線l的斜率為;故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)證明見解析;(3)不存在,理由見解析.【解析】(1)由橢圓所過點(diǎn)及離心率,列方程組,再求解即得;(2)設(shè)出點(diǎn)A,B坐標(biāo)并列出它們滿足的關(guān)系,利用點(diǎn)差法即可作答;(3)設(shè)直線的方程,聯(lián)立直線與橢圓的方程,借助韋達(dá)定理求得,,再結(jié)合為等邊三角形的條件即可作答.【詳解】(1)顯然,半焦距c有,即,則,所以橢圓的標(biāo)準(zhǔn)方程為;(2)設(shè),,,,由(1)知,,兩式相減得,即,而弦的中點(diǎn),則有,所以;(3)假定存在符合要求的點(diǎn)P,由(1)知,設(shè)直線的方程為,由得:,則,,于是得,從而得點(diǎn),,因?yàn)榈冗吶切?,即有,,因此,,,從而得,整理得,無解,所以在y軸上不存在點(diǎn),使得為等邊三角形.18、(1);(2)最大橫截距為.【解析】(1)首先寫出的坐標(biāo),根據(jù)對稱關(guān)系求出的坐標(biāo),帶入即可求出.(2)設(shè)直線l的方程為,帶入拋物線方程利用韋達(dá)定理,計(jì)算出直線l的橫截距的表達(dá)式從而求出其最大值.【詳解】(1)由題知,,故,代入C的方程得,∴;(2)設(shè)直線l的方程為,與拋物線C:聯(lián)立得,由題知,可設(shè)方程兩根為,,則,,(*)由得,∴,,又點(diǎn)M在拋物線C上,∴,化簡得,由題知M,A為不同兩點(diǎn),故,,即,同理可得,∴,將(*)式代入得,即,將其代入解得,∴在時(shí)取得最大值,即直線l的最大橫截距為.19、(1)證明見解析,;(2)或.【解析】(1)結(jié)合與關(guān)系用即可證明為常數(shù);求出通項(xiàng)公式后利用累加法即可求的通項(xiàng)公式;(2)裂項(xiàng)相消求,判斷單調(diào)性求其最大值即可.【小問1詳解】當(dāng)時(shí),得到,∴,當(dāng)時(shí),是以4為首項(xiàng),2為公差的等差數(shù)列∴當(dāng)時(shí),當(dāng)時(shí),也滿足上式,.【小問2詳解】令,當(dāng),因此的最小值為,的最大值為對任意正整數(shù),當(dāng)時(shí),恒成立,得,即在時(shí)恒成立,,解得t<0或t>3.20、(1);(2)1400(元).【解析】(1)根據(jù)已知條件即可容易求得函數(shù)關(guān)系式;(2)根據(jù)(1)中所求函數(shù)關(guān)系式,令,求得函數(shù)值即可.【小問1詳解】根據(jù)題意,得:當(dāng)時(shí),;當(dāng)時(shí),;當(dāng)時(shí),.即.【小問2詳解】因?yàn)椋?,故該廠應(yīng)繳納污水處理費(fèi)1400元.21、(1),;平均數(shù)為40.2;(2)【解析】(1)根據(jù)矩形面積和為1,求的值,再根據(jù)頻率分布直方圖求平均數(shù);(2)首先利用分層抽樣,在中抽取3人,在中抽取2人,再編號(hào),列舉基本事件,求概率,或者利用組合公式,求古典概型概率.詳解】(1)依題意,,故又因?yàn)椋?,所求平均?shù)為(小時(shí))所以估計(jì)這100名學(xué)生參加公益勞動(dòng)的總時(shí)間的平均數(shù)為40.2(2)由頻率分布直方圖可知,參加公益勞動(dòng)總時(shí)間在和的學(xué)生比例為又由分層抽樣的方法從參加公益勞動(dòng)總時(shí)間在和的學(xué)生中隨機(jī)抽取5人,則在中抽取3人,分別記為,,,在中抽取2人,分別記為,,則從5人中隨機(jī)抽取2人基本事件有,,,,,,,,,這2人來自不同組的基本事件有:,,,,,,共6個(gè),所以所求的概率解法二:由頻率分布直方圖

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論