




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
江西省重點(diǎn)中學(xué)2025年初三數(shù)學(xué)試題大練習(xí)(一)版注意事項(xiàng)1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準(zhǔn)考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認(rèn)真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項(xiàng)的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(每小題只有一個(gè)正確答案,每小題3分,滿分30分)1.如圖,AB∥CD,AD與BC相交于點(diǎn)O,若∠A=50°10′,∠COD=100°,則∠C等于()A.30°10′ B.29°10′ C.29°50′ D.50°10′2.如圖是由四個(gè)小正方體疊成的一個(gè)幾何體,它的左視圖是()A. B. C. D.3.用配方法解方程x2﹣4x+1=0,配方后所得的方程是()A.(x﹣2)2=3 B.(x+2)2=3 C.(x﹣2)2=﹣3 D.(x+2)2=﹣34.下列二次根式,最簡二次根式是()A.8 B.12 C.5 D.5.下列運(yùn)算正確的是()A.2+a=3 B.=C. D.=6.如圖,點(diǎn)A、B在數(shù)軸上表示的數(shù)的絕對值相等,且,那么點(diǎn)A表示的數(shù)是A. B. C. D.37.用半徑為8的半圓圍成一個(gè)圓錐的側(cè)面,則圓錐的底面半徑等于()A.4 B.6 C.16π D.88.如圖,AB∥CD,那么()A.∠BAD與∠B互補(bǔ) B.∠1=∠2 C.∠BAD與∠D互補(bǔ) D.∠BCD與∠D互補(bǔ)9.二次函數(shù)y=a(x-4)2-4(a≠0)的圖象在2<x<3這一段位于x軸的下方,在6<x<7這一段位于x軸的上方,則a的值為(
)A.1
B.-1
C.2
D.-210.如圖,⊙O與直線l1相離,圓心O到直線l1的距離OB=2,OA=4,將直線l1繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)30°后得到的直線l2剛好與⊙O相切于點(diǎn)C,則OC=()A.1 B.2 C.3 D.4二、填空題(共7小題,每小題3分,滿分21分)11.已知一個(gè)斜坡的坡度,那么該斜坡的坡角的度數(shù)是______.12.一次函數(shù)y=kx+3的圖象與坐標(biāo)軸的兩個(gè)交點(diǎn)之間的距離為5,則k的值為______.13.如圖,△AOB是直角三角形,∠AOB=90°,OB=2OA,點(diǎn)A在反比例函數(shù)y=的圖象上.若點(diǎn)B在反比例函數(shù)y=的圖象上,則k的值為_____.14.關(guān)于x的一元二次方程x2﹣2x+m﹣1=0有兩個(gè)實(shí)數(shù)根,則m的取值范圍是_____.15.在Rt△ABC紙片上剪出7個(gè)如圖所示的正方形,點(diǎn)E,F(xiàn)落在AB邊上,每個(gè)正方形的邊長為1,則Rt△ABC的面積為_____.16.當(dāng)x=_____時(shí),分式值為零.17.若分式的值為正,則實(shí)數(shù)的取值范圍是__________________.三、解答題(共7小題,滿分69分)18.(10分)如圖,拋物線y=x2﹣2mx(m>0)與x軸的另一個(gè)交點(diǎn)為A,過P(1,﹣m)作PM⊥x軸于點(diǎn)M,交拋物線于點(diǎn)B,點(diǎn)B關(guān)于拋物線對稱軸的對稱點(diǎn)為C(1)若m=2,求點(diǎn)A和點(diǎn)C的坐標(biāo);(2)令m>1,連接CA,若△ACP為直角三角形,求m的值;(3)在坐標(biāo)軸上是否存在點(diǎn)E,使得△PEC是以P為直角頂點(diǎn)的等腰直角三角形?若存在,求出點(diǎn)E的坐標(biāo);若不存在,請說明理由.19.(5分)如圖,正六邊形ABCDEF在正三角形網(wǎng)格內(nèi),點(diǎn)O為正六邊形的中心,僅用無刻度的直尺完成以下作圖.(1)在圖1中,過點(diǎn)O作AC的平行線;(2)在圖2中,過點(diǎn)E作AC的平行線.20.(8分)如圖,已知四邊形ABCD是矩形,把矩形沿直線AC折疊,點(diǎn)B落在點(diǎn)E處,連接DE.若DE:AC=3:5,求的值.21.(10分)如圖,⊙O直徑AB和弦CD相交于點(diǎn)E,AE=2,EB=6,∠DEB=30°,求弦CD長.22.(10分)如圖,在△ABC中,已知AB=AC=5,BC=6,且△ABC≌△DEF,將△DEF與△ABC重合在一起,△ABC不動,△DEF運(yùn)動,并滿足:點(diǎn)E在邊BC上沿B到C的方向運(yùn)動,且DE始終經(jīng)過點(diǎn)A,EF與AC交于M點(diǎn).(1)求證:△ABE∽△ECM;(2)探究:在△DEF運(yùn)動過程中,重疊部分能否構(gòu)成等腰三角形?若能,求出BE的長;若不能,請說明理由;(3)當(dāng)線段AM最短時(shí),求重疊部分的面積.23.(12分)圖1是一商場的推拉門,已知門的寬度米,且兩扇門的大小相同(即),將左邊的門繞門軸向里面旋轉(zhuǎn),將右邊的門繞門軸向外面旋轉(zhuǎn),其示意圖如圖2,求此時(shí)與之間的距離(結(jié)果保留一位小數(shù)).(參考數(shù)據(jù):,,)24.(14分)如圖,AD是⊙O的直徑,AB為⊙O的弦,OP⊥AD,OP與AB的延長線交于點(diǎn)P,過B點(diǎn)的切線交OP于點(diǎn)C.求證:∠CBP=∠ADB.若OA=2,AB=1,求線段BP的長.
參考答案一、選擇題(每小題只有一個(gè)正確答案,每小題3分,滿分30分)1、C【解析】
根據(jù)平行線性質(zhì)求出∠D,根據(jù)三角形的內(nèi)角和定理得出∠C=180°-∠D-∠COD,代入求出即可.【詳解】∵AB∥CD,∴∠D=∠A=50°10′,∵∠COD=100°,∴∠C=180°-∠D-∠COD=29°50′.故選C.本題考查了三角形的內(nèi)角和定理和平行線的性質(zhì)的應(yīng)用,關(guān)鍵是求出∠D的度數(shù)和得出∠C=180°-∠D-∠COD.應(yīng)該掌握的是三角形的內(nèi)角和為180°.2、A【解析】試題分析:如圖是由四個(gè)小正方體疊成的一個(gè)幾何體,它的左視圖是.故選A.考點(diǎn):簡單組合體的三視圖.3、A【解析】
方程變形后,配方得到結(jié)果,即可做出判斷.【詳解】方程,變形得:,配方得:,即故選A.本題考查的知識點(diǎn)是了解一元二次方程﹣配方法,解題關(guān)鍵是熟練掌握完全平方公式.4、C【解析】
檢查最簡二次根式的兩個(gè)條件是否同時(shí)滿足,同時(shí)滿足的就是最簡二次根式,否則就不是.【詳解】A、被開方數(shù)含開的盡的因數(shù),故A不符合題意;B、被開方數(shù)含分母,故B不符合題意;C、被開方數(shù)不含分母;被開方數(shù)不含能開得盡方的因數(shù)或因式,故C符合題意;D、被開方數(shù)含能開得盡方的因數(shù)或因式,故D不符合題意.故選C.本題考查最簡二次根式的定義,最簡二次根式必須滿足兩個(gè)條件:被開方數(shù)不含分母;被開方數(shù)不含能開得盡方的因數(shù)或因式.5、D【解析】
根據(jù)整式的混合運(yùn)算計(jì)算得到結(jié)果,即可作出判斷.【詳解】A、2與a不是同類項(xiàng),不能合并,不符合題意;B、=,不符合題意;C、原式=,不符合題意;D、=,符合題意,故選D.此題考查了整式的混合運(yùn)算,熟練掌握運(yùn)算法則是解本題的關(guān)鍵.6、B【解析】
如果點(diǎn)A,B表示的數(shù)的絕對值相等,那么AB的中點(diǎn)即為坐標(biāo)原點(diǎn).【詳解】解:如圖,AB的中點(diǎn)即數(shù)軸的原點(diǎn)O.
根據(jù)數(shù)軸可以得到點(diǎn)A表示的數(shù)是.
故選:B.此題考查了數(shù)軸有關(guān)內(nèi)容,用幾何方法借助數(shù)軸來求解,非常直觀,體現(xiàn)了數(shù)形結(jié)合的優(yōu)點(diǎn)確定數(shù)軸的原點(diǎn)是解決本題的關(guān)鍵.7、A【解析】
由于半圓的弧長=圓錐的底面周長,那么圓錐的底面周長為8π,底面半徑=8π÷2π.【詳解】解:由題意知:底面周長=8π,∴底面半徑=8π÷2π=1.故選A.此題主要考查了圓錐側(cè)面展開扇形與底面圓之間的關(guān)系,圓錐的側(cè)面展開圖是一個(gè)扇形,此扇形的弧長等于圓錐底面周長,扇形的半徑等于圓錐的母線長,解決本題的關(guān)鍵是應(yīng)用半圓的弧長=圓錐的底面周長.8、C【解析】
分清截線和被截線,根據(jù)平行線的性質(zhì)進(jìn)行解答即可.【詳解】解:∵AB∥CD,∴∠BAD與∠D互補(bǔ),即C選項(xiàng)符合題意;當(dāng)AD∥BC時(shí),∠BAD與∠B互補(bǔ),∠1=∠2,∠BCD與∠D互補(bǔ),故選項(xiàng)A、B、D都不合題意,故選:C.本題考查了平行線的性質(zhì),熟記性質(zhì)并準(zhǔn)確識圖是解題的關(guān)鍵.9、A【解析】試題分析:根據(jù)角拋物線頂點(diǎn)式得到對稱軸為直線x=4,利用拋物線對稱性得到拋物線在1<x<2這段位于x軸的上方,而拋物線在2<x<3這段位于x軸的下方,于是可得拋物線過點(diǎn)(2,0)然后把(2,0)代入y=a(x-4)2-4(a≠0)可求出a=1.故選A10、B【解析】
先利用三角函數(shù)計(jì)算出∠OAB=60°,再根據(jù)旋轉(zhuǎn)的性質(zhì)得∠CAB=30°,根據(jù)切線的性質(zhì)得OC⊥AC,從而得到∠OAC=30°,然后根據(jù)含30度的直角三角形三邊的關(guān)系可得到OC的長.【詳解】解:在Rt△ABO中,sin∠OAB===,∴∠OAB=60°,∵直線l1繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)30°后得到的直線l1剛好與⊙O相切于點(diǎn)C,∴∠CAB=30°,OC⊥AC,∴∠OAC=60°﹣30°=30°,在Rt△OAC中,OC=OA=1.故選B.本題考查了直線與圓的位置關(guān)系:設(shè)⊙O的半徑為r,圓心O到直線l的距離為d,則直線l和⊙O相交?d<r;直線l和⊙O相切?d=r;直線l和⊙O相離?d>r.也考查了旋轉(zhuǎn)的性質(zhì).二、填空題(共7小題,每小題3分,滿分21分)11、【解析】
坡度=坡角的正切值,據(jù)此直接解答.【詳解】解:∵,∴坡角=30°.此題主要考查學(xué)生對坡度及坡角的理解及掌握.12、【解析】
首先求出一次函數(shù)y=kx+3與y軸的交點(diǎn)坐標(biāo);由于函數(shù)與x軸的交點(diǎn)的縱坐標(biāo)是0,可以設(shè)橫坐標(biāo)是a,然后利用勾股定理求出a的值;再把(a,0)代入一次函數(shù)的解析式y(tǒng)=kx+3,從而求出k的值.【詳解】在y=kx+3中令x=0,得y=3,則函數(shù)與y軸的交點(diǎn)坐標(biāo)是:(0,3);設(shè)函數(shù)與x軸的交點(diǎn)坐標(biāo)是(a,0),根據(jù)勾股定理得到a2+32=25,解得a=±4;當(dāng)a=4時(shí),把(4,0)代入y=kx+3,得k=;當(dāng)a=-4時(shí),把(-4,0)代入y=kx+3,得k=;故k的值為或考點(diǎn):本體考查的是根據(jù)待定系數(shù)法求一次函數(shù)解析式解決本題的關(guān)鍵是求出函數(shù)與y軸的交點(diǎn)坐標(biāo),然后根據(jù)勾股定理求得函數(shù)與x軸的交點(diǎn)坐標(biāo),進(jìn)而求出k的值.13、﹣2【解析】
要求函數(shù)的解析式只要求出B點(diǎn)的坐標(biāo)就可以,過點(diǎn)A,B作AC⊥x軸,BD⊥x軸,分別于C,D.根據(jù)條件得到△ACO∽△ODB,得到:=1,然后用待定系數(shù)法即可.【詳解】過點(diǎn)A,B作AC⊥x軸,BD⊥x軸,分別于C,D.設(shè)點(diǎn)A的坐標(biāo)是(m,n),則AC=n,OC=m.∵∠AOB=90°,∴∠AOC+∠BOD=90°.∵∠DBO+∠BOD=90°,∴∠DBO=∠AOC.∵∠BDO=∠ACO=90°,∴△BDO∽△OCA.∴,∵OB=1OA,∴BD=1m,OD=1n.因?yàn)辄c(diǎn)A在反比例函數(shù)y=的圖象上,∴mn=1.∵點(diǎn)B在反比例函數(shù)y=的圖象上,∴B點(diǎn)的坐標(biāo)是(-1n,1m).∴k=-1n?1m=-4mn=-2.故答案為-2.本題考查了反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特征,相似三角形的判定和性質(zhì),利用相似三角形的性質(zhì)求得點(diǎn)B的坐標(biāo)(用含n的式子表示)是解題的關(guān)鍵.14、m≤1【解析】
根據(jù)一元二次方程有實(shí)數(shù)根,得出△≥0,建立關(guān)于m的不等式,求出m的取值范圍即可.【詳解】解:由題意知,△=4﹣4(m﹣1)≥0,∴m≤1,故答案為:m≤1.此題考查了根的判別式,掌握一元二次方程根的情況與判別式△的關(guān)系:△>0,方程有兩個(gè)不相等的實(shí)數(shù)根;△=0,方程有兩個(gè)相等的實(shí)數(shù)根;△<0,方程沒有實(shí)數(shù)根是本題的關(guān)鍵.15、【解析】
如圖,設(shè)AH=x,GB=y,利用平行線分線段成比例定理,構(gòu)建方程組求出x,y即可解決問題.【詳解】解:如圖,設(shè)AH=x,GB=y(tǒng),∵EH∥BC,,∵FG∥AC,,由①②可得x=,y=2,∴AC=,BC=7,∴S△ABC=,故答案為.本題考查圖形的相似,平行線分線段成比例定理,解題的關(guān)鍵是學(xué)會利用參數(shù)構(gòu)建方程組解決問題,屬于中考??碱}型.16、﹣1.【解析】試題解析:分式的值為0,則:解得:故答案為17、x>0【解析】【分析】分式值為正,則分子與分母同號,據(jù)此進(jìn)行討論即可得.【詳解】∵分式的值為正,∴x與x2+2的符號同號,∵x2+2>0,∴x>0,故答案為x>0.【點(diǎn)睛】本題考查了分式值為正的情況,熟知分式值為正時(shí),分子分母同號是解題的關(guān)鍵.三、解答題(共7小題,滿分69分)18、(1)A(4,0),C(3,﹣3);(2)m=;(3)E點(diǎn)的坐標(biāo)為(2,0)或(,0)或(0,﹣4);【解析】
方法一:(1)m=2時(shí),函數(shù)解析式為y=,分別令y=0,x=1,即可求得點(diǎn)A和點(diǎn)B的坐標(biāo),進(jìn)而可得到點(diǎn)C的坐標(biāo);(2)先用m表示出P,AC三點(diǎn)的坐標(biāo),分別討論∠APC=,∠ACP=,∠PAC=三種情況,利用勾股定理即可求得m的值;(3)設(shè)點(diǎn)F(x,y)是直線PE上任意一點(diǎn),過點(diǎn)F作FN⊥PM于N,可得Rt△FNP∽Rt△PBC,NP:NF=BC:BP求得直線PE的解析式,后利用△PEC是以P為直角頂點(diǎn)的等腰直角三角形求得E點(diǎn)坐標(biāo).方法二:(1)同方法一.(2)由△ACP為直角三角形,由相互垂直的兩直線斜率相乘為-1,可得m的值;(3)利用△PEC是以P為直角頂點(diǎn)的等腰直角三角形,分別討論E點(diǎn)再x軸上,y軸上的情況求得E點(diǎn)坐標(biāo).【詳解】方法一:解:(1)若m=2,拋物線y=x2﹣2mx=x2﹣4x,∴對稱軸x=2,令y=0,則x2﹣4x=0,解得x=0,x=4,∴A(4,0),∵P(1,﹣2),令x=1,則y=﹣3,∴B(1,﹣3),∴C(3,﹣3).(2)∵拋物線y=x2﹣2mx(m>1),∴A(2m,0)對稱軸x=m,∵P(1,﹣m)把x=1代入拋物線y=x2﹣2mx,則y=1﹣2m,∴B(1,1﹣2m),∴C(2m﹣1,1﹣2m),∵PA2=(﹣m)2+(2m﹣1)2=5m2﹣4m+1,PC2=(2m﹣2)2+(1﹣m)2=5m2﹣10m+5,AC2=1+(1﹣2m)2=2﹣4m+4m2,∵△ACP為直角三角形,∴當(dāng)∠ACP=90°時(shí),PA2=PC2+AC2,即5m2﹣4m+1=5m2﹣10m+5+2﹣4m+4m2,整理得:4m2﹣10m+6=0,解得:m=,m=1(舍去),當(dāng)∠APC=90°時(shí),PA2+PC2=AC2,即5m2﹣4m+1+5m2﹣10m+5=2﹣4m+4m2,整理得:6m2﹣10m+4=0,解得:m=,m=1,和1都不符合m>1,故m=.(3)設(shè)點(diǎn)F(x,y)是直線PE上任意一點(diǎn),過點(diǎn)F作FN⊥PM于N,∵∠FPN=∠PCB,∠PNF=∠CBP=90°,∴Rt△FNP∽Rt△PBC,∴NP:NF=BC:BP,即=,∴y=2x﹣2﹣m,∴直線PE的解析式為y=2x﹣2﹣m.令y=0,則x=1+,∴E(1+m,0),∴PE2=(﹣m)2+(m)2=,∴=5m2﹣10m+5,解得:m=2,m=,∴E(2,0)或E(,0),∴在x軸上存在E點(diǎn),使得△PEC是以P為直角頂點(diǎn)的等腰直角三角形,此時(shí)E(2,0)或E(,0);令x=0,則y=﹣2﹣m,∴E(0,﹣2﹣m)∴PE2=(﹣2)2+12=5∴5m2﹣10m+5=5,解得m=2,m=0(舍去),∴E(0,﹣4)∴y軸上存在點(diǎn)E,使得△PEC是以P為直角頂點(diǎn)的等腰直角三角形,此時(shí)E(0,﹣4),∴在坐標(biāo)軸上是存在點(diǎn)E,使得△PEC是以P為直角頂點(diǎn)的等腰直角三角形,E點(diǎn)的坐標(biāo)為(2,0)或(,0)或(0,﹣4);方法二:(1)略.(2)∵P(1,﹣m),∴B(1,1﹣2m),∵對稱軸x=m,∴C(2m﹣1,1﹣2m),A(2m,0),∵△ACP為直角三角形,∴AC⊥AP,AC⊥CP,AP⊥CP,①AC⊥AP,∴KAC×KAP=﹣1,且m>1,∴,m=﹣1(舍)②AC⊥CP,∴KAC×KCP=﹣1,且m>1,∴=﹣1,∴m=,③AP⊥CP,∴KAP×KCP=﹣1,且m>1,∴=﹣1,∴m=(舍)(3)∵P(1,﹣m),C(2m﹣1,1﹣2m),∴KCP=,△PEC是以P為直角頂點(diǎn)的等腰直角三角形,∴PE⊥PC,∴KPE×KCP=﹣1,∴KPE=2,∵P(1,﹣m),∴l(xiāng)PE:y=2x﹣2﹣m,∵點(diǎn)E在坐標(biāo)軸上,∴①當(dāng)點(diǎn)E在x軸上時(shí),E(,0)且PE=PC,∴(1﹣)2+(﹣m)2=(2m﹣1﹣1)2+(1﹣2m+m)2,∴m2=5(m﹣1)2,∴m1=2,m2=,∴E1(2,0),E2(,0),②當(dāng)點(diǎn)E在y軸上時(shí),E(0,﹣2﹣m)且PE=PC,∴(1﹣0)2+(﹣m+2+m)2=(2m﹣1﹣1)2+(1﹣2m+m)2,∴1=(m﹣1)2,∴m1=2,m2=0(舍),∴E(0,4),綜上所述,(2,0)或(,0)或(0,﹣4).本題主要考查二次函數(shù)的圖象與性質(zhì).擴(kuò)展:設(shè)坐標(biāo)系中兩點(diǎn)坐標(biāo)分別為點(diǎn)A(),點(diǎn)B(),則線段AB的長度為:AB=.設(shè)平面內(nèi)直線AB的解析式為:,直線CD的解析式為:(1)若AB//CD,則有:;(2)若AB⊥CD,則有:.19、(1)作圖見解析;(2)作圖見解析.【解析】試題分析:利用正六邊形的特性作圖即可.試題解析:(1)如圖所示(答案不唯一):(2)如圖所示(答案不唯一):20、【解析】
根據(jù)翻折的性質(zhì)可得∠BAC=∠EAC,再根據(jù)矩形的對邊平行可得AB∥CD,根據(jù)兩直線平行,內(nèi)錯(cuò)角相等可得∠DCA=∠BAC,從而得到∠EAC=∠DCA,設(shè)AE與CD相交于F,根據(jù)等角對等邊的性質(zhì)可得AF=CF,再求出DF=EF,從而得到△ACF和△EDF相似,根據(jù)相似三角形得出對應(yīng)邊成比,設(shè)DF=3x,F(xiàn)C=5x,在Rt△ADF中,利用勾股定理列式求出AD,再根據(jù)矩形的對邊相等求出AB,然后代入進(jìn)行計(jì)算即可得解.【詳解】解:∵矩形沿直線AC折疊,點(diǎn)B落在點(diǎn)E處,∴CE=BC,∠BAC=∠CAE,∵矩形對邊AD=BC,∴AD=CE,設(shè)AE、CD相交于點(diǎn)F,在△ADF和△CEF中,,∴△ADF≌△CEF(AAS),∴EF=DF,∵AB∥CD,∴∠BAC=∠ACF,又∵∠BAC=∠CAE,∴∠ACF=∠CAE,∴AF=CF,∴AC∥DE,∴△ACF∽△DEF,∴,設(shè)EF=3k,CF=5k,由勾股定理得CE=,∴AD=BC=CE=4k,又∵CD=DF+CF=3k+5k=8k,∴AB=CD=8k,∴AD:AB=(4k):(8k)=.本題考查了翻折變換的性質(zhì),全等三角形的判定與性質(zhì),相似三角形的判定與性質(zhì),勾股定理,綜合題難度較大,求出△ACF和△DEF相似是解題的關(guān)鍵,也是本題的難點(diǎn).21、2【解析】試題分析:過O作OF垂直于CD,連接OD,利用垂徑定理得到F為CD的中點(diǎn),由AE+EB求出直徑AB的長,進(jìn)而確定出半徑OA與OD的長,由OA﹣AE求出OE的長,在直角三角形OEF中,利用30°所對的直角邊等于斜邊的一半求出OF的長,在直角三角形ODF中,利用勾股定理求出DF的長,由CD=2DF即可求出CD的長.試題解析:過O作OF⊥CD,交CD于點(diǎn)F,連接OD,∴F為CD的中點(diǎn),即CF=DF,∵AE=2,EB=6,∴AB=AE+EB=2+6=8,∴OA=4,∴OE=OA﹣AE=4﹣2=2,在Rt△OEF中,∠DEB=30°,∴OF=12在Rt△ODF中,OF=1,OD=4,根據(jù)勾股定理得:DF=OD2-O則CD=2DF=215.考點(diǎn):垂徑定理;勾股定理.22、(1)證明見解析;(2)能;BE=1或;(3)【解析】
(1)證明:∵AB=AC,∴∠B=∠C,∵△ABC≌△DEF,∴∠AEF=∠B,又∵∠AEF+∠CEM=∠AEC=∠B+∠BAE,∴∠CEM=∠BAE,∴△ABE∽△ECM;(2)能.∵∠AEF=∠B=∠C,且∠AME>∠C,∴∠AME>∠AEF,∴AE≠AM;當(dāng)AE=EM時(shí),則△ABE≌△ECM,∴CE=AB=5,∴BE=BC?EC=6?5=1,當(dāng)AM=EM時(shí),則∠MAE=∠MEA,∴∠MAE+∠BAE=∠MEA+∠CEM,即∠CAB=∠CEA,又∵∠C=∠C,∴△CAE∽△CBA,∴,∴CE=,∴BE=6?=;∴BE=1或;(3)解:設(shè)BE=x,又∵△ABE∽△ECM,∴,即:,∴CM=,∴AM=5?CM,∴當(dāng)x=3時(shí),AM最短為,又∵當(dāng)BE=x=3=BC時(shí),∴點(diǎn)E為B
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 新疆兵團(tuán)八師一四三團(tuán)一中2025年第一次高考適應(yīng)性考試化學(xué)試題含解析
- 江蘇省徐州市侯集高級中學(xué)2025年高三下學(xué)期第二次大聯(lián)考物理試題試卷含解析
- 云南省元江縣一中2025年高三第二次診斷性考試語文試題試卷含解析
- 結(jié)腸息肉術(shù)后護(hù)理指南
- 2024年北京北控城市發(fā)展集團(tuán)有限公司公開招聘法律合規(guī)部負(fù)責(zé)人1人筆試參考題庫附帶答案詳解
- 中醫(yī)理論培訓(xùn)
- 二零二五版房地產(chǎn)開發(fā)投資入股協(xié)議書
- 股權(quán)質(zhì)押及借款合同書范例二零二五年
- 福建省福州第四中學(xué)2025年高三下學(xué)期第三次月考數(shù)學(xué)試題(理A)試題
- 二零二五常年法律顧問服務(wù)協(xié)議書
- 湖南省常德市石門一中2025屆高三第二次模擬考試(B卷)數(shù)學(xué)試題試卷含解析
- 2025年湖南省各市州湘能農(nóng)電服務(wù)有限公司招聘筆試參考題庫附帶答案詳解
- 浙江省杭州市蕭山區(qū)蕭山城區(qū)八校期中考試聯(lián)考2023-2024學(xué)年八年級下學(xué)期4月期中英語試題(含答案)
- 手術(shù)工作流程課件
- 危險(xiǎn)性較大的分部分項(xiàng)工程專項(xiàng)施工方案嚴(yán)重缺陷清單(試行)
- 2025年遼寧省建筑安全員《B證》考試題庫
- 2023-2024學(xué)年華東師大版八年級數(shù)學(xué)上冊期末復(fù)習(xí)綜合練習(xí)題
- 超高性能混凝土與鋼筋的粘結(jié)滑移本構(gòu)關(guān)系
- 二零二五版產(chǎn)品推介會會務(wù)策劃與執(zhí)行協(xié)議3篇
- 氧化還原反應(yīng)配平專項(xiàng)訓(xùn)練
- GB/T 44679-2024叉車禁用與報(bào)廢技術(shù)規(guī)范
評論
0/150
提交評論