新高考數(shù)學(xué)二輪復(fù)習(xí)創(chuàng)新題型專題02 函數(shù)與導(dǎo)數(shù)(新定義)(解析版)_第1頁
新高考數(shù)學(xué)二輪復(fù)習(xí)創(chuàng)新題型專題02 函數(shù)與導(dǎo)數(shù)(新定義)(解析版)_第2頁
新高考數(shù)學(xué)二輪復(fù)習(xí)創(chuàng)新題型專題02 函數(shù)與導(dǎo)數(shù)(新定義)(解析版)_第3頁
新高考數(shù)學(xué)二輪復(fù)習(xí)創(chuàng)新題型專題02 函數(shù)與導(dǎo)數(shù)(新定義)(解析版)_第4頁
新高考數(shù)學(xué)二輪復(fù)習(xí)創(chuàng)新題型專題02 函數(shù)與導(dǎo)數(shù)(新定義)(解析版)_第5頁
已閱讀5頁,還剩43頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

專題02函數(shù)與導(dǎo)數(shù)(新定義)一、單選題1.(2023·河南·洛陽市第三中學(xué)校聯(lián)考一模)高斯是德國著名的數(shù)學(xué)家,近代數(shù)學(xué)的奠基者之一,享有“數(shù)學(xué)王子”的稱號,用其名字命名的“高斯函數(shù)”為:設(shè)SKIPIF1<0,用SKIPIF1<0表示不超過x的最大整數(shù),則SKIPIF1<0稱為“高斯函數(shù)”,例如:SKIPIF1<0.已知函數(shù)SKIPIF1<0,則函數(shù)SKIPIF1<0的值域是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【分析】方法一:利用分離常數(shù)及指數(shù)函數(shù)的性質(zhì),結(jié)合不等式的性質(zhì)及高斯函數(shù)的定義即可求解;方法二:利用指數(shù)函數(shù)的性質(zhì)及分式不等式的解法,結(jié)合高斯函數(shù)的定義即可求解;【詳解】方法一:函數(shù)SKIPIF1<0,因為SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0.所以SKIPIF1<0.所以SKIPIF1<0,即SKIPIF1<0.當(dāng)SKIPIF1<0時,SKIPIF1<0;當(dāng)SKIPIF1<0時,SKIPIF1<0.故SKIPIF1<0的值域為SKIPIF1<0.故選:B.方法二:由SKIPIF1<0,得SKIPIF1<0.因為SKIPIF1<0,所以SKIPIF1<0,解得SKIPIF1<0.當(dāng)SKIPIF1<0時,SKIPIF1<0;當(dāng)SKIPIF1<0時,SKIPIF1<0.所以SKIPIF1<0的值域為SKIPIF1<0.故選:B.2.(2019秋·安徽蕪湖·高一蕪湖一中??茧A段練習(xí))在實數(shù)集SKIPIF1<0中定義一種運算“SKIPIF1<0”,具有下列性質(zhì):①對任意a,SKIPIF1<0,SKIPIF1<0;②對任意SKIPIF1<0,SKIPIF1<0;③對任意a,SKIPIF1<0,SKIPIF1<0.則函數(shù)SKIPIF1<0的值域是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【分析】注意新定義的運算方式即可.【詳解】在③中,令SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0.函數(shù)SKIPIF1<0在SKIPIF1<0時取最小值,最小值為SKIPIF1<0;在SKIPIF1<0時取最大值,最大值為5,所以函數(shù)SKIPIF1<0的值域是SKIPIF1<0.故選:B.3.(2023·上?!そy(tǒng)考模擬預(yù)測)設(shè)SKIPIF1<0,若正實數(shù)SKIPIF1<0滿足:SKIPIF1<0則下列選項一定正確的是(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】D【分析】對新定義進(jìn)行化簡,分別在條件SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0下化簡SKIPIF1<0,結(jié)合所得結(jié)果,進(jìn)一步確定滿足條件的關(guān)系,由此判斷各選項.【詳解】因為SKIPIF1<0,SKIPIF1<0,又SKIPIF1<0所以SKIPIF1<0,(1)若SKIPIF1<0則,不等式SKIPIF1<0可化為SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0,①若SKIPIF1<0,則SKIPIF1<0可化為SKIPIF1<0,矛盾,②若SKIPIF1<0,則SKIPIF1<0可化為SKIPIF1<0,矛盾,③若SKIPIF1<0,則SKIPIF1<0可化為SKIPIF1<0,矛盾,(2)若SKIPIF1<0則,不等式SKIPIF1<0可化為SKIPIF1<0,所以SKIPIF1<0,①若SKIPIF1<0,則SKIPIF1<0可化為SKIPIF1<0,矛盾,②若SKIPIF1<0,則SKIPIF1<0可化為SKIPIF1<0,滿足,SKIPIF1<0可化為SKIPIF1<0,滿足,③若SKIPIF1<0,則SKIPIF1<0可化為SKIPIF1<0,滿足,SKIPIF1<0可化為SKIPIF1<0,滿足,(3)若SKIPIF1<0則,不等式SKIPIF1<0可化為SKIPIF1<0,所以SKIPIF1<0①若SKIPIF1<0,則SKIPIF1<0可化為SKIPIF1<0,滿足,SKIPIF1<0可化為SKIPIF1<0,滿足,②若SKIPIF1<0,則SKIPIF1<0可化為SKIPIF1<0,滿足,SKIPIF1<0可化為SKIPIF1<0,滿足,③若SKIPIF1<0,則SKIPIF1<0可化為SKIPIF1<0,滿足,SKIPIF1<0可化為SKIPIF1<0,滿足,(4)若SKIPIF1<0則,不等式SKIPIF1<0可化為SKIPIF1<0,所以SKIPIF1<0,①若SKIPIF1<0,則SKIPIF1<0可化為SKIPIF1<0,滿足,SKIPIF1<0可化為SKIPIF1<0,矛盾,②若SKIPIF1<0,則SKIPIF1<0可化為SKIPIF1<0,矛盾,③若SKIPIF1<0,則SKIPIF1<0可化為SKIPIF1<0,矛盾,綜上,SKIPIF1<0或SKIPIF1<0或SKIPIF1<0或SKIPIF1<0或SKIPIF1<0,由SKIPIF1<0知,A錯誤;由SKIPIF1<0知,B錯誤;當(dāng)SKIPIF1<0時,SKIPIF1<0,取SKIPIF1<0可得,滿足條件但SKIPIF1<0,C錯誤;當(dāng)SKIPIF1<0時,SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0當(dāng)SKIPIF1<0時,SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,故選:D.【點睛】“新定義”主要是指即時定義新概念、新公式、新定理、新法則、新運算五種,然后根據(jù)此新定義去解決問題,有時還需要用類比的方法去理解新的定義,這樣有助于對新定義的透徹理解.但是,透過現(xiàn)象看本質(zhì),它們考查的還是基礎(chǔ)數(shù)學(xué)知識,所以說“新題”不一定是“難題”,掌握好三基,以不變應(yīng)萬變才是制勝法寶.4.(2022秋·江蘇常州·高一華羅庚中學(xué)??茧A段練習(xí))對于函數(shù)SKIPIF1<0,若存在SKIPIF1<0,使SKIPIF1<0,則稱點SKIPIF1<0與點SKIPIF1<0是函數(shù)SKIPIF1<0的一對“隱對稱點”.若函數(shù)SKIPIF1<0的圖象存在“隱對稱點”,則實數(shù)SKIPIF1<0的取值范圍是(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】C【分析】由隱對稱點的定義可知函數(shù)SKIPIF1<0圖象上存在關(guān)于原點對稱的點,由函數(shù)奇偶性的定義將問題轉(zhuǎn)化為方程SKIPIF1<0的零點問題,再結(jié)合基本不等式即可得出實數(shù)SKIPIF1<0的取值范圍.【詳解】由隱對稱點的定義可知函數(shù)SKIPIF1<0圖象上存在關(guān)于原點對稱的點,設(shè)SKIPIF1<0的圖象與函數(shù)SKIPIF1<0的圖象關(guān)于原點對稱,令SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,因為SKIPIF1<0,又SKIPIF1<0,所以原題義等價于SKIPIF1<0與SKIPIF1<0在SKIPIF1<0上有交點,即方程SKIPIF1<0有零點,則SKIPIF1<0,又因為SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0,即SKIPIF1<0時,等號成立,所以SKIPIF1<0,即SKIPIF1<0.故選:C.【點睛】關(guān)鍵點睛:本題突破口是理解“隱對稱點”的定義,將問題轉(zhuǎn)化為SKIPIF1<0與SKIPIF1<0在SKIPIF1<0上有交點的問題,從而得解.5.(2023·高二單元測試)能夠把橢圓SKIPIF1<0的周長和面積同時分為相等的兩部分的函數(shù)稱為橢圓的“可分函數(shù)”,下列函數(shù)中不是橢圓的“可分函數(shù)”的為(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】D【分析】根據(jù)奇偶函數(shù)的定義依次判斷函數(shù)的奇偶性,得到ABC為奇函數(shù),D為偶函數(shù),得到答案.【詳解】對選項A:SKIPIF1<0,SKIPIF1<0,函數(shù)為奇函數(shù),滿足;對選項B:SKIPIF1<0,函數(shù)定義域滿足SKIPIF1<0,解得SKIPIF1<0,且SKIPIF1<0,函數(shù)為奇函數(shù),滿足;對選項C:SKIPIF1<0為奇函數(shù),滿足;對選項D:SKIPIF1<0,SKIPIF1<0,函數(shù)為偶函數(shù),且SKIPIF1<0,不滿足.故選:D6.(2023秋·江蘇無錫·高一統(tǒng)考期末)設(shè)SKIPIF1<0,計算機(jī)程序中用SKIPIF1<0表示不超過x的最大整數(shù),則SKIPIF1<0稱為取整函數(shù).例如;SKIPIF1<0.已知函數(shù)SKIPIF1<0,其中SKIPIF1<0,則函數(shù)SKIPIF1<0的值域為(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】B【分析】化簡SKIPIF1<0,令SKIPIF1<0,SKIPIF1<0,由二次函數(shù)的性質(zhì)求出函數(shù)SKIPIF1<0的值域,根據(jù)定義求函數(shù)SKIPIF1<0的值域.【詳解】因為SKIPIF1<0SKIPIF1<0,令SKIPIF1<0,因為SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,因為SKIPIF1<0的對稱軸為SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增,當(dāng)SKIPIF1<0時,SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0.所以SKIPIF1<0的值域為SKIPIF1<0.當(dāng)SKIPIF1<0時,SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,所以函數(shù)SKIPIF1<0的值域為SKIPIF1<0,故選:B.7.(2023·山東菏澤·統(tǒng)考一模)定義在實數(shù)集SKIPIF1<0上的函數(shù)SKIPIF1<0,如果SKIPIF1<0,使得SKIPIF1<0,則稱SKIPIF1<0為函數(shù)SKIPIF1<0的不動點.給定函數(shù)SKIPIF1<0,SKIPIF1<0,已知函數(shù)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0在SKIPIF1<0上均存在唯一不動點,分別記為SKIPIF1<0,則(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【分析】由已知可得SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0.然后證明SKIPIF1<0在SKIPIF1<0上恒成立.令SKIPIF1<0,根據(jù)復(fù)合函數(shù)的單調(diào)性可知SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,即可得出SKIPIF1<0.令SKIPIF1<0,根據(jù)導(dǎo)函數(shù)可得SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,即可推得SKIPIF1<0.【詳解】由已知可得,SKIPIF1<0,則SKIPIF1<0,且SKIPIF1<0,所以SKIPIF1<0.又SKIPIF1<0,SKIPIF1<0.令SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0恒成立,所以,SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,所以SKIPIF1<0,所以SKIPIF1<0.所以,SKIPIF1<0,即SKIPIF1<0.令SKIPIF1<0,SKIPIF1<0,因為函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,且SKIPIF1<0,根據(jù)復(fù)合函數(shù)的單調(diào)性可知,函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞減.又SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0.因為SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,SKIPIF1<0,所以SKIPIF1<0.又SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0.令SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0恒成立,所以,SKIPIF1<0在SKIPIF1<0上單調(diào)遞減.又SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0.綜上可得,SKIPIF1<0.故選:C.【點睛】關(guān)鍵點點睛:證明SKIPIF1<0在SKIPIF1<0上恒成立.然后即可采用放縮法構(gòu)造函數(shù),進(jìn)而根據(jù)函數(shù)的單調(diào)性得出大小關(guān)系.8.(2022秋·河北邢臺·高一統(tǒng)考期末)在定義域內(nèi)存在SKIPIF1<0,使得SKIPIF1<0成立的冪函數(shù)稱為“親冪函數(shù)”,則下列函數(shù)是“親冪函數(shù)”的是(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】C【分析】根據(jù)函數(shù)的范圍即可判斷A、D項;B項不是冪函數(shù);求出SKIPIF1<0即可判斷C項.【詳解】對于A項,SKIPIF1<0恒成立,故A項錯誤;對于B項,SKIPIF1<0不是冪函數(shù),故B項錯誤;對于C項,因為SKIPIF1<0,只要SKIPIF1<0即可,故C項正確;對于D項,SKIPIF1<0恒成立,故D項錯誤.故選:C.9.(2022秋·廣東深圳·高一深圳外國語學(xué)校??计谀崝?shù)a與b,定義新運算SKIPIF1<0:SKIPIF1<0,設(shè)函數(shù)SKIPIF1<0,若函數(shù)SKIPIF1<0的圖象與x軸恰有兩個公共點,則實數(shù)c的取值范圍是(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】A【分析】先化簡函數(shù)SKIPIF1<0的解析式,再作出函數(shù)SKIPIF1<0的圖象,轉(zhuǎn)化為直線SKIPIF1<0與函數(shù)SKIPIF1<0的圖象有兩個交點,數(shù)形結(jié)合分析即得解.【詳解】令SKIPIF1<0,解得SKIPIF1<0,所以SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0;當(dāng)SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0;作出函數(shù)SKIPIF1<0的圖象,如圖,若SKIPIF1<0的圖象與SKIPIF1<0軸恰有兩個公共點,即直線SKIPIF1<0與函數(shù)SKIPIF1<0的圖象有兩個交點,數(shù)形結(jié)合可得SKIPIF1<0.故選:A10.(2022秋·山東日照·高一統(tǒng)考期末)已知符號函數(shù)SKIPIF1<0則“SKIPIF1<0”是“SKIPIF1<0”的(

)A.充要條件 B.充分不必要條件C.必要不充分條件 D.既不充分也不必要條件【答案】C【分析】根據(jù)符號函數(shù)的定義及充分條件與必要條件的定義求解即可.【詳解】若SKIPIF1<0,則SKIPIF1<0;若SKIPIF1<0,則SKIPIF1<0同號,所以SKIPIF1<0.故“SKIPIF1<0”是“SKIPIF1<0”的必要不充分條件.故選:C.11.(2023秋·山東濰坊·高一統(tǒng)考期末)已知函數(shù)SKIPIF1<0的定義域為SKIPIF1<0,若SKIPIF1<0,滿足SKIPIF1<0,則稱函數(shù)SKIPIF1<0具有性質(zhì)SKIPIF1<0.已知定義在SKIPIF1<0上的函數(shù)SKIPIF1<0具有性質(zhì)SKIPIF1<0,則實數(shù)SKIPIF1<0的取值范圍是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【分析】根據(jù)函數(shù)新定義可推得SKIPIF1<0,SKIPIF1<0恒成立,即SKIPIF1<0,SKIPIF1<0的值域M,滿足SKIPIF1<0,求出M,列出不等式,即可求得答案.【詳解】由題意得定義在SKIPIF1<0上的函數(shù)SKIPIF1<0具有性質(zhì)SKIPIF1<0,即SKIPIF1<0,滿足SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0恒成立;記函數(shù)SKIPIF1<0,SKIPIF1<0的值域為M,SKIPIF1<0,則由題意得SKIPIF1<0,當(dāng)SKIPIF1<0,即SKIPIF1<0時,SKIPIF1<0在SKIPIF1<0單調(diào)遞減,則SKIPIF1<0,即SKIPIF1<0,此時不滿足SKIPIF1<0,舍去;當(dāng)SKIPIF1<0,即SKIPIF1<0時,SKIPIF1<0在SKIPIF1<0時取得最大值,即SKIPIF1<0,即SKIPIF1<0,要滿足SKIPIF1<0,需SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0,而SKIPIF1<0,故SKIPIF1<0,即m的取值范圍為SKIPIF1<0,故選:D【點睛】方法點睛:根據(jù)函數(shù)新定義,要能推出SKIPIF1<0,SKIPIF1<0恒成立,繼而將問題轉(zhuǎn)化為集合之間的包含問題,因此要求出函數(shù)SKIPIF1<0的值域,根據(jù)集合的包含關(guān)系列不等式求解即可.12.(2023秋·青海西寧·高一統(tǒng)考期末)定義:對于SKIPIF1<0定義域內(nèi)的任意一個自變量的值SKIPIF1<0,都存在唯一一個SKIPIF1<0使得SKIPIF1<0成立,則稱函數(shù)SKIPIF1<0為“正積函數(shù)”.下列函數(shù)是“正積函數(shù)”的是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【分析】根據(jù)“正積函數(shù)”的定義一一判斷即可.【詳解】對于A,SKIPIF1<0,由SKIPIF1<0,當(dāng)SKIPIF1<0時,則不存在SKIPIF1<0滿足情況,故A不是正積函數(shù);對于B,SKIPIF1<0,由SKIPIF1<0,則任意一個自變量的值SKIPIF1<0,都存在唯一一個SKIPIF1<0滿足SKIPIF1<0,故B是正積函數(shù);對于C,SKIPIF1<0,由SKIPIF1<0,得SKIPIF1<0,當(dāng)SKIPIF1<0時,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0不唯一,故C不是正積函數(shù);對于D,SKIPIF1<0,由SKIPIF1<0,當(dāng)SKIPIF1<0時,則不存在SKIPIF1<0滿足情況,故D不是正積函數(shù).故選:B.13.(2023·全國·高三專題練習(xí))定義:在區(qū)間SKIPIF1<0上,若函數(shù)SKIPIF1<0是減函數(shù),且SKIPIF1<0是增函數(shù),則稱SKIPIF1<0在區(qū)間SKIPIF1<0上是“弱減函數(shù)”.若SKIPIF1<0在SKIPIF1<0上是“弱減函數(shù)”,則SKIPIF1<0的取值范圍是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【分析】依題意只需SKIPIF1<0在SKIPIF1<0上是減函數(shù),利用導(dǎo)數(shù)說明SKIPIF1<0的單調(diào)性,即可得到SKIPIF1<0,從而求出參數(shù)的取值范圍.【詳解】解:對于SKIPIF1<0,則SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,易知SKIPIF1<0,SKIPIF1<0SKIPIF1<0在SKIPIF1<0上是“弱減函數(shù)”,SKIPIF1<0SKIPIF1<0在SKIPIF1<0上是減函數(shù),且SKIPIF1<0在SKIPIF1<0上是增函數(shù),易知SKIPIF1<0在SKIPIF1<0上是增函數(shù)顯然成立,故只需SKIPIF1<0在SKIPIF1<0上是減函數(shù),SKIPIF1<0,故當(dāng)SKIPIF1<0時,SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,故SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,故SKIPIF1<0,故SKIPIF1<0,即SKIPIF1<0;故選:C14.(2022秋·山東青島·高三統(tǒng)考期末)已知定義域為SKIPIF1<0的“類康托爾函數(shù)”SKIPIF1<0滿足:①SKIPIF1<0,SKIPIF1<0;②SKIPIF1<0;③SKIPIF1<0.則SKIPIF1<0(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【分析】根據(jù)函數(shù)的定義分別賦值得到SKIPIF1<0,然后再利用SKIPIF1<0得到SKIPIF1<0,再次賦值,利用SKIPIF1<0,SKIPIF1<0即可求解.【詳解】因為SKIPIF1<0,SKIPIF1<0,令SKIPIF1<0可得:SKIPIF1<0,又因為SKIPIF1<0,令SKIPIF1<0可得:SKIPIF1<0,令SKIPIF1<0可得:SKIPIF1<0,由SKIPIF1<0可得:SKIPIF1<0,令SKIPIF1<0,則有SKIPIF1<0,所以SKIPIF1<0,令SKIPIF1<0,SKIPIF1<0,則有SKIPIF1<0,所以SKIPIF1<0,因為SKIPIF1<0,所以SKIPIF1<0,也即SKIPIF1<0,所以SKIPIF1<0,故選:SKIPIF1<0.15.(2016·遼寧沈陽·東北育才學(xué)校??家荒#┒x兩種運算:SKIPIF1<0,SKIPIF1<0,則函數(shù)SKIPIF1<0的解析式為(

)A.SKIPIF1<0,SKIPIF1<0B.SKIPIF1<0,SKIPIF1<0C.SKIPIF1<0,SKIPIF1<0D.SKIPIF1<0,SKIPIF1<0【答案】A【分析】根據(jù)已知的定義可化簡得到SKIPIF1<0,根據(jù)函數(shù)定義域的求法可求得SKIPIF1<0,結(jié)合定義域再次化簡函數(shù)解析式即可得到結(jié)果.【詳解】由題意知:SKIPIF1<0,由SKIPIF1<0得:SKIPIF1<0或SKIPIF1<0,即SKIPIF1<0定義域為SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.故選:A.16.(2023·全國·高三對口高考)定義SKIPIF1<0,若函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,則實數(shù)SKIPIF1<0的取值范圍是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【分析】利用給定的定義求出函數(shù)SKIPIF1<0,再求出其單調(diào)遞減區(qū)間即可求解作答.【詳解】由給定的定義知SKIPIF1<0,顯然函數(shù)SKIPIF1<0的單調(diào)遞減區(qū)間是SKIPIF1<0,而函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,于是得SKIPIF1<0,因此SKIPIF1<0,所以實數(shù)SKIPIF1<0的取值范圍是SKIPIF1<0.故選:D17.(2022秋·廣西河池·高一校聯(lián)考階段練習(xí))定義在SKIPIF1<0上的函數(shù)SKIPIF1<0,若對于任意的SKIPIF1<0,恒有SKIPIF1<0,則稱函數(shù)SKIPIF1<0為“純函數(shù)”,給出下列四個函數(shù)(1)SKIPIF1<0;(2)SKIPIF1<0;(3)SKIPIF1<0;(4)SKIPIF1<0,則下列函數(shù)中純函數(shù)個數(shù)是(

)A.0 B.1 C.2 D.3【答案】C【分析】設(shè)SKIPIF1<0,由SKIPIF1<0得SKIPIF1<0,即SKIPIF1<0,即SKIPIF1<0為SKIPIF1<0上的減函數(shù),逐個判斷即可.【詳解】由題知,設(shè)SKIPIF1<0,由SKIPIF1<0得SKIPIF1<0,即SKIPIF1<0所以SKIPIF1<0為SKIPIF1<0上的減函數(shù),對于(1),因為函數(shù)SKIPIF1<0為SKIPIF1<0上的減函數(shù),所以SKIPIF1<0為純函數(shù);對于(3),因為函數(shù)SKIPIF1<0在SKIPIF1<0上為減函數(shù),所以SKIPIF1<0是純函數(shù);對于(2),因為函數(shù)SKIPIF1<0為SKIPIF1<0上的增函數(shù),所以SKIPIF1<0不是純函數(shù);對于(4),因為函數(shù)SKIPIF1<0為SKIPIF1<0上的增函數(shù),所以SKIPIF1<0不是純函數(shù),故選:C.18.(2021秋·上海黃浦·高三上海市大同中學(xué)校考期中)對于函數(shù)SKIPIF1<0,若集合SKIPIF1<0中恰有SKIPIF1<0個元素,則稱函數(shù)SKIPIF1<0是“SKIPIF1<0階準(zhǔn)奇函數(shù)”.若函數(shù)SKIPIF1<0,則SKIPIF1<0是“(

)階準(zhǔn)奇函數(shù)”.A.1 B.2 C.3 D.4【答案】D【分析】根據(jù)“SKIPIF1<0階準(zhǔn)奇函數(shù)”的定義,可將問題轉(zhuǎn)化為SKIPIF1<0與SKIPIF1<0的圖象交點個數(shù)的問題,作出兩個函數(shù)圖象可得結(jié)果.【詳解】由SKIPIF1<0時,SKIPIF1<0,得SKIPIF1<0,下圖為SKIPIF1<0與SKIPIF1<0的圖象,由圖可知,當(dāng)SKIPIF1<0時,兩個函數(shù)圖象有4個交點,即SKIPIF1<0.故選:D.19.(2022秋·上海徐匯·高一位育中學(xué)??茧A段練習(xí))定義SKIPIF1<0為不小于SKIPIF1<0的最小整數(shù)(例如:SKIPIF1<0,SKIPIF1<0),則不等式SKIPIF1<0的解集為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【分析】先根據(jù)已知二次不等式求出SKIPIF1<0,進(jìn)而可求x的范圍【詳解】SKIPIF1<0解得SKIPIF1<0,SKIPIF1<0為不小于SKIPIF1<0的最小整數(shù),所以SKIPIF1<0.故選:C20.(2022秋·浙江杭州·高一杭州四中??计谥校┰O(shè)SKIPIF1<0是SKIPIF1<0上的任意實值函數(shù).如下定義兩個函數(shù)SKIPIF1<0和SKIPIF1<0,對任意SKIPIF1<0,SKIPIF1<0,則下列等式不恒成立的是(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】B【分析】根據(jù)定義兩個函數(shù)SKIPIF1<0和SKIPIF1<0對任意SKIPIF1<0,SKIPIF1<0;SKIPIF1<0,然后逐個驗證即可找到答案.【詳解】對于A,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0;而SKIPIF1<0;SKIPIF1<0,對于B,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,對于C,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0;對于D,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.故選:B.21.(2021秋·上海徐匯·高一上海中學(xué)??计谀┮阎猄KIPIF1<0,SKIPIF1<0是定義在SKIPIF1<0上的嚴(yán)格增函數(shù),SKIPIF1<0,若對任意SKIPIF1<0,存在SKIPIF1<0,使得SKIPIF1<0成立,則稱SKIPIF1<0是SKIPIF1<0在SKIPIF1<0上的“追逐函數(shù)”.已知SKIPIF1<0,則下列四個函數(shù)中是SKIPIF1<0在SKIPIF1<0上的“追逐函數(shù)”的個數(shù)為(

)個.①SKIPIF1<0;②SKIPIF1<0;③SKIPIF1<0;④SKIPIF1<0.A.1 B.2 C.3 D.4【答案】B【分析】根據(jù)“追逐函數(shù)”的定義對SKIPIF1<0個函數(shù)進(jìn)行分析,結(jié)合差比較法確定正確答案.【詳解】由題意,需滿足:SKIPIF1<0與SKIPIF1<0在SKIPIF1<0上的值域都是SKIPIF1<0,且對任意的SKIPIF1<0,SKIPIF1<0的圖象恒的SKIPIF1<0上方,當(dāng)SKIPIF1<0時:①SKIPIF1<0的值域符合題意,且SKIPIF1<0,符合題意.②SKIPIF1<0的值域符合題意,且SKIPIF1<0,符合題意.③SKIPIF1<0,指數(shù)函數(shù)比二次函數(shù)增長快,比如:當(dāng)SKIPIF1<0時,SKIPIF1<0SKIPIF1<0,不符合題意.④由于SKIPIF1<0,所以SKIPIF1<0不符合題意.綜上所述,正確的有SKIPIF1<0個.故選:B22.(2022秋·黑龍江哈爾濱·高一??计谥校┤绻瘮?shù)SKIPIF1<0的定義域為SKIPIF1<0,且值域為SKIPIF1<0,則稱SKIPIF1<0為“SKIPIF1<0函數(shù).已知函數(shù)SKIPIF1<0是“SKIPIF1<0函數(shù),則m的取值范圍是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【分析】由題意可得SKIPIF1<0的值域為SKIPIF1<0,又因為當(dāng)SKIPIF1<0時,SKIPIF1<0的值域為SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0的值域為SKIPIF1<0,所以有SKIPIF1<0,求解即可.【詳解】解:由題意可知SKIPIF1<0的定義域為SKIPIF1<0,又因為SKIPIF1<0是“SKIPIF1<0函數(shù),所以SKIPIF1<0的值域為SKIPIF1<0,又因為SKIPIF1<0,所以SKIPIF1<0的值域為SKIPIF1<0,又因為當(dāng)SKIPIF1<0時,SKIPIF1<0,單調(diào)遞增,此時值域為SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,開口向上,對稱軸為SKIPIF1<0,此時函數(shù)單調(diào)遞增,值域為SKIPIF1<0,所以SKIPIF1<0,解得SKIPIF1<0,所以m的取值范圍為SKIPIF1<0.故選:C.23.(2022秋·河南周口·高一??计谥校τ诤瘮?shù)SKIPIF1<0,若對任意的SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0為某一三角形的三邊長,則稱SKIPIF1<0為“可構(gòu)成三角形的函數(shù)”,已知SKIPIF1<0是可構(gòu)成三角形的函數(shù),則實數(shù)t的取值范圍是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【分析】先判斷SKIPIF1<0的奇偶性,然后對SKIPIF1<0進(jìn)行分類討論,結(jié)合SKIPIF1<0的單調(diào)性、最值求得SKIPIF1<0的取值范圍.【詳解】SKIPIF1<0,SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0的定義域為SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0是偶函數(shù),SKIPIF1<0為偶函數(shù),SKIPIF1<0只需考慮SKIPIF1<0在SKIPIF1<0上的范圍,當(dāng)SKIPIF1<0時,SKIPIF1<0在SKIPIF1<0單調(diào)遞減,SKIPIF1<0對SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0恒成立,需SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.當(dāng)SKIPIF1<0,SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,SKIPIF1<0,對SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0恒成立,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,綜上:SKIPIF1<0故選:B24.(2021秋·浙江嘉興·高一校聯(lián)考期中)定義SKIPIF1<0,如SKIPIF1<0.則函數(shù)SKIPIF1<0的最小值為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【分析】作出函數(shù)SKIPIF1<0的圖象,數(shù)形結(jié)合可得出函數(shù)SKIPIF1<0的最小值.【詳解】當(dāng)SKIPIF1<0時,SKIPIF1<0,此時SKIPIF1<0;當(dāng)SKIPIF1<0時,SKIPIF1<0,此時,SKIPIF1<0;當(dāng)SKIPIF1<0時,SKIPIF1<0,此時,SKIPIF1<0.所以,SKIPIF1<0,作出函數(shù)SKIPIF1<0的圖象如下圖所示(實線部分):因為SKIPIF1<0,SKIPIF1<0,因此,SKIPIF1<0.故選:A.25.(2023·高一課時練習(xí))函數(shù)SKIPIF1<0滿足在定義域內(nèi)存在非零實數(shù)SKIPIF1<0,使得SKIPIF1<0,則稱函數(shù)SKIPIF1<0為“有偶函數(shù)”.若函數(shù)SKIPIF1<0是在SKIPIF1<0上的“有偶函數(shù)”,則實數(shù)SKIPIF1<0的取值范圍是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【分析】根據(jù)有偶函數(shù)的定義可得對應(yīng)的方程有解,參變分離后可求參數(shù)的取值范圍.【詳解】因為SKIPIF1<0為SKIPIF1<0上的“有偶函數(shù)”,故存在非零實數(shù)SKIPIF1<0,使得SKIPIF1<0,若SKIPIF1<0,則SKIPIF1<0,故方程SKIPIF1<0有解,故SKIPIF1<0在SKIPIF1<0上有解,而SKIPIF1<0,而SKIPIF1<0,故SKIPIF1<0的值域為SKIPIF1<0,故SKIPIF1<0.若SKIPIF1<0,則SKIPIF1<0,故方程SKIPIF1<0有解,故SKIPIF1<0在SKIPIF1<0上有解,而SKIPIF1<0,而SKIPIF1<0,故SKIPIF1<0的值域為SKIPIF1<0,故SKIPIF1<0.故選:D.26.(2020秋·北京順義·高一牛欄山一中??计谥校┐嬖趦蓚€常數(shù)SKIPIF1<0和SKIPIF1<0,設(shè)函數(shù)的定義域為SKIPIF1<0,則稱函數(shù)SKIPIF1<0在SKIPIF1<0上有界.下列函數(shù)中在其定義域上有界的個數(shù)為(

)①SKIPIF1<0②SKIPIF1<0;③SKIPIF1<0A.0 B.1 C.2 D.3【答案】B【分析】分別求出各個選項的值域,結(jié)合有界函數(shù)的定義即可得出答案.【詳解】對于①,SKIPIF1<0,又因為SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0,即SKIPIF1<0時取等;所以SKIPIF1<0.對于②,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0對于③,因為當(dāng)SKIPIF1<0時,SKIPIF1<0,所以SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,因為當(dāng)SKIPIF1<0時,SKIPIF1<0,所以SKIPIF1<0時,SKIPIF1<0,所以SKIPIF1<0.故在其定義域上有界的函數(shù)為①.故選:B.27.(2022秋·江蘇連云港·高一??茧A段練習(xí))對于函數(shù)SKIPIF1<0,如果存在區(qū)間SKIPIF1<0,同時滿足下列條件:①SKIPIF1<0在SKIPIF1<0內(nèi)是單調(diào)的;②當(dāng)定義域是SKIPIF1<0時,SKIPIF1<0的值域也是SKIPIF1<0,則稱SKIPIF1<0是該函數(shù)的“和諧區(qū)間”SKIPIF1<0若函數(shù)SKIPIF1<0存在“和諧區(qū)間”,則SKIPIF1<0的取值范圍是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【分析】函數(shù)在區(qū)間SKIPIF1<0是單調(diào)的,由SKIPIF1<0,SKIPIF1<0可得SKIPIF1<0、SKIPIF1<0是方程SKIPIF1<0的兩個同號的不等實數(shù)根,由SKIPIF1<0,解不等式即可.【詳解】由題意可得若函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0是單調(diào)的,所以SKIPIF1<0,SKIPIF1<0或SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,故SKIPIF1<0、SKIPIF1<0是方程SKIPIF1<0的兩個同號的不等實數(shù)根,即方程SKIPIF1<0有兩個同號的不等實數(shù)根,注意到SKIPIF1<0,故只需SKIPIF1<0,解得SKIPIF1<0,結(jié)合SKIPIF1<0,可得SKIPIF1<0.故選:D28.(2022秋·安徽滁州·高三??茧A段練習(xí))對于定義域為SKIPIF1<0的函數(shù)SKIPIF1<0,若存在非零實數(shù)SKIPIF1<0,使函數(shù)SKIPIF1<0在SKIPIF1<0

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論