




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
第06講基本不等式及應(yīng)用1、基本不等式:(1)基本不等式成立的條件:.(2)等號成立的條件:當(dāng)且僅當(dāng)時取等號.(3)其中eq\f(a+b,2)叫做正數(shù)a,b的算術(shù)平均數(shù),eq\r(ab)叫做正數(shù)a,b的幾何平均數(shù).2、幾個重要的不等式(1)a2+b2≥(a,b∈R).(2)eq\f(b,a)+eq\f(a,b)≥(a,b同號).(3)ab≤(a,b∈R).(4)eq\f(a2+b2,2)≥2(a,b∈R).以上不等式等號成立的條件均為a=b.3、利用基本不等式求最值(1)已知x,y都是正數(shù),如果積xy等于定值P,那么當(dāng)x=y(tǒng)時,和x+y有最小值2eq\r(P).(2)已知x,y都是正數(shù),如果和x+y等于定值S,那么當(dāng)x=y(tǒng)時,積xy有最大值eq\f(1,4)S2.注意:利用不等式求最值應(yīng)滿足三個條件“一正、二定、三相等”.1、【2022年新高考2卷】若x,y滿足x2A.x+y≤1 B.x+y≥?2C.x2+y2、【2021年乙卷文科】下列函數(shù)中最小值為4的是(
)A. B.C. D.3、【2020年新高考1卷(山東卷)】已知a>0,b>0,且a+b=1,則(
)A. B.C. D.1、在下列函數(shù)中,最小值為2的是()A. B.C. D.2、一段長為30m的籬笆圍成一個一邊靠墻的矩形菜園,墻長18m,則這個矩形的長為________m,寬為________m時菜園面積最大.3、(2022·山東棗莊·一模)(多選題)已知正數(shù)a,b滿足,則(
)A.的最大值是B.的最大值是C.的最小值是D.的最小值為4、(2022·江蘇南通·模擬預(yù)測)(多選題)已知,且.則下列選項正確的是(
)A.的最小值為B.的最小值為C.D.考向一運用基本不等式求函數(shù)的最值例1、(1)已知0<x<1,則x(4-3x)取得最大值時x的值為________.(2)已知x<eq\f(5,4),則f(x)=4x-2+eq\f(1,4x-5)的最大值為________.(3)函數(shù)y=eq\f(x2+2,x-1)(x>1)的最小值為________.變式1、已知x>1,求y=eq\f(x2+2,x-1)的最小值.變式2、已知x≥1,求y=eq\f(x2+2,x+1)的最小值.變式3、(1)(2022·江蘇泰州·一模)(多選題)下列函數(shù)中最小值為6的是(
)A. B.C. D.(2)(2022·廣東惠州·二模)函數(shù)有(
)A.最大值 B.最小值 C.最大值2 D.最小值2方法總結(jié):(1)應(yīng)用基本不等式求值域一定要注意應(yīng)用的前提:“一正”“二定”“三相等”.所謂“一正”是指正數(shù),“二定”是指應(yīng)用基本不等式求最值時,和或積為定值,“三相等”是指滿足等號成立的條件.如果不滿足等號的成立條件就用函數(shù)的單調(diào)性求解.(2)在利用基本不等式求最值時,要根據(jù)式子的特征靈活變形,配湊(或換元)出積、和為常數(shù)的形式,然后再利用基本不等式.考向二基本不等式中1的運用例2、(2022·湖北華中師大附中等六校開學(xué)考試聯(lián)考)若正數(shù),滿足,則的最小值是()A. B. C. D.變式1、(2022·江蘇揚州·高三期末)已知正實數(shù)x,y滿足x+y=1,則的最小值為__________.變式2、(2022·江蘇·金陵中學(xué)模擬預(yù)測)已知是正實數(shù),函數(shù)的圖象經(jīng)過點,則的最小值為(
)A. B.9 C. D.2變式3、(2022·湖北·荊門市龍泉中學(xué)二模)正項等比數(shù)列中,成等差數(shù)列,且存在兩項使得,則的最小值是(
)A.2 B. C. D.不存在變式4、(2022·湖南師大附中三模)(多選題)若,,,則的可能取值有(
)A. B. C. D.方法總結(jié):(1)利用常數(shù)“1”代換的方法構(gòu)造積為常數(shù)的式子,然后利用基本不等式求解最值.(2)“1”代換的方法可以求解形如【問題2】中的“已知兩正數(shù)之和為定值,求兩數(shù)倒數(shù)和的最值”或“已知兩正數(shù)倒數(shù)之和為定值,求兩正數(shù)和的最值”問題,是直接求解二元函數(shù)值域的一種方法.(3)解決問題時關(guān)注對已知條件和所求目標(biāo)函數(shù)式的變形,使問題轉(zhuǎn)化成可用“1”代換求解的模型考向三運用消參法解決不等式問題例3、(2022·江蘇淮安市六校第一次聯(lián)考)已知x>0,y>0,且x+3y=EQ\F(1,y)-EQ\F(1,x),則y的最大值為()A.1B.EQ\F(1,2)C.2D.EQ\F(1,3)變式1、(2022·江蘇南京市金陵中學(xué)高三10月月考)已知正實數(shù),滿足,則的最小值是______.變式2、(2022·湖南·一模)已知,則_________.方法總結(jié):當(dāng)所求最值的代數(shù)式中的變量比較多時,通常是考慮利用已知條件消去部分變量后,湊出“和為常數(shù)”或“積為常數(shù)”,最后利用基本不等式求最值考向四運用基本不等式解決實際問題例4、工廠某種產(chǎn)品的年固定成本為250萬元,每生產(chǎn)x千件,另需投入成本C(x)(單位:萬元),當(dāng)年產(chǎn)量不足80千件時,C(x)=eq\f(1,3)x2+10x;當(dāng)年產(chǎn)量不小于80千件時,C(x)=51x+eq\f(10000,x)-1450.已知每件商品的售價為0.05萬元,通過市場分析,該廠生產(chǎn)的商品能全部售完.(1)寫出年利潤L(x)(萬元)關(guān)于年產(chǎn)量x(千件)的函數(shù)解析式;(2)當(dāng)年產(chǎn)量為多少千件時,該廠在這一商品的生產(chǎn)中所獲利潤最大?變式1、(2022·福州高三期中)某縣一中計劃把一塊邊長為20m的等邊三角形ABC的邊角地開辟為植物新品種實驗基地,圖中DE把基地分成面積相等的兩部分,點D在AB上,點E在AC上.(1)設(shè)AD=x(x>10),DE=y(tǒng),求y關(guān)于x的函數(shù)解析式;(2)若DE是灌溉輸水管道的位置,為節(jié)約成本,希望它最短,確定DE的位置,并求出ED長的最小值.變式2、(2022·遼寧·鞍山一中模擬預(yù)測)設(shè)矩形的周長為,把它沿對角線對折后,設(shè)交于點,此時點記作,如圖所示,設(shè),,則△的面積的最大值為______.方法總結(jié):利用基本不等式求解實際應(yīng)用題的方法:利用基本不等式解決實際問題,關(guān)鍵是把實際問題轉(zhuǎn)化為代數(shù)問題,列出函數(shù)關(guān)系式,再利用基本不等式求最值.1、(2022·重慶·一模)已知,且,則的最小值為(
)A. B. C. D.2、(2022·福建·模擬預(yù)測)已知,,,則的最小值為(
)A.13 B.19 C.21 D.273、(2022·廣東·模擬預(yù)測)(多選題)已知實數(shù)滿足,則下列結(jié)論正確的是(
)A.的最小值為16B.的最大值為9C.的最大值為9D.的最大值為4、(2022·河北保定·一模)(多選題)下面描述正確的是(
)A.已知,,且,則B.函數(shù),若,且,則的最小值是C.已知,則的最小值為D.已知,則的最小值為5、(2022·重慶·模擬預(yù)測)(多選題)已知正數(shù)a,b滿足,則下列說法一定正確的是(
)A. B.C. D.6、(2022·廣東·模擬預(yù)測)(多選題)已知,則下列結(jié)論正確的是(
)A. B.C. D.7、(2022·湖北·蘄春縣第一高級中學(xué)模擬預(yù)測)(多選題)若,且,則下列不等式恒成立的是(
)A. B.C. D.8、(2022·湖南衡陽·三模)(多選題)已知實數(shù),,.則下列不等式正確的是(
)A. B.C. D.第06講基本不等式及應(yīng)用1、基本不等式:eq\r(ab)≤eq\f(a+b,2)(1)基本不等式成立的條件:a>0,b>0.(2)等號成立的條件:當(dāng)且僅當(dāng)a=b時取等號.(3)其中eq\f(a+b,2)叫做正數(shù)a,b的算術(shù)平均數(shù),eq\r(ab)叫做正數(shù)a,b的幾何平均數(shù).2、幾個重要的不等式(1)a2+b2≥2ab(a,b∈R).(2)eq\f(b,a)+eq\f(a,b)≥2(a,b同號).(3)ab≤eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(a+b,2)))2(a,b∈R).(4)eq\f(a2+b2,2)≥eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(a+b,2)))2(a,b∈R).以上不等式等號成立的條件均為a=b.3、利用基本不等式求最值(1)已知x,y都是正數(shù),如果積xy等于定值P,那么當(dāng)x=y(tǒng)時,和x+y有最小值2eq\r(P).(2)已知x,y都是正數(shù),如果和x+y等于定值S,那么當(dāng)x=y(tǒng)時,積xy有最大值eq\f(1,4)S2.注意:利用不等式求最值應(yīng)滿足三個條件“一正、二定、三相等”.1、【2022年新高考2卷】若x,y滿足x2A.x+y≤1 B.x+y≥?2C.x2+y【答案】BC【解析】因為ab≤a+b22≤a2+b22(a,b∈R),由x2+y由x2+y2?xy=1可變形為x因為x2+y2?xy=1變形可得x?y=43+23故選:BC.2、【2021年乙卷文科】下列函數(shù)中最小值為4的是(
)A. B.C. D.【答案】C【解析】對于A,,當(dāng)且僅當(dāng)時取等號,所以其最小值為,A不符合題意;對于B,因為,,當(dāng)且僅當(dāng)時取等號,等號取不到,所以其最小值不為,B不符合題意;對于C,因為函數(shù)定義域為,而,,當(dāng)且僅當(dāng),即時取等號,所以其最小值為,C符合題意;對于D,,函數(shù)定義域為,而且,如當(dāng),,D不符合題意.故選:C.3、【2020年新高考1卷(山東卷)】已知a>0,b>0,且a+b=1,則(
)A. B.C. D.【答案】ABD【解析】對于A,,當(dāng)且僅當(dāng)時,等號成立,故A正確;對于B,,所以,故B正確;對于C,,當(dāng)且僅當(dāng)時,等號成立,故C不正確;對于D,因為,所以,當(dāng)且僅當(dāng)時,等號成立,故D正確;故選:ABD1、在下列函數(shù)中,最小值為2的是()A. B.C. D.【答案】C【解析】對于A選項,時,為負(fù)數(shù),A錯誤.對于B選項,,,,但不存在使成立,所以B錯誤.對于C選項,,當(dāng)且僅當(dāng)時等號成立,C正確.對于D選項,,,,但不存在使成立,所以D錯誤.故選:C2、一段長為30m的籬笆圍成一個一邊靠墻的矩形菜園,墻長18m,則這個矩形的長為________m,寬為________m時菜園面積最大.【答案】15eq\f(15,2)【解析】設(shè)矩形的長為xm,寬為ym,則x+2y=30,所以S=xy=eq\f(1,2)x·(2y)≤eq\f(1,2)eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(x+2y,2)))2=eq\f(225,2),當(dāng)且僅當(dāng)x=2y,即x=15,y=eq\f(15,2)時取等號3、(2022·山東棗莊·一模)(多選題)已知正數(shù)a,b滿足,則(
)A.的最大值是B.的最大值是C.的最小值是D.的最小值為【答案】ABD【解析】由得,當(dāng)且僅當(dāng)時取等,A正確;由得,當(dāng)且僅當(dāng)時取等,B正確;由正數(shù)a,b及知,,可得,故,C錯誤;令,則,兩邊同時平方得,整理得,又存在使,故,解得,D正確.故選:ABD.4、(2022·江蘇南通·模擬預(yù)測)(多選題)已知,且.則下列選項正確的是(
)A.的最小值為B.的最小值為C.D.【答案】BD【解析】解:由題意得:對于選項A:因為,所以當(dāng)且僅當(dāng)時,即,的最小值為,故A錯誤;對于選項B:因為,所以故當(dāng)時,的最小值為,故B正確;對于選項C:,故C錯誤;對于選項D:,當(dāng)時等號成立,但,故等號不成立,所以,故D正確.故選:BD考向一運用基本不等式求函數(shù)的最值例1、(1)已知0<x<1,則x(4-3x)取得最大值時x的值為________.(2)已知x<eq\f(5,4),則f(x)=4x-2+eq\f(1,4x-5)的最大值為________.(3)函數(shù)y=eq\f(x2+2,x-1)(x>1)的最小值為________.【答案】(1)eq\f(2,3)(2)1(3)2eq\r(3)+2【解析】(1)x(4-3x)=eq\f(1,3)×(3x)·(4-3x)≤eq\f(1,3)×eq\b\lc\[\rc\](\a\vs4\al\co1(\f(3x+4-3x,2)))2=eq\f(4,3),當(dāng)且僅當(dāng)3x=4-3x,即x=eq\f(2,3)時,取等號.故所求x的值為eq\f(2,3).(2)因為x<eq\f(5,4),所以5-4x>0,則f(x)=4x-2+eq\f(1,4x-5)=-eq\b\lc\(\rc\)(\a\vs4\al\co1(5-4x+\f(1,5-4x)))+3≤-2+3=1.當(dāng)且僅當(dāng)5-4x=eq\f(1,5-4x),即x=1時,取等號.故f(x)=4x-2+eq\f(1,4x-5)的最大值為1.(3)y=eq\f(x2+2,x-1)=eq\f(x2-2x+1+2x-2+3,x-1)=eq\f(x-12+2x-1+3,x-1)=(x-1)+eq\f(3,x-1)+2≥2eq\r(3)+2.當(dāng)且僅當(dāng)x-1=eq\f(3,x-1),即x=eq\r(3)+1時,取等號.變式1、已知x>1,求y=eq\f(x2+2,x-1)的最小值.【解析】令x-1=t(t>0),則y=eq\f(x2+2,x-1)=eq\f((t+1)2+2,t)=t+eq\f(3,t)+2≥2eq\r(3)+2,當(dāng)且僅當(dāng)t=eq\f(3,t),即t=eq\r(3),即x=eq\r(3)+1時,取等號,所以y的最小值為2eq\r(3)+2.變式2、已知x≥1,求y=eq\f(x2+2,x+1)的最小值.【解析】令x+1=t(t≥2),則y=eq\f(x2+2,x+1)=eq\f((t-1)2+2,t)=t+eq\f(3,t)-2≥2eq\r(3)-2,當(dāng)且僅當(dāng)t=eq\f(3,t),即t=eq\r(3)時,取等號.又因為t≥2,根據(jù)對勾函數(shù)的性質(zhì)可知當(dāng)t=2,即x=1時,y有最小值,即ymin=2+eq\f(3,2)-2=eq\f(3,2).變式3、(1)(2022·江蘇泰州·一模)(多選題)下列函數(shù)中最小值為6的是(
)A. B.C. D.【答案】BC【分析】根據(jù)基本不等式成立的條件“一正二定三相等”,逐一驗證可得選項.【詳解】解:對于A選項,當(dāng)時,,此時,故A不正確.對于B選項,,當(dāng)且僅當(dāng),即時取“”,故B正確.對于C選項,,當(dāng)且僅當(dāng),即時取“”,故C正確.對于D選項,,當(dāng)且僅當(dāng),即無解,故D不正確.故選:BC.(2)(2022·廣東惠州·二模)函數(shù)有(
)A.最大值 B.最小值 C.最大值2 D.最小值2【答案】D【分析】分離常數(shù)后,用基本不等式可解.【詳解】(方法1),,則,當(dāng)且僅當(dāng),即時,等號成立.(方法2)令,,,.將其代入,原函數(shù)可化為,當(dāng)且僅當(dāng),即時等號成立,此時.故選:D方法總結(jié):(1)應(yīng)用基本不等式求值域一定要注意應(yīng)用的前提:“一正”“二定”“三相等”.所謂“一正”是指正數(shù),“二定”是指應(yīng)用基本不等式求最值時,和或積為定值,“三相等”是指滿足等號成立的條件.如果不滿足等號的成立條件就用函數(shù)的單調(diào)性求解.(2)在利用基本不等式求最值時,要根據(jù)式子的特征靈活變形,配湊(或換元)出積、和為常數(shù)的形式,然后再利用基本不等式.考向二基本不等式中1的運用例2、(2022·湖北華中師大附中等六校開學(xué)考試聯(lián)考)若正數(shù),滿足,則的最小值是()A. B. C. D.【答案】C【解析】(當(dāng)且僅當(dāng),即時取等號),的最小值為.故選:C.變式1、(2022·江蘇揚州·高三期末)已知正實數(shù)x,y滿足x+y=1,則的最小值為__________.【答案】##【解析】由題意可知,===+=(+)(x+y)=4+5++≥9+2=,當(dāng)且僅當(dāng)=,時取等號,此時,故的最小值為.故答案為:變式2、(2022·江蘇·金陵中學(xué)模擬預(yù)測)已知是正實數(shù),函數(shù)的圖象經(jīng)過點,則的最小值為(
)A. B.9 C. D.2【答案】B【分析】將代入,得到,的關(guān)系式,再應(yīng)用基本不等式“1”的代換求最小值即可.【詳解】由函數(shù)的圖象經(jīng)過,則,即.,當(dāng)且僅當(dāng)時取到等號.故選:B.變式3、(2022·湖北·荊門市龍泉中學(xué)二模)正項等比數(shù)列中,成等差數(shù)列,且存在兩項使得,則的最小值是(
)A.2 B. C. D.不存在【答案】B【分析】由等比數(shù)列通項公式及等差中項的性質(zhì)可得,進而有,利用基本不等式“1”的代換求目標(biāo)式最小值,注意等號是否成立.【詳解】由題設(shè),若公比為且,則,所以,由,則,故,可得,所以,而,故等號不成立,又,故當(dāng)時,當(dāng)時,顯然,故時最小值為.故選:B變式4、(2022·湖南師大附中三模)(多選題)若,,,則的可能取值有(
)A. B. C. D.【答案】CD【分析】利用題設(shè)條件,將式子化成,觀察得出,之后利用乘以1不變,結(jié)合基本不等式求得其范圍,進而得到正確答案.【詳解】原式(當(dāng)且僅當(dāng),時取等號).故選:CD.方法總結(jié):(1)利用常數(shù)“1”代換的方法構(gòu)造積為常數(shù)的式子,然后利用基本不等式求解最值.(2)“1”代換的方法可以求解形如【問題2】中的“已知兩正數(shù)之和為定值,求兩數(shù)倒數(shù)和的最值”或“已知兩正數(shù)倒數(shù)之和為定值,求兩正數(shù)和的最值”問題,是直接求解二元函數(shù)值域的一種方法.(3)解決問題時關(guān)注對已知條件和所求目標(biāo)函數(shù)式的變形,使問題轉(zhuǎn)化成可用“1”代換求解的模型考向三運用消參法解決不等式問題例3、(2022·江蘇淮安市六校第一次聯(lián)考)已知x>0,y>0,且x+3y=EQ\F(1,y)-EQ\F(1,x),則y的最大值為()A.1B.EQ\F(1,2)C.2D.EQ\F(1,3)【答案】D【解析】由題意可知,x+3y=EQ\F(1,y)-EQ\F(1,x),則x+EQ\F(1,x)=EQ\F(1,y)-3y,因為x>0,所以x+EQ\F(1,x)=EQ\F(1,y)-3y≥2EQ\R(,x·\F(1,x))=2,當(dāng)且僅當(dāng)x=EQ\F(1,x),即x=1時等號成立,即EQ\F(1,y)-3y≥2,又y>0,所以可化為3y2+2y-1≤0,解得0<y≤EQ\F(1,3),即y的最大值為EQ\F(1,3),故答案選D.變式1、(2022·江蘇南京市金陵中學(xué)高三10月月考)已知正實數(shù),滿足,則的最小值是______.【答案】【解析】,,當(dāng)且僅當(dāng),時取等號.所以則的最小值是,故答案為:變式2、(2022·湖南·一模)已知,則_________.【答案】3【分析】利用基本不等式求得,從而可得,求解出值,代入即可得值.【詳解】因為,當(dāng)且僅當(dāng)時取等號,所以,即,得,所以,即,所以.故答案為:方法總結(jié):當(dāng)所求最值的代數(shù)式中的變量比較多時,通常是考慮利用已知條件消去部分變量后,湊出“和為常數(shù)”或“積為常數(shù)”,最后利用基本不等式求最值考向四運用基本不等式解決實際問題例4、工廠某種產(chǎn)品的年固定成本為250萬元,每生產(chǎn)x千件,另需投入成本C(x)(單位:萬元),當(dāng)年產(chǎn)量不足80千件時,C(x)=eq\f(1,3)x2+10x;當(dāng)年產(chǎn)量不小于80千件時,C(x)=51x+eq\f(10000,x)-1450.已知每件商品的售價為0.05萬元,通過市場分析,該廠生產(chǎn)的商品能全部售完.(1)寫出年利潤L(x)(萬元)關(guān)于年產(chǎn)量x(千件)的函數(shù)解析式;(2)當(dāng)年產(chǎn)量為多少千件時,該廠在這一商品的生產(chǎn)中所獲利潤最大?【解析】(1)因為每件商品的售價為0.05萬元,所以x千件商品的銷售額為(0.05×1000x)萬元.依題意,得當(dāng)0<x<80時,L(x)=1000x×0.05-eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,3)x2+10x))-250=-eq\f(1,3)x2+40x-250;當(dāng)x≥80時,L(x)=1000x×0.05-(51x+eq\f(10000,x)-1450)-250=1200-eq\b\lc\(\rc\)(\a\vs4\al\co1(x+\f(10000,x))),所以L(x)=eq\b\lc\{\rc\(\a\vs4\al\co1(-\f(1,3)x2+40x-250,0<x<80,,1200-\b\lc\(\rc\)(\a\vs4\al\co1(x+\f(10000,x))),x≥80.))(2)當(dāng)0<x<80時,L(x)=-eq\f(1,3)(x-60)2+950.當(dāng)x=60時,L(x)max=950萬元;當(dāng)x≥80時,L(x)=1200-eq\b\lc\(\rc\)(\a\vs4\al\co1(x+\f(10000,x)))≤1200-2eq\r(10000)=1000,當(dāng)且僅當(dāng)x=100時,取等號,則L(x)max=1000萬元.綜上,當(dāng)年產(chǎn)量為100千件時,年利潤最大.變式1、(2022·福州高三期中)某縣一中計劃把一塊邊長為20m的等邊三角形ABC的邊角地開辟為植物新品種實驗基地,圖中DE把基地分成面積相等的兩部分,點D在AB上,點E在AC上.(1)設(shè)AD=x(x>10),DE=y(tǒng),求y關(guān)于x的函數(shù)解析式;(2)若DE是灌溉輸水管道的位置,為節(jié)約成本,希望它最短,確定DE的位置,并求出ED長的最小值.【解析】(1)由已知得S△ADE=eq\f(1,2)S△ABC,即eq\f(1,2)x·AE·sinA=eq\f(1,2)·eq\f(1,2)AB·AC·sinA,即AE=eq\f(200,x).在△ADE中,由余弦定理,得y2=x2+AE2-2x·AE·cosA=x2+eq\f(2002,x2)-200,故y=eq\r(x2+\f(2002,x2)-200),10<x≤20.(2)由(1),得y=eq\r(x2+\f(2002,x2)-200)≥eq\r(2\r(2002)-200)=10eq\r(2),當(dāng)且僅當(dāng)x2=eq\f(2002,x2),即x=10eq\r(2)時,取等號,所以當(dāng)AD=10eq\r(2)m,AE=10eq\r(2)m時,ED最短,為10eq\r(2)m.變式2、(2022·遼寧·鞍山一中模擬預(yù)測)設(shè)矩形的周長為,把它沿對角線對折后,設(shè)交于點,此時點記作,如圖所示,設(shè),,則△的面積的最大值為______.【答案】【分析】由題設(shè)可得,結(jié)合基本不等式得到關(guān)于的一元二次不等式并求解集,結(jié)合△的面積即可得最大值,注意成立條件.【詳解】由題意△△,而,,所以,而矩形的周長為,則,整理得,僅當(dāng)?shù)忍柍闪?,所以,而,可得,則,而△的面積,故最大值為,此時.故答案為:方法總結(jié):利用基本不等式求解實際應(yīng)用題的方法:利用基本不等式解決實際問題,關(guān)鍵是把實際問題轉(zhuǎn)化為代數(shù)問題,列出函數(shù)關(guān)系式,再利用基本不等式求最值.1、(2022·重慶·一模)已知,且,則的最小值為(
)A. B. C. D.【答案】D【解析】將代入,可得:(當(dāng)且僅當(dāng)時,取得等號)故選:D2、(2022·福建·模擬預(yù)測)已知,,,則的最小值為(
)A.13 B.19
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025上海市安全員考試題庫及答案
- 2025-2030年中國金鹵燈行業(yè)十三五規(guī)劃與發(fā)展前景分析報告
- 2025-2030年中國辣椒紅色素市場運營狀況及發(fā)展前景預(yù)測報告
- 2025-2030年中國軟包裝復(fù)合膜行業(yè)運行動態(tài)及發(fā)展前景預(yù)測報告
- 2025-2030年中國超高頻RFID市場發(fā)展現(xiàn)狀規(guī)劃研究報告
- 2025-2030年中國船用液壓舵機行業(yè)運行狀況及發(fā)展趨勢分析報告
- 2025-2030年中國聚氯乙烯用阻燃劑行業(yè)運行態(tài)勢及投資戰(zhàn)略研究報告
- 2025-2030年中國納米二氧化鈦市場運行現(xiàn)狀及投資發(fā)展前景預(yù)測報告
- 2025-2030年中國男士化妝品市場規(guī)模分析及發(fā)展建議研究報告
- 全國水資源保護規(guī)劃技術(shù)大綱
- 企業(yè)員工培訓(xùn)PPT課件:職務(wù)犯罪培訓(xùn)
- 蛋白質(zhì)分離技術(shù)全PPT課件
- 汪小蘭有機化學(xué)課件(第四版)9醛酮醌
- 磷酸鐵鋰電池工商業(yè)儲能項目施工組織設(shè)計方案
- 場地租賃安全管理協(xié)議書
- 震旦ad188維修手冊
- 五金英語詞匯盤點
- 內(nèi)容講義說明案例nxt pop trainning
- 工業(yè)自動化設(shè)備項目用地申請報告(模板)
- 2021年羽毛球比賽規(guī)則及裁判手勢
評論
0/150
提交評論