2025屆福建省仙游縣聯考八年級數學第一學期期末考試試題含解析_第1頁
2025屆福建省仙游縣聯考八年級數學第一學期期末考試試題含解析_第2頁
2025屆福建省仙游縣聯考八年級數學第一學期期末考試試題含解析_第3頁
2025屆福建省仙游縣聯考八年級數學第一學期期末考試試題含解析_第4頁
2025屆福建省仙游縣聯考八年級數學第一學期期末考試試題含解析_第5頁
已閱讀5頁,還剩20頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2025屆福建省仙游縣聯考八年級數學第一學期期末考試試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每小題3分,共30分)1.芝麻作為食品和藥物,均廣泛使用.經測算,一粒芝麻約有1.11111211千克,用科學記數法表示為()A.2.11×11-6千克 B.1.211×11-5千克 C.21.1×11-7千克 D.2.11×11-7千克2.如圖,已知△ABC中,∠A=75°,則∠BDE+∠DEC=()A.335° B.135° C.255° D.150°3.下列四個交通標志中,軸對稱圖形是()A. B. C. D.4.將兩塊完全相同的長方體木塊先按圖1的方式放置,再按圖2的方式放置,測得的數據如圖(單位:)所示.則桌子的高度圖1圖2A. B. C. D.5.如果下列各組數是三角形的三邊,則能組成直角三角形的是()A. B. C. D.6.若數a關于x的不等式組恰有兩個整數解,且使關于y的分式方程=﹣2的解為正數,則所有滿足條件的整數a的值之和是()A.4 B.5 C.6 D.37.下列各式:(1﹣x),,,,其中分式共有()A.1個 B.2個 C.3個 D.4個8.如圖,△ABC的三邊AB、BC、AC的長分別12,18,24,O是△ABC三條角平分線的交點,則S△OAB:S△OBC:S△OAC=()A.1:1:1 B.1:2:3 C.2:3:4 D.3:4:59.若把分式中的x與y都擴大3倍,則所得分式的值()A.縮小為原來的 B.縮小為原來的C.擴大為原來的3倍 D.不變10.一個正多邊形的內角和為540°,則這個正多邊形的每一個外角等于()A.108° B.90° C.72° D.60°二、填空題(每小題3分,共24分)11.因式分解:3x3﹣12x=_____.12.如圖,函數和的圖像相交于點A(m,3),則不等式的解集為____.13.在△ABC中,∠A:∠B:∠C=2:3:4,則∠C=_____.14.如圖,是等邊三角形,點是邊的中點,點在直線上,若是軸對稱圖形,則的度數為__________15.計算:__________________.16.如圖,在△ABC中,∠A=35°,∠B=90°,線段AC的垂直平分線MN與AB交于點D,與AC交于點E,則∠BCD=___________度.17.計算:(314﹣7)0+=_____.18.如圖,在平面直角坐標系中,矩形的兩邊分別在坐標軸上,,.點是線段上的動點,從點出發(fā),以的速度向點作勻速運動;點在線段上,從點出發(fā)向點作勻速運動且速度是點運動速度的倍,若用來表示運動秒時與全等,寫出滿足與全等時的所有情況_____________.三、解答題(共66分)19.(10分)如圖,點C在線段AB上,AD∥EB,AC=BE,AD=BC,CF平分∠DCE.求證:CF⊥DE于點F.20.(6分)如圖,在平面直角坐標系中,點為正半軸上一點,過點的直線軸,且直線分別與反比例函數和的圖像交于兩點,.求的值;當時,求直線的解析式;在的條件下,若軸上有一點,使得為等腰三角形,請直接寫出所有滿足條件的點的坐標.21.(6分)網購是現在人們常用的購物方式,通常網購的商品為防止損壞會采用盒子進行包裝,均是容積為立方分米無蓋的長方體盒子(如圖).(1)圖中盒子底面是正方形,盒子底面是長方形,盒子比盒子高6分米,和兩個盒子都選用相同的材料制作成側面和底面,制作底面的材料1.5元/平方分米,其中盒子底面制作費用是盒子底面制作費用的3倍,當立方分米時,求盒子的高(溫馨提示:要求用列分式方程求解).(2)在(1)的條件下,已知盒子側面制作材料的費用是0.5元/平方分米,求制作一個盒子的制作費用是多少元?(3)設的值為(2)中所求的一個盒子的制作費用,請分解因式;.22.(8分)是等邊三角形,作直線,點關于直線的對稱點為,連接,直線交直線于點,連接.(1)如圖①,求證:;(提示:在BE上截取,連接.)(2)如圖②、圖③,請直接寫出線段,,之間的數量關系,不需要證明;(3)在(1)、(2)的條件下,若,則__________.23.(8分)如圖,在中,,,為延長線上一點,點在上,且.(1)求證:(2)若,求的度數.24.(8分)數學課上,李老師出示了如下的題目:如圖1,在等邊中,點在上,點在的延長線上,且,試確定線段與的大小關系,并說明理由,(1)小敏與同桌小聰探究解答的思路如下:①特殊情況,探索結論,當點為的中點時,如圖2,確定線段與的大小關系,請你直接寫出結論:______.(填>,<或=)②特例啟發(fā),解答題目,解:題目中,與的大小關系是:______.(填>,<或=)理由如下:如圖3,過點作,交于點,(請你補充完成解答過程)(2)拓展結論,設計新題,同學小敏解答后,提出了新的問題:在等邊中,點在直線上,點在直線上,且,已知的邊長為,求的長?(請直接寫出結果)25.(10分)我們定義:對角線互相垂直的四邊形叫做垂美四邊形.(1)如圖1,垂美四邊形ABCD的對角線AC,BD交于O.求證:AB2+CD2=AD2+BC2;(2)如圖2,分別以Rt△ACB的直角邊AC和斜邊AB為邊向外作正方形ACFG和正方形ABDE,連結BE,CG,GE.①求證:四邊形BCGE是垂美四邊形;②若AC=4,AB=5,求GE的長.26.(10分)(1)解方程:.(2)先化簡:,再任選一個你喜歡的數代入求值.

參考答案一、選擇題(每小題3分,共30分)1、A【分析】絕對值小于1的正數也可以利用科學記數法表示,一般形式為a×11-n,與較大數的科學記數法不同的是其所使用的是負指數冪,指數由原數左邊起第一個不為零的數字前面的1的個數所決定.【詳解】1.11111211=故選A.2、C【分析】先由三角形內角和定理得出∠B+∠C=180°-∠A=105°,再根據四邊形內角和定理即可求出∠BDE+∠DEC=360°-105°=255°.【詳解】:∵∠A+∠B+∠C=180°,∠A=75°,∴∠B+∠C=180°-∠A=105°,∵∠BDE+∠DEC+∠B+∠C=360°,∴∠BDE+∠DEC=360°-105°=255°;故答案為:C.【點睛】本題考查了三角形、四邊形內角和定理,掌握n邊形內角和為(n-2)?180°(n≥3且n為整數)是解題的關鍵.3、C【解析】根據軸對稱圖形的定義:沿一條直線折疊后直線兩邊的部分能互相重合,進行判斷即可.【詳解】A、不是軸對稱圖形,故本選項錯誤;B、不是軸對稱圖形,故本選項錯誤;C、是軸對稱圖形,故本選項正確;D、不是軸對稱圖形,故本選項錯誤,故選C.【點睛】本題考查了軸對稱圖形,關鍵是能根據軸對稱圖形的定義判斷一個圖形是否是軸對稱圖形.4、C【分析】設小長方形的長為x,寬為y,根據題意可列出方程組,即可求解h.【詳解】設小長方形的長為x,寬為y,由圖可得解得h=40cm,故選C.【點睛】此題主要考查二元一次方程組的應用,解題的關鍵是根據圖形列出方程組進行求解.5、A【分析】根據勾股定理的逆定理:如果三角形有兩邊的平方和等于第三邊的平方,那么這個是直角三角形判定則可.如果有這種關系,就是直角三角形,沒有這種關系,就不是直角三角形,分析得出即可.【詳解】A.∵1+=2,∴此三角形是直角三角形,正確;B.∵1+3≠4,∴此三角形不是直角三角形,不符合題意;C.∵2+3≠6,∴此三角形不是直角三角形,不合題意;D.∵4+5≠6,∴此三角形不是直角三角形,不合題意.故選:A.【點睛】此題考查勾股定理的逆定理,解題關鍵在于掌握計算公式.6、B【分析】解不等式組得,根據其有兩個整數解得出,解之求得的范圍;解分式方程求出,由解為正數且分式方程有解得出,解之求得的范圍;綜合以上的范圍得出的整數值,從而得出答案.【詳解】解:解不等式,得:,解不等式,得:,不等式組恰有兩個整數解,,解得,解分式方程得,經檢驗,y=2a-1是原分式方程的解,由題意知,解得且,則滿足,且且的所有整數有2、3,所以所有滿足條件的整數的值之和是,故選:.【點睛】本題主要考查一元一次不等式組的整數解,解題的關鍵是掌握根據不等式組整數解的個數得出的范圍,根據分式方程解的情況得出的另一個范圍.7、A【解析】分式即形式,且分母中要有字母,且分母不能為0.【詳解】本題中只有第五個式子為分式,所以答案選擇A項.【點睛】本題考查了分式的概念,熟悉理解定義是解決本題的關鍵.8、C【分析】直接根據角平分線的性質即可得出結論.【詳解】∵O是△ABC三條角平分線的交點,AB、BC、AC的長分別12,18,21,∴S△OAB:S△OBC:S△OAC=AB:OB:AC=12:18:21=2:3:1.故選C.【點睛】本題考查了角平分線的性質,熟知角的平分線上的點到角的兩邊的距離相等是解答此題的關鍵.9、A【分析】根據分式的基本性質即可求出答案.【詳解】解:原式==,故選:A.【點睛】本題考查分式的基本性質,關鍵在于熟記基本性質.10、C【分析】首先設此多邊形為n邊形,根據題意得:180(n-2)=540,即可求得n=5,再由多邊形的外角和等于360°,即可求得答案.【詳解】解:設此多邊形為n邊形,根據題意得:180(n-2)=540,解得:n=5,∴這個正多邊形的每一個外角等于:=72°.故選C.【點睛】此題考查了多邊形的內角和與外角和的知識.注意掌握多邊形內角和定理:(n-2)?180°,外角和等于360°.二、填空題(每小題3分,共24分)11、3x(x+2)(x﹣2)【分析】先提公因式3x,然后利用平方差公式進行分解即可.【詳解】3x3﹣12x=3x(x2﹣4)=3x(x+2)(x﹣2),故答案為3x(x+2)(x﹣2).【點睛】本題考查了提公因式法與公式法分解因式,要求靈活使用各種方法對多項式進行因式分解,一般來說,如果可以先提取公因式的要先提取公因式,再考慮運用公式法分解.12、x<-1.【分析】由圖象可知,在點A的左側,函數的圖像在的圖像的上方,即,所以求出點A的坐標后結合圖象即可寫出不等式的解集.【詳解】解:∵和的圖像相交于點A(m,3),∴∴∴交點坐標為A(-1,3),

由圖象可知,在點A的左側,函數的圖像在的圖像的上方,即∴不等式的解集為x<-1.

故答案是:x<-1.【點睛】此題主要考查了一次函數與一元一次不等式的關系,用圖象法解不等式的關鍵是找到y(tǒng)相等時的分界點,觀察分界點左右圖象的變化趨勢,即可求出不等式的解集,重點要掌握利用數形結合的思想.13、80°.【分析】根據∠A:∠B:∠C=2:3:4,可設∠A=2x°,∠B=3x°,∠C=4x°,再根據三角形的內角和定理便可列出方程求出x,由此可求出∠C.【詳解】∵∠A:∠B:∠C=2:3:4,∴設∠A=2x°,∠B=3x°,∠C=4x°,由三角形內角和定理可得:2x+3x+4x=180,解得x=20,∴∠C=4x°=80°,故答案為:80°.【點睛】本題考查三角形的內角和定理,掌握方程思想是解決此題的關鍵.能根據比例關系設未知數可使題做起來更加簡單.14、15°或30°或75°或120°【分析】當△PAD是等腰三角形時,是軸對稱圖形.分四種情形分別求解即可.【詳解】如圖,當△PAD是等腰三角形時,是軸對稱圖形.∵AD是等邊三角形BC邊長的高,∴∠BAD=∠CAD=30°,當AP=AD時,∠P1AD=∠P1AB+∠BAD=120°+30°=150°∴∠AP1D===15°,∠AP3D===75°.當PA=PD時,可得∠AP2D===120°.當DA=DP時,可得∠AP4D=∠P4AD=30°,綜上所述,滿足條件的∠APD的值為120°或75°或30°或15°.故答案為15°或30°或75°或120°.【點睛】此題主要考查等腰三角形的判定與性質,解題的關鍵是根據題意分情況討論.15、x1-y1【分析】根據平方差公式(a+b)(a-b)=a1-b1計算,其特點是:一項的符號相同,另一項項的符號相反,可得到答案.【詳解】x1-y1.故答案為:x1-y1.【點睛】此題主要考查了平方差公式,運用平方差公式計算時,關鍵要找相同項和相反項,其結果是相同項的平方減去相反項的平方.16、1【分析】根據直角三角形的性質可得∠ACB=55°,再利用線段垂直平分線的性質可得AD=CD,根據等邊對等角可得∠A=∠ACD=35°,進而可得∠BCD的度數.【詳解】∵∠A=35°,∠B=90°,∴∠ACB=55°,∵MN是線段AC的垂直平分線,∴AD=CD,∴∠A=∠ACD=35°,∴∠BCD=1°,故答案為:1.【點睛】此題主要考查了直角三角形的性質,以及線段垂直平分線的性質,關鍵是掌握在直角三角形中,兩個銳角互余,線段垂直平分線上任意一點,到線段兩端點的距離相等.17、1【分析】直接利用負指數冪的性質以及零指數冪的性質分別化簡得出答案.【詳解】解:原式=1+9=1,故答案為:1.【點睛】本題考查實數的運算,熟練掌握負指數冪的性質以及零指數冪的性質是解決本題的關鍵.18、或【分析】當和全等時,得到OA=CQ,OQ=PC或OA=PC,OQ=QC,代入即可求出a、t的值.【詳解】當和全等時,OA=CQ,OQ=PC或OA=PC,OQ=QC∵OA=8=BC,PC=2t,OQ=2at,QC=12?2at,代入得:或,解得:t=2,a=1,或t=4,a=,∴的所有情況是或故答案為:或.【點睛】本題主要考查了矩形的性質,全等三角形的性質和判定,坐標與圖形的性質等知識點,解此題的關鍵是正確分組討論.三、解答題(共66分)19、證明見解析.【分析】根據平行線性質得出∠A=∠B,根據SAS證△ACD≌△BEC,推出DC=CE,根據等腰三角形的三線合一定理推出即可.【詳解】∵AD∥BE,∴∠A=∠B.在△ACD和△BEC中∵,∴△ACD≌△BEC(SAS),∴DC=CE.∵CF平分∠DCE,∴CF⊥DE(三線合一).【點睛】本題考查了全等三角形的性質和判定,平行線的性質,等腰三角形的性質等知識點,關鍵是求出DC=CE,主要考查了學生運用定理進行推理的能力.20、(1)k=﹣20;(2)y=﹣x;(3)點N的坐標為(,0)或(,0)或(﹣,0)或(,0).【分析】(1)由結合反比例函數k的幾何意義可得+4=14,進一步即可求出結果;(2)由題意可得MO=MQ,于是可設點Q(a,﹣a),再利用待定系數法解答即可;(3)先求出點Q的坐標和OQ的長,然后分三種情況:①若OQ=ON,可直接寫出點N的坐標;②若QO=QN,根據等腰三角形的性質解答;③若NO=NQ,根據兩點間的距離解答.【詳解】解:(1)∵,S△POM=,S△QOM=,∴+4=14,解得,∵k<0,∴k=﹣20;(2)∵,軸,∴,∴MO=MQ,設點Q(a,﹣a),直線OQ的解析式為y=mx,把點Q的坐標代入得:﹣a=ma,解得:m=﹣1,∴直線OQ的解析式為y=﹣x;(3)∵點Q(a,﹣a)在上,∴,解得(負值舍去),∴點Q的坐標為,則,若為等腰三角形,可分三種情況:①若OQ=ON=,則點N的坐標是(,0)或(﹣,0);②若QO=QN,則NO=2OM=,∴點N的坐標是(,0);③若NO=NQ,設點N坐標為(n,0),則,解得,∴點N的坐標是(,0);綜上,滿足條件的點N的坐標為(,0)或(,0)或(﹣,0)或(,0).【點睛】本題考查了反比例函數系數k的幾何意義、等腰三角形的性質、勾股定理以及兩點間的距離等知識,具有一定的綜合性,熟練掌握相關知識是解題的關鍵.21、(1)B盒子的高為3分米;(2)制作一個盒子的制作費用是240元;(3).【分析】(1)先以“盒子底面制作費用是盒子底面制作費用的3倍”為等量關系列出分式方程,再求解分式方程,最后檢驗作答即得.(2)先分別求出A盒子的底面積和四個側面積,再求出各個面的制作費用之和即得.(3)先依據(2)寫出多項式,再應用十字相乘法因式分解即得.【詳解】(1)設B盒子的高為h分米.由題意得:解得:經檢驗得:是原分式方程的解.答:B盒子的高為3分米.(2)∵由(1)得B盒子的高為3分米∴A盒子的高為:(分米)∴A盒子的底面積為:(平方分米)∴A盒子的底邊長為:(分米)∴A盒子的側面積為:(平方分米)∵底面的材料1.5元/平方分米,側面制作材料的費用是0.5元/平方分米∴制作一個盒子的制作費用是:(元)答:制作一個盒子的制作費用是240元.(3)∵由(2)得:∴∴故答案為:.【點睛】本題考查分式方程的實際應用、整式的“十字相乘法”因式分解,實際問題找等量關系是解題關鍵,注意分式方程求解后的檢驗是易遺漏點;因式分解注意觀察形式選擇合適的方法,熟練掌握十字相乘法因式分解是解題關鍵,22、(1)見解析;(2)圖②中,CE+BE=AE,圖③中,AE+BE=CE;(3)1.1或4.1【分析】(1)在BE上截取,連接,只要證明△AED≌△AFB,進而證出△AFE為等邊三角形,得出CE+AE=BF+FE,即可解決問題;(2)圖②中,CE+BE=AE,延長EB到F,使BF=CE,連接,只要證明△ACE≌△AFB,進而證出△AFE為等邊三角形,得出CE+BE=BF+BE,即可解決問題;圖③中,AE+BE=CE,在EC上截取CF=BE,連接,只要證明△AEB≌△AFC,進而證出△AFE為等邊三角形,得出AE+BE=CF+EF,即可解決問題;(3)根據線段,,,BD之間的數量關系分別列式計算即可解決問題.【詳解】(1)證明:在BE上截取,連接,

在等邊△ABC中,

AC=AB,∠BAC=60°

由對稱可知:AP是CD的垂直平分線,AC=AD,∠EAC=∠EAD,

設∠EAC=∠DAE=x.

∵AD=AC=AB,

∴∠D=∠ABD=(180°-∠BAC-2x)=60°-x,

∴∠AEB=60-x+x=60°.

∵AC=AB,AC=AD,∴AB=AD,∴∠ABF=∠ADE,∵,∴△ABF≌△ADE,∴AF=AE,BF=DE,∴△AFE為等邊三角形,∴EF=AE,∵AP是CD的垂直平分線,∴CE=DE,∴CE=DE=BF,

∴CE+AE=BF+FE=BE;(2)圖②中,CE+BE=AE,延長EB到F,使BF=CE,連接在等邊△ABC中,

AC=AB,∠BAC=60°

由對稱可知:AP是CD的垂直平分線,AC=AD,∠EAC=∠EAD,

∴AB=AD,CE=DE,∵AE=AE∴△ACE≌△ADE,∴∠ACE=∠ADE∵AB=AD,∴∠ABD=∠ADB∴∠ABF=∠ADE=∠ACE∵AB=AC,BF=CE,∴△ACE≌△ABF,∴AE=AF,∠BAF=∠CAE∵∠BAC=∠BAE+∠CAE=60°∴∠EAF=∠BAE+∠BAF=60°∴△AFE為等邊三角形,∴EF=AE,∴AE=BE+BF=BE+CE,即CE+BE=AE;圖③中,AE+BE=CE,在EC上截取CF=BE,連接,在等邊△ABC中,

AC=AB,∠BAC=60°

由對稱可知:AP是CD的垂直平分線,AC=AD,∠EAC=∠EAD,

∴AB=AD,CE=DE,∵AE=AE∴△ACE≌△ADE,∴∠ACE=∠ADE∵AB=AD,∴∠ABD=∠ADB∴∠ABD=∠ADE=∠ACE∵AB=AC,BE=CF,∴△ACF≌△ABE,∴AE=AF,∠BAE=∠CAF∵∠BAC=∠BAF+∠CAF=60°∴∠EAF=∠BAF+∠BAE=60°∴△AFE為等邊三角形,∴EF=AE,∴CE=EF+CF=AE+BE,即AE+BE=CE;(3)在(1)的條件下,若,則AE=3,∵CE+AE=BE,∴BE-CE=3,∵BD=BE+ED=BE+CE=6,∴CE=1.1;在(2)的條件下,若,則AE=3,因為圖②中,CE+BE=AE,而BD=BE-DE=BE-CE,所以BD不可能等于2AE;圖③中,若,則AE=3,∵AE+BE=CE,∴CE-BE=3,∵BD=BE+ED=BE+CE=6,∴CE=4.1.即CE=1.1或4.1.【點睛】本題考查幾何變換,等邊三角形的性質,線段垂直平分線的性質,全等三角形的判定和性質等知識,解題的關鍵是學會添加常用輔助線,構造全等三角形解決問題.23、(1)見解析;(2)60°【分析】(1)根據在△ABC中,AB=CB,∠ABC=90°,F為AB延長線上一點,點E在BC上,且AE=CF,可以得到Rt△ABE和Rt△CBF全等的條件,從而可以證明△ABE≌△CBF;(2)根據Rt△ABE≌Rt△CBF,AB=CB,∠CAE=30°,可以得到∠ACF的度數.【詳解】解:(1)證明:∵,∴,在和中,∴(2)∵,∴,又∵∴,由(1)知:,∴,∵【點睛】本題考查全等三角形的判定與性質,解題的關鍵是明確題意,找出所要證明結論需要的條件.24、(1)①AE=DB;②=;理由見解析;(2)2或1.【分析】(1)①根據等邊三角形性質和等腰三角形的性質求出=求出DB=BE,進而得出AE=DB即可;②根據題意結合平行線性質利用全等三角形的判定證得△BDE≌△FEC,求出AE=EF進而得到AE=DB即可;(2)根據題意分兩種情況討論,一種是點在線段上另一種是點在線段的反向延長線上進行分析即可.【詳解】解:(1)①∵為等邊三角形,點為的中點,∴,,∵,∴,得出,即有,∴,∴AE=DB.②AE=DB,理由如下:作EF//BC,交AB于E,AC于F,∵EF//BC,∴∠AEF=∠ABC=60°,∠AFE=∠ACF=60°,∠1=∠2,∴∠1=∠5=120°,∵EC=ED,∴∠2=∠3,∴∠1=∠3,在△BDE和△FEC中,,∴△BDE≌△FEC,∴DB=EF,∵∠A=∠AEF=∠AFE=60°,∴△AEF為等邊三角形,∴AE=EF,∴AE=DB.(2)第一種情況:假設點在線段上,并作EF//BC,交AB于E,AC于F,如圖所示:根據②可知AE=DB,∵在等邊中,的邊長為,∴AE=DB=1,∴;第二種情況:假設點在線段的反向延長線上,如圖所示:根據②的結論可知AE=DB,∵在等邊中,的邊長為,∴;綜上所述CD的長為2或1.【點睛】本題綜合考查等邊三角形的性質和判定和等腰三角形的性質以及全等三角形的性質和判定等知識點的應用,解題的關鍵是構造全等的三角形進行分析.25、(1)見解析;(2)①見解析;②GE=【分析】(1)由垂美四邊形得出AC⊥BD,則∠AOD=∠AOB=∠BOC=∠COD=90°,由勾股定理得AD2+BC2=AO2+DO2+BO2+CO2,AB2+CD2=AO2+BO2+CO2+DO2,即可得出結論;

(2)①連接BG、CE相交于點N,CE交AB于點M,由正方形

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論