版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
遲恬2009329709國貿2班
第二章描述統(tǒng)計分析與參數(shù)假設檢驗
Exercise2-1
(1)
1、打開源文件Exercise文件中的Exercise2-1,雙擊inc,找到題中所給數(shù)據(jù)。
2、點ViewDescriptiveStatisticsHistogramandStat得到直方圖
3、單擊View選擇——DescriptiveStatistics——StatsTable得到統(tǒng)計表
View][Proc][object]Properties][PrintRName[[Freeze]Sample](Genr][sheet](Graph][stats][ldent
INC
Mean31.27800S
Median25.70000
Maximum85.50000
Minimum6.420000
Std.Dev.22.37583
Skewness1.368930
Kurtosis4.071719
Jarque-Bera7.203714
Probability0.027273■
Sum625.5600
SumSq.Dev.9512.881
Observations20
id
(2)
單擊ViewDescriptiveStatisticsStatisticByClassification得到分組表格,在分組變量處輸入
“edu”得到分組統(tǒng)計描述。
即收入在12-16的教育年限分布人數(shù)最多。
□覆盟興盤歸閡fe?盤附
Mew][Prod[objecH|Properties][PrielRNGmeRFreeze][Sample][Genr][sheeH[Graph][^E7|[ldent
DescriptiveStatisticsforINC
CategorizedbyvaluesofEDU
Date:06/16/12Time:11:34
Sample:120
Includedobservations:20
EDUMeanStd.Dev.Obs.
1017.500003.3941132
1219.3371413.444897
1648.0142927.627251
1838.1000013.576452
2021.450005.3033012
All31.2780022.3758320
(3)
單擊ViewDiscriptiveStatistics&TestsSimpleHypothesisTest”輸入Mean15>Variance81得到
檢驗結果。
'iew][Proc][objecH[Properties][Print(Name正reeze]【Sample][Genr)|sheeH[Grdphgtats][ldenl:
HypothesisTestingforINC
Date:06/16/12Time:11:44
Sample:120
Includedobservations:20
TestofHypothesis:Mean=15.00000
SampleMean=31.27800
SampleStd.Dev.=22.37583
MethodValueProbability
^statistic3.253395—0.0042
TestofHypothesis:Variance=81.00000
SampleVariance=500.6779
MetiiodValueProbability
VarianceRatio117.4430—0.0000
(4)
1、單擊ViewGraphTypeDistributionEmpiricalCDF得到經驗累積分布圖
2、單擊ViewGraphTypeQuantile-Quantile得到序列Q-Q散點圖
E]回區(qū)
[view][ProW[obj8ct][prop8rgs][PrintJ[NameUFre8zeJ6amp陽][qraph][^i?)Udent]
-20
0102030405060708090
QuantilesofINC
3^單擊ViewDiscriptiveStatistics&TestsEmpiricalDistributionTesto由表可以看出其服從正
態(tài)分布。
00s
[viewJ[Proc[objecHFroperties||Print]|Nam^Freece][Sample[[GraphgtatsRldent|
EmpiricalDistributionTestforINC
Hypothesis:Normal
Date:06/16/12Time:11:53
Sample:120
Includedobservations:20
MethodValueAdj.ValueProbability
Lilliefors(D)0.246042NA0.0025
Cramer-vonMises(W2)0.1991330.2041110.0048
Watson(U2)0.1684750.1726870.0074
Anderson-Darling(A2)1.2068481.2588930.0028
Method:MaximumLikelihood-d.f.corrected(ExactSolution)
ParameterValueStd.Errorz-StatisticProb.
MU31.278005.0033896.2513630.0000
SIGMA22.375833.6298406.1644140.0000
Loglikelihood-90.03840Meandependentvar.31.27800
No.ofCoefficients2S.D.dependentvar.22.37583
(5)
在Eviews命令窗口中輸入命令groupglincedu”按enter生成新的序列組
£il?EditQb”ctVit*trocQaickOfitionx量iad”削
groupg1incedu
O
(6)
1、雙擊gl打開序列組窗口,單擊ViewDescriptiveStatisticscommonsample得到描述性統(tǒng)計
分析。
2、相關系數(shù):
View|Proc|Object|Print|Name|Freeze|5ampte|Sheet|Stats|Spec|
CorrelationMatiix
INCEDU
INC1.0000000.338146
EDU0.3381461.000000
3、協(xié)方差:
CovarianceMatiix
INCEDU
INC475.644022.41720
EDU22,417209.240000
(7)
單擊ViewGraphTypeScatterRegressionLine得到序列組gl的回歸散點圖。根據(jù)散點
圖可以看出序列inc和edu成正相關關系,但并不是高度正相關關系。
Exercise2-2
(1)
1、打開源文件Exercise文件中的Exercise2-2,分別雙擊ggdp、gcs,找到題中所給數(shù)據(jù)。
2、分別單擊ViewDescriptiveStatisticsHistogramandStat得到兩個直方圖
□器a?捌顓^(qū)^75遹更舒遨就的嘮空芍施:!堡一日]0同
[view][Proc]|objecH[PropertiesJ[PrinH|Name帕eeze][Sample][^i7||sheet[[Graph
(2)
1、單擊ViewDiscriptiveStatistics&TestsSimpleHypothesisTest分別輸入Mean10.2、Mean7.6
得到下表。
Q@0
ViewProcObjectPropertiesPrintNameFruweidrripleGenrSheetGraphStatsIdent
HypothesisTestingforGGDP
Date:06/16/12Time:13:32
Sample:19922000
Includedobservations:9
TestofHypothesis:Mean=10.20000
SampleMean=10.23333
SampleStd.Dev.=2.628212
MethodValueProbability
t-statistic0.038049-0.9706
Meantestassumption
Meantestwilusea
knownstandard
deviationifsupplied.
Enters.d.
fknown:
[鄴]|Cancel]
(3)1、關閉窗口,單擊ObjectNewObjectGroup并將其命名為gl
2、對序列組的序列進行定義,第一列定義為"ggdp"按enter鍵,第二列定義為“gcs"按enter鍵。
□
|view||Proc||object||Print|[Save|[Details+/-1|show][Fetch]|store)|Delete||Genr]|SampleI
Range:19922000--9obsDisplayFilter:*I
Sample:19922000-9obs
固g1|口"如山Gl之工義支片
I£J.'C11jJ
I2gcs_______
0ggdp'「TVHot"jecFrinriif.jamefreeze;uerauirjportIranspose||tdir+/-1|brnpi+1-
0resid[EE
obsGGDPGCS
obsGGDPOCSQI
199214.2000012.90000
199313.500008.100000
199412.600004.300000
199510.500007.500000
19969.6000009.100000
19978.8000004200000
19987.8000005.500000
19997.1000007.900000
20008.0000009.100000
\Untitled/
QI
0
(4)
2、單擊View選擇TestofEquality選擇Variance單擊OK。得到方差檢驗結果。GGDP與GCS的方差
相等。
Mew][Proc][object)[Print][Name[Freeze115amplegheeHBtatsgpec]
TestforEqualityofVariancesBetweenSeries
Date:06/16/12Time:13:39
Sample:19922000
Includedobservations:9
MethoddfValueProbability
F-test(8.8)1.0820770.9139
Siegel-Tukey0.0883480.9296
Bartlett10.0117100.9138
Levene(1.16)0.0763590.7858
Brown-Forsythe(1.16)0.0395820.8448
CategoryStatistics
MeanAbs.MeanAbs.MeanTukey-
VariableCountStd.Dev.MeanDiff.MedianDiff.SiegelRank
GGDP92.6282122.1925932.1222229.666667
GCS92.7339431.9975311.9666679.333333
All182.9279192.0950622.0444449.500000
Bartlettweightedstandarddeviation:2.681599
3、同理,選擇Mean得到均值檢驗結果,均值也相等。
MewllProcgbjecH[Print](Name[[Freeze]15ampIe回eetJBtatsgpec]
TestforEqualityofMeansBetweenSeries
Date:06/16/12Time:13:43
Sample:19922000
Includedobservations:9
MethoddfValueProbability
t-test162.0655600.0555
Satterthwaite-Welcht-test*15.975172.0655600.0555
AnovaF-test(1.16)4.2665380.0555
WelchF-test*(1,15.9752)4.2665380.0555
*Testallowsforunequalcellvariances
AnalysisofVariance
SourceofVariationdfSumofSq.MeanSq.
Between130.6805630.68056
Within16115.05567.190972
Total17145.73618.572712
CategoryStatistics
Std.Err.
VariableCountMeanStd.Dev.ofMean
GGDP-910.233332.6282120.876071
GCS97.6222222.7339430.911314
-Ali-188.9277782.9279190.690117
第三章簡單線性回歸分析
Exercise3-1
(1)1、打開源文件Exercise文件中的Exercise3-1。
2、點Quick選擇EquationEstimation使用列表形式對方程進行設定。輸入"peonscpdinc”得到下表。
從回歸結果可以看出,自變量pdinc能夠解釋因變量peons93.6%的變化。Pdinc每增加一個單位,peons
的平均值增加0.75811,回歸參數(shù)的t檢驗在統(tǒng)計上是顯著的,說明估計的回歸方程是正確的。
口白!回貶
Me?Proc[object][Print)[Name^Freeze]〔Estimate(ForecasHEtats|[Resids]
DependentVariable:PCONS
Method:LeastSquares
Date:06/16/12Time:13:50
Sample:131
Includedobservations:31
VariableCoefficientStd.Errort-StatisticProb.
C282.2434287.26490.9825200.3340
PDINC0.7585110.03692820.540260.0000
R-squared0.935685Meandependentvar5982.476
AdjustedR-squared0.933467S.D.dependentvar1601.762
S.E.ofregression413.1593Akaikeinfocriterion14.94788
Sumsquaredresid4950317.Schwarzcriterion15,04040
Loglikelihood-229.6922Hannan-Quinncriter.14,97804
F-statistic421.9023Durbin-Watsonstat1.481439
Prob(F-statistic)0.000000
3、單擊name,輸入eqOl,給方程命名
Nametoidentifyobject
24charactersmaximum,16
orfewerrecommended
Displaynameforlabelingtablesandgraphs(optional)
QK][Cancel|
匕聯(lián)世螯逼丘&川」幾£“上工天組的"外3-』兀,一目回國
[viewRProcJobject||Print||Name[Freeze[〔Estimate伍應叔恒矣][Resids)
DependentVariable:PCONS
Method:LeastSquares
Date:06/16/12Time:13:50
Sample:131
Includedobservations:31
VariableCoefficientStd.Errort-StatisticProb.
C282.2434287.26490.9825200.3340
PDINC0.7585110.03692820.540260.0000
R-squared0.935685Meandependentvar5982.476
AdjustedR-squared0.933467S.D.dependentvar1601.762
S.E.ofregression413.1593Akaikeinfocriterion14,94788
Sumsquaredresid4950317.Schwarzcriterion15.04040
Loglikelihood-229.6922Hannan-Quinncriter.14.97804
F-statistic421.9023Durbin-Watsonstat1.481439
Prob(F-statistic)0.000000
(2)1、單擊ViewActual,Fitted,ResidualActual,Fitted,ResidualGraph得到因變量的實際值、
擬合值、殘差值的折線圖。
(3)1、單擊Forecast輸入“pconsf”得到預測結果。從圖中可以看出,平均百分比誤差MAPE=5.22,
希爾不等系數(shù)TheilIC=0.03,偏差率BP-0,方差率VP=0.02,協(xié)變率CP=0.96,從以上預測評價指標可
以看出模型預測精度高。
Forecast:F1
Actual:PCONS
Forecastsample:131
Includedobservations31
RootMeanSquaredError399.6094
MeanAbsoluteError305.3822
MeanAbs.PercentError5.217788
TheilInequalityCoefficient0.032331
BiasProportion0.000000
VarianceProportion0.016618
CovarianceProportion0.983382
(4)
單擊ViewCoefficientTestWald-CoefficientRestrictions輸入c(2)=0.75得至llWald系數(shù)檢驗結果。
[view][Proc[object][PrinH[NameRFreeze]〔Estimate[Forecastgtats^Resids]
WaldTest:
Equation:EQ01
TestStatisticValuedfProbability
F-statistic0.053123(1.29)0.8193
Chi-square0.05312310.8177
NullHypothesisSummary:
NormalizedRestriction(=0)ValueStd.Err.
-0.75+C(2)0.0085110.036928
Restrictionsarelinearincoefficients.
[View][Proc)[objbcHproperties][Print][Name[Freeze]DefaultLJSI
RESID01
Lastupdated:06/16/12-13:55
Modified:131//eq01.makeresid
1548.3316
2-172.9288
3-279.5766
4458.4026
5-12.16119
6111.4740
7-56.76591
8-447.5075
9131.6327
10-442.4763
11-455.5791
12-121.3674■
13-620.7974
14-537.8198
15-461.5020
16-514.7703
17177.5070
1814.32975
AnmeEARC
Exercise3-2
(1)
1>打開源文件Exercise文件中的Exercise3-2。
2^單擊QuickEquationEstimation,輸入investmentcproduct對方進行設定
3、從回歸結果中可以看出自變量product解釋了因變量均值95%的變化,說明回歸方程擬合優(yōu)度較好,
product的回歸系數(shù)為3.4說明product每增加一個單位,因變量investment的均值增加3.4個單位,
回歸系數(shù)的t檢驗在統(tǒng)計上顯著,說明估計回歸方程正確。
口直理近E。走贊近遴宜翁f宓i--u區(qū)
Mew][Proc)[objecH|PrinH[NameRFreeze]【EstimateRForecasH[stats][Resids]
Dependentvariable:INVESTMENT
Method:LeastSquares
Date:06/16/12Time:14:03
Sample:19811992
Includedobservations:12
VariableCoefficientStd.Errort-StatisticProb.
C-12.262562.482162-4.9402740.0006
PRODUCT3.4098810.25943713.143400.0000
R-squared0.945280Meandependentvar20.02333
AdjustedR-squared0.939808S.D.dependentvar5.032936
S.E.ofregression1.234782Akaikeinfocriterion3.410678
Sumsquaredresid15.24687Schwarzcriterion3.491496
Loglikelihood-18.46407Hannan-Quinncriter.3.380756
F-statistic172.7489Durbin-Watsonstat1.462938
Prob(F-statistic)0.000000
(2)單擊ViewActual,Fitted,ResidualActual,Fitted,ResidualGraph得到因變量的實際值,擬
合值,殘差值的折線圖。
(3)
1單擊ViewStabilityTestChowBreakpointTest輸入1988,分割點檢驗結果。從回歸結果看
LR檢驗結果在統(tǒng)計上不顯著,所以接受無結構變化的原假設
n昌
Mew|【Proc]|objecH[PrinHMme[Freeze]歸stimatv隨缸8貪版也RResids]
'ChowBreakpointTest:1988
jNullHypothesis:Nobreaksatspecifiedbreakpoints
1Varyingregressors:Allequationvariables
=EquationSample:19811992
F-statistic1.350461Prob.F(2,8)0.3124
Loglikelihoodratio3.490659Prob.Chi-Square⑵0.1746
WaldStatistic2.700921Prob.Chi-Square(2)0.2591
2、單擊ViewStabilityTestChowForecastTest輸入1988,得至UChow預測檢驗結果。回歸結
果表明LR檢驗在0.05的顯著性水平下是顯著的,所以應拒絕無結構變化的原假設。
□矍崩贄/爸f搭i碗多如二面逐:^^董:?
Mew]|Proc][object][PrinHMmc[Freeze]四imate帆缸由對如區(qū)][Resids]
ChowForecastTest:Forecastfrom1988to1992
F-statistic3.546879Prob.F(5,5)0.0955
Loglikelihoodratio18.17329Prob.Chi-Square(5)0.0027
TestEquation:
Dependentvariable:INVESTMENT
Method:LeastSquares
Date:06/16/12Time:14:07
Sample:19811987
Includedobservations:7
VariableCoefficientStd.Errort-StatisticProb.
C-11.532754.391068-2.6264100.0467
PRODUCT3.3096680.5217126.3438610.0014
R-squared0.889489Meandependentvar16.25429
AdjustedR-squared0.867387S.D.dependentvar2.248828
S.E.ofregression0.818934Akaikeinfocriterion2.673329
Sumsquaredresid3.353261Schwarzcriterion2.657875
Loglikelihood-7.356651Hannan-Quinncriter.2.482317
F-statistic40.24457Durbin-Watsonstat2.279734
Prob(F-statistic)0.001437
(4)
l、單擊View——StabilityTest——RecursiveEstimates(OLSonly)——CUSUMTest,得到CUSUM檢
驗結果。
OutputCoefficientdisplaylist
◎覆cursiveResiduals?c(l)c(2)
OCUSUMTest
OCUSUMofSquaresTest
OQne-StepForecastTest
ON-StepForecastTest
ORecursiveCoefficients
□SaveResultsasSeriesOKCancel
2、單擊ViewStabilityTestRecursiveEstimates(OLSonly)CUSUMofSquareTest得到
CUSUM的平方檢驗結果。
第四章非線性模型的回歸估計方法
Exercise4-1
(1)
1、打開源文件Exercise文件中的Exercise4-1。
2、點擊QuickEquationEstimation,numbercpopulation,得到回歸模型。
從回歸結果中可以看出,解釋變量population解釋了因變量number均值76.4%的變化。說明回歸方程
擬合優(yōu)度較好,解釋變量的回歸系數(shù)的t檢驗在5%的顯著性水平下通過檢驗,說明回歸方程正確。
0金川」衛(wèi)舊豈義匚工"一J」J
Mew]回oc][objecH[PrieH|Name『FreezeJ[EstimateHForeDasHEtats]〔Resids]
DependentVariable:NUMBER
Method:LeastSquares
Date:06/16/12Time:14:15
Sample:120
Includedobservations:20
VariableCoefficientStd.Errort-StatisticProb.
C-481.6892288.5747-1.6692010.1124
POPULATION5.0557630.6621867.6349650.0000
R-squared0.764067Meandependentvar1464.350
AdjustedR-squared0.750959S.D.dependentvar1212.582
S.E.ofregression605.1268Akaikeinfocriterion15,74339
Sumsquaredresid6591211.Schwarzcriterion15.84297
Loglikelihood-155.4339Hannan-Quinncriter.15.76283
F-statistic58.29270Durbin-Watsonstat1.685326
Prob(F-statistic)0.000000
(2)
單擊ProcMakeResidualSeries生成殘差序列。
□
Residualtype
@Ordinary
OK
Generalized
Nameforresidseries
residO1
卜詢]回比][object]|Properties][PrinH[NameJ[Fre8ze]Default[$0代]同血+/?]
RES1
Lastupdated:06/16/12-14:16
Modified:120//eq01.makeresid
11662.684
2-199.8763
3894.9455
4-565.6683
5-350.9619
6-523.2186
7-27.18484
8-18.99905
9-429.2259
10-135.0994
11-409.7648
12-559.1665
13-146.7687
14-250.3897
15590.3358
16-48.14400
17-626.5457
18598.5664
19626.2318
20-81.75002
(3)
分別建立三個新序列seriesw1=1/@abs(resid01)seriesw2=1/@sqrt(population)series
w3=1/population
單擊QuickEquationEstimation使用列表形式對方程進行設定。在輸入框內輸入"numberc
populationOption,選擇WeightedLS/TSLS,在weight對話框中分別輸入wlw2w3分別得到用
殘差序列的絕對值倒數(shù)作為權重,用自變量序列平方根作為權重及用自變量序列的倒數(shù)作為權重重新
估計的回歸方程。
從上述三個回歸結果的R平方值及t檢驗結果判斷得出以殘差序列絕對值的倒數(shù)作為權重進行加權最
小二乘回歸得到的結果擬合優(yōu)度最高,并且t檢驗顯著。
FileEditObjectViewProcQv
seriesw1=1/@sqrt(abs(res1))
Mew][Pro&[objecH[PrinQlName[Freeze]|Estimae隨他曰竟版擊|[Resids]
DependentVariable:NUMBER
Method:LeastSquares
Date:06/16/12Time:14:36
Sample:120
Includedobservations:20
Weightingseries:W1
VariableCoefficientStd.Errort-StatisticProb.
C-194.3556204.0205-0.9526280.3534
POPULATION4.0898430.5515547.4151240.0000
WeightedStatistics
R-squared0753371Meandependentvar1329.136
AdjustedR-squared0.739669S.D.dependentvar1016.960
S.E.ofregression266.2018Akaikeinfocriterion14.10103
Sumsquaredresid1275541.Schwarzcriterion14.20060
Loglikelihood-139.0103Hannan-Quinncriter.14.12046
F-statistic54.98407Durbin-Watsonstat1.678825
Prob(F-statistic)0.000001
UnweightedStatistics
R-squared0.731070Meandependentvar1464.350
AdjustedR-squared0.716129S.D.dependentvar1212.582
S.E.ofregression646.0579Sumsquaredresid7513035.
Durbin-Watsonstat1.379292
seriesw1=1/@sqrt(abs(res1))
seriesw2=1/@sqrt(population)
SpecificationOptions
LS&TSLSoptions
__neierosKeaasucixy
I__Iconsistentcoefficient
,)White
Range:120-20obsNewey-West
Sample:120-20obs0WeightedLS/TSLS
(notavailablewith
eqO1Weight:w2|
numberARMAoptions
Startingcoefficient
res1OLS/TSLS
resid
[^1BackcastMAterms
Q[噩
[view]|Prod[objecH|PrinH[Name^Freeze][Estimate]〔Forecastgtats^Resids|
Dependentvariable:NUMBER
Method:LeastSquares
Date:06/16/12Time:14:38
Sample:120
Includedobservations:20
Weightingseries:W2
VariableCoefficientStd.Errort-StatisticProb.
C227.7496164.21001.3869410.1824
POPULATION3.2126580.5229306.1435670.0000
WeightedStatistics
R-squared0.677092Meandependentvar1242.009
AdjustedR-squared0.659153S.D.dependentvar544.1256
S.E.ofregression452.4691Akaikeinfocriterion15.16196
Sumsquaredresid3685110.Schwarzcriterion15.26153
Loglikelihood-149.6196Hannan-Quinncriter.15.18139
F-statistic37.74342Durbin-Watsonstat1.584931
Prob(F-statistic)0.000008
UnweightedStatistics
R-squared0.662522Meandependentvar1464.350
AdjustedR-squared0.643773S.D.dependentvar1212.582
S.E.ofregression723.7266Sumsquaredresid9428042.
Durbin-Watsonstat1.260066
W3充當為-晅運izif尹&皿純拄且更注、滬上先近“五工關以1
IQFileEditObjectViewProcQuickOptionsWindowHelp
View^Proc[object][PrinH〔Name帕eeze][EstimategorecasHEtnts][Resids]
DependentVariable:NUMBER
Method:LeastSquares
rixe£aityojeciviewrrocDate:06/16/12Time:14:42
seriesw1=1/@sqrt(abs(res1))Sample:120
Includedobservations:20
seriesw2=1/@sqrt(population)
Weightingseries:W3
;eriesw3=1/population
Variable
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 媒體變革與未來
- 外交學院勞動合同(2篇)
- 墓地出售合同(2篇)
- 2024年采購方廉潔合作合同3篇
- 場地土地租賃合同
- 高端制造產業(yè)供應鏈合作協(xié)議
- 有關維修合同范文
- 可再生能源消納保障合同
- 專業(yè)汽車租賃協(xié)議模板2024年完整篇一
- 業(yè)主與物業(yè)公司服務協(xié)議細項協(xié)定版A版
- 2023年資產負債表模板
- GB/T 10058-2023電梯技術條件
- (完整word版)酒店流水單
- 校服采購投標方案
- 居民健康檔案管理培訓課件
- 學校食堂食品安全管理25項制度
- 班主任經驗交流PPT
- 賓館應急救援預案
- 預應力混凝土簡支小箱梁課程大作業(yè)-結構設計原理
- 15.5-博物館管理法律制度(政策與法律法規(guī)-第五版)
- 水泥廠鋼結構安裝工程施工方案
評論
0/150
提交評論