江蘇省揚州市江都區(qū)邵凡片重點達標名校2022年十校聯(lián)考最后數(shù)學試題含解析_第1頁
江蘇省揚州市江都區(qū)邵凡片重點達標名校2022年十校聯(lián)考最后數(shù)學試題含解析_第2頁
江蘇省揚州市江都區(qū)邵凡片重點達標名校2022年十校聯(lián)考最后數(shù)學試題含解析_第3頁
江蘇省揚州市江都區(qū)邵凡片重點達標名校2022年十校聯(lián)考最后數(shù)學試題含解析_第4頁
江蘇省揚州市江都區(qū)邵凡片重點達標名校2022年十校聯(lián)考最后數(shù)學試題含解析_第5頁
已閱讀5頁,還剩19頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

江蘇省揚州市江都區(qū)邵凡片重點達標名校2022年十校聯(lián)考最后數(shù)學試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.觀察下面“品”字形中各數(shù)之間的規(guī)律,根據(jù)觀察到的規(guī)律得出a的值為()A.23 B.75 C.77 D.1392.下面調(diào)查中,適合采用全面調(diào)查的是()A.對南寧市市民進行“南寧地鐵1號線線路”B.對你安寧市食品安全合格情況的調(diào)查C.對南寧市電視臺《新聞在線》收視率的調(diào)查D.對你所在的班級同學的身高情況的調(diào)查3.如圖,點D(0,3),O(0,0),C(4,0)在⊙A上,BD是⊙A的一條弦,則cos∠OBD=()A. B. C. D.4.如圖,一個梯子AB長2.5米,頂端A靠在墻AC上,這時梯子下端B與墻角C距離為1.5米,梯子滑動后停在DE的位置上,測得BD長為0.9米,則梯子頂端A下落了()A.0.9米 B.1.3米 C.1.5米 D.2米5.河堤橫斷面如圖所示,堤高BC=6米,迎水坡AB的坡比為1:,則AB的長為A.12米 B.4米 C.5米 D.6米6.下列命題是真命題的是()A.過一點有且只有一條直線與已知直線平行B.對角線相等且互相垂直的四邊形是正方形C.平分弦的直徑垂直于弦,并且平分弦所對的弧D.若三角形的三邊a,b,c滿足a2+b2+c2=ac+bc+ab,則該三角形是正三角形7.有若干個完全相同的小正方體堆成一個如圖所示幾何體,若現(xiàn)在你手頭還有一些相同的小正方體,如果保持俯視圖和左視圖不變,最多可以再添加小正方體的個數(shù)為()A.2 B.3 C.4 D.58.下列運算,結(jié)果正確的是()A.m2+m2=m4 B.2m2n÷mn=4mC.(3mn2)2=6m2n4 D.(m+2)2=m2+49.如圖是由一些相同的小正方體組成的幾何體的三視圖,則組成這個幾何體的小正方體個數(shù)最多為()A.7 B.8 C.9 D.1010.某公園里鮮花的擺放如圖所示,第①個圖形中有3盆鮮花,第②個圖形中有6盆鮮花,第③個圖形中有11盆鮮花,……,按此規(guī)律,則第⑦個圖形中的鮮花盆數(shù)為()A.37 B.38 C.50 D.5111.下列計算,正確的是()A. B.C.3 D.12.在﹣3,﹣1,0,1四個數(shù)中,比﹣2小的數(shù)是()A.﹣3 B.﹣1 C.0 D.1二、填空題:(本大題共6個小題,每小題4分,共24分.)13.一個多邊形的內(nèi)角和比它的外角和的3倍少180°,則這個多邊形的邊數(shù)是______.14.廊橋是我國古老的文化遺產(chǎn).如圖,是某座拋物線型的廊橋示意圖,已知拋物線的函數(shù)表達式為y=-140x15.如圖,在△ABC中,BC=7,,tanC=1,點P為AB邊上一動點(點P不與點B重合),以點P為圓心,PB為半徑畫圓,如果點C在圓外,那么PB的取值范圍______.16.請寫出一個開口向下,并且與y軸交于點(0,1)的拋物線的表達式_________17.計算:()﹣1﹣(5﹣π)0=_____.18.算術(shù)平方根等于本身的實數(shù)是__________.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)如圖,點A,B,C都在拋物線y=ax2﹣2amx+am2+2m﹣5(其中﹣<a<0)上,AB∥x軸,∠ABC=135°,且AB=1.(1)填空:拋物線的頂點坐標為(用含m的代數(shù)式表示);(2)求△ABC的面積(用含a的代數(shù)式表示);(3)若△ABC的面積為2,當2m﹣5≤x≤2m﹣2時,y的最大值為2,求m的值.20.(6分)如圖,已知平行四邊形ABCD,點M、N分別是邊DC、BC的中點,設(shè)=,=,求向量關(guān)于、的分解式.21.(6分)問題提出(1)如圖1,在△ABC中,∠A=75°,∠C=60°,AC=6,求△ABC的外接圓半徑R的值;問題探究(2)如圖2,在△ABC中,∠BAC=60°,∠C=45°,AC=8,點D為邊BC上的動點,連接AD以AD為直徑作⊙O交邊AB、AC分別于點E、F,接E、F,求EF的最小值;問題解決(3)如圖3,在四邊形ABCD中,∠BAD=90°,∠BCD=30°,AB=AD,BC+CD=12,連接AC,線段AC的長是否存在最小值,若存在,求最小值:若不存在,請說明理由.22.(8分)已知函數(shù)的圖象與函數(shù)的圖象交于點.(1)若,求的值和點P的坐標;(2)當時,結(jié)合函數(shù)圖象,直接寫出實數(shù)的取值范圍.23.(8分)解分式方程:=124.(10分)灞橋區(qū)教育局為了了解七年級學生參加社會實踐活動情況,隨機抽取了鐵一中濱河學部分七年級學生2016﹣2017學年第一學期參加實踐活動的天數(shù),并用得到的數(shù)據(jù)繪制了兩幅統(tǒng)計圖,下面給出了兩幅不完整的統(tǒng)計圖.請根據(jù)圖中提供的信息,回答下列問題:a=%,并補全條形圖.在本次抽樣調(diào)查中,眾數(shù)和中位數(shù)分別是多少?如果該區(qū)共有七年級學生約9000人,請你估計活動時間不少于6天的學生人數(shù)大約有多少?25.(10分)如圖拋物線y=ax2+bx,過點A(4,0)和點B(6,2),四邊形OCBA是平行四邊形,點M(t,0)為x軸正半軸上的點,點N為射線AB上的點,且AN=OM,點D為拋物線的頂點.(1)求拋物線的解析式,并直接寫出點D的坐標;(2)當△AMN的周長最小時,求t的值;(3)如圖②,過點M作ME⊥x軸,交拋物線y=ax2+bx于點E,連接EM,AE,當△AME與△DOC相似時.請直接寫出所有符合條件的點M坐標.26.(12分)計算:(﹣4)×(﹣)+2﹣1﹣(π﹣1)0+.27.(12分)如圖,直線l是線段MN的垂直平分線,交線段MN于點O,在MN下方的直線l上取一點P,連接PN,以線段PN為邊,在PN上方作正方形NPAB,射線MA交直線l于點C,連接BC.(1)設(shè)∠ONP=α,求∠AMN的度數(shù);(2)寫出線段AM、BC之間的等量關(guān)系,并證明.

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、B【解析】

由圖可知:上邊的數(shù)與左邊的數(shù)的和正好等于右邊的數(shù),上邊的數(shù)為連續(xù)的奇數(shù),左邊的數(shù)為21,22,23,…26,由此可得a,b.【詳解】∵上邊的數(shù)為連續(xù)的奇數(shù)1,3,5,7,9,11,左邊的數(shù)為21,22,23,…,∴b=26=1.∵上邊的數(shù)與左邊的數(shù)的和正好等于右邊的數(shù),∴a=11+1=2.故選B.【點睛】本題考查了數(shù)字變化規(guī)律,觀察出上邊的數(shù)與左邊的數(shù)的和正好等于右邊的數(shù)是解題的關(guān)鍵.2、D【解析】

根據(jù)普查得到的調(diào)查結(jié)果比較準確,但所費人力、物力和時間較多,而抽樣調(diào)查得到的調(diào)查結(jié)果比較近似解答.【詳解】A、對南寧市市民進行“南寧地鐵1號線線路”適宜采用抽樣調(diào)查方式;B、對你安寧市食品安全合格情況的調(diào)查適宜采用抽樣調(diào)查方式;C、對南寧市電視臺《新聞在線》收視率的調(diào)查適宜采用抽樣調(diào)查方式;D、對你所在的班級同學的身高情況的調(diào)查適宜采用普查方式;故選D.【點睛】本題考查的是抽樣調(diào)查和全面調(diào)查的區(qū)別,選擇普查還是抽樣調(diào)查要根據(jù)所要考查的對象的特征靈活選用,一般來說,對于具有破壞性的調(diào)查、無法進行普查、普查的意義或價值不大,應選擇抽樣調(diào)查,對于精確度要求高的調(diào)查,事關(guān)重大的調(diào)查往往選用普查.3、C【解析】

根據(jù)圓的弦的性質(zhì),連接DC,計算CD的長,再根據(jù)直角三角形的三角函數(shù)計算即可.【詳解】∵D(0,3),C(4,0),∴OD=3,OC=4,∵∠COD=90°,∴CD==5,連接CD,如圖所示:∵∠OBD=∠OCD,∴cos∠OBD=cos∠OCD=.故選:C.【點睛】本題主要三角函數(shù)的計算,結(jié)合考查圓性質(zhì)的計算,關(guān)鍵在于利用等量替代原則.4、B【解析】試題分析:要求下滑的距離,顯然需要分別放到兩個直角三角形中,運用勾股定理求得AC和CE的長即可.解:在Rt△ACB中,AC2=AB2﹣BC2=2.52﹣1.52=1,∴AC=2,∵BD=0.9,∴CD=2.1.在Rt△ECD中,EC2=ED2﹣CD2=2.52﹣2.12=0.19,∴EC=0.7,∴AE=AC﹣EC=2﹣0.7=1.2.故選B.考點:勾股定理的應用.5、A【解析】

試題分析:在Rt△ABC中,BC=6米,,∴AC=BC×=6(米).∴(米).故選A.【詳解】請在此輸入詳解!6、D【解析】

根據(jù)真假命題的定義及有關(guān)性質(zhì)逐項判斷即可.【詳解】A、真命題為:過直線外一點有且只有一條直線與已知直線平行,故本選項錯誤;B、真命題為:對角線相等且互相垂直的四邊形是正方形或等腰梯形,故本選項錯誤;C、真命題為:平分弦的直徑垂直于弦(非直徑),并且平分弦所對的弧,故本選項錯誤;D、∵a2+b2+c2=ac+bc+ab,∴2a2+2b2+2c2-2ac-2bc-2ab=0,∴(a-b)2+(a-c)2+(b-c)2=0,∴a=b=c,故本選項正確.故選D.【點睛】本題考查了命題的真假,熟練掌握真假命題的定義及幾何圖形的性質(zhì)是解答本題的關(guān)鍵,當命題的條件成立時,結(jié)論也一定成立的命題叫做真命題;當命題的條件成立時,不能保證命題的結(jié)論總是成立的命題叫做假命題.熟練掌握所學性質(zhì)是解答本題的關(guān)鍵.7、C【解析】若要保持俯視圖和左視圖不變,可以往第2排右側(cè)正方體上添加1個,往第3排中間正方體上添加2個、右側(cè)兩個正方體上再添加1個,即一共添加4個小正方體,故選C.8、B【解析】

直接利用積的乘方運算法則、合并同類項法則和單項式除以單項式運算法則計算得出答案.【詳解】A.m2+m2=2m2,故此選項錯誤;B.2m2n÷mn=4m,正確;C.(3mn2)2=9m2n4,故此選項錯誤;D.(m+2)2=m2+4m+4,故此選項錯誤.故答案選:B.【點睛】本題考查了乘方運算法則、合并同類項法則和單項式除以單項式運算法則,解題的關(guān)鍵是熟練的掌握乘方運算法則、合并同類項法則和單項式除以單項式運算法則.9、C【解析】

主視圖、左視圖、俯視圖是分別從物體正面、左面和上面看,所得到的圖形.【詳解】根據(jù)三視圖知,該幾何體中小正方體的分布情況如下圖所示:所以組成這個幾何體的小正方體個數(shù)最多為9個,故選C.【點睛】考查了三視圖判定幾何體,關(guān)鍵是對三視圖靈活運用,體現(xiàn)了對空間想象能力的考查.10、D【解析】試題解析:第①個圖形中有盆鮮花,第②個圖形中有盆鮮花,第③個圖形中有盆鮮花,…第n個圖形中的鮮花盆數(shù)為則第⑥個圖形中的鮮花盆數(shù)為故選C.11、B【解析】

根據(jù)二次根式的加減法則,以及二次根式的性質(zhì)逐項判斷即可.【詳解】解:∵=2,∴選項A不正確;∵=2,∴選項B正確;∵3﹣=2,∴選項C不正確;∵+=3≠,∴選項D不正確.故選B.【點睛】本題主要考查了二次根式的加減法,以及二次根式的性質(zhì)和化簡,要熟練掌握,解答此題的關(guān)鍵是要明確:二次根式相加減,先把各個二次根式化成最簡二次根式,再把被開方數(shù)相同的二次根式進行合并,合并方法為系數(shù)相加減,根式不變.12、A【解析】

因為正數(shù)是比0大的數(shù),負數(shù)是比0小的數(shù),正數(shù)比負數(shù)大;負數(shù)的絕對值越大,本身就越小,根據(jù)有理數(shù)比較大小的法則即可選出答案.【詳解】因為正數(shù)是比0大的數(shù),負數(shù)是比0小的數(shù),正數(shù)比負數(shù)大;負數(shù)的絕對值越大,本身就越小,所以在-3,-1,0,1這四個數(shù)中比-2小的數(shù)是-3,故選A.【點睛】本題主要考查有理數(shù)比較大小,解決本題的關(guān)鍵是要熟練掌握比較有理數(shù)大小的方法.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、7【解析】根據(jù)多邊形內(nèi)角和公式得:(n-2).得:14、85【解析】由于兩盞E、F距離水面都是8m,因而兩盞景觀燈之間的水平距離就是直線y=8與拋物線兩交點的橫坐標差的絕對值.故有-1即x2=80,x1所以兩盞警示燈之間的水平距離為:|15、【解析】分析:根據(jù)題意作出合適的輔助線,然后根據(jù)題意即可求得PB的取值范圍.詳解:作AD⊥BC于點D,作PE⊥BC于點E.∵在△ABC中,BC=7,AC=3,tanC=1,∴AD=CD=3,∴BD=4,∴AB=5,由題意可得,當PB=PC時,點C恰好在以點P為圓心,PB為半徑圓上.∵AD⊥BC,PE⊥BC,∴PE∥AD,∴△BPE∽△BDA,∴,即,得:BP=.故答案為0<PB<.點睛:本題考查了點與圓的位置關(guān)系、解直角三角形,解答本題的關(guān)鍵是明確題意,找出所求問題需要的條件,利用數(shù)形結(jié)合的思想解答.16、(答案不唯一)【解析】

根據(jù)二次函數(shù)的性質(zhì),拋物線開口向下a<0,與y軸交點的縱坐標即為常數(shù)項,然后寫出即可.【詳解】∵拋物線開口向下,并且與y軸交于點(0,1)∴二次函數(shù)的一般表達式中,a<0,c=1,∴二次函數(shù)表達式可以為:(答案不唯一).【點睛】本題考查二次函數(shù)的性質(zhì),掌握開口方向、與y軸的交點與二次函數(shù)二次項系數(shù)、常數(shù)項的關(guān)系是解題的關(guān)鍵.17、1【解析】

分別根據(jù)負整數(shù)指數(shù)冪,0指數(shù)冪的化簡計算出各數(shù),即可解題【詳解】解:原式=2﹣1=1,故答案為1.【點睛】此題考查負整數(shù)指數(shù)冪,0指數(shù)冪的化簡,難度不大18、0或1【解析】根據(jù)負數(shù)沒有算術(shù)平方根,一個正數(shù)的算術(shù)平方根只有一個,1和0的算術(shù)平方根等于本身,即可得出答案.解:1和0的算術(shù)平方根等于本身.故答案為1和0“點睛”本題考查了算術(shù)平方根的知識,注意掌握1和0的算術(shù)平方根等于本身.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)(m,2m﹣2);(2)S△ABC=﹣;(3)m的值為或10+2.【解析】分析:(1)利用配方法將二次函數(shù)解析式由一般式變形為頂點式,此題得解;(2)過點C作直線AB的垂線,交線段AB的延長線于點D,由AB∥x軸且AB=1,可得出點B的坐標為(m+2,1a+2m?2),設(shè)BD=t,則點C的坐標為(m+2+t,1a+2m?2?t),利用二次函數(shù)圖象上點的坐標特征可得出關(guān)于t的一元二次方程,解之取其正值即可得出t值,再利用三角形的面積公式即可得出S△ABC的值;(3)由(2)的結(jié)論結(jié)合S△ABC=2可求出a值,分三種情況考慮:①當m>2m?2,即m<2時,x=2m?2時y取最大值,利用二次函數(shù)圖象上點的坐標特征可得出關(guān)于m的一元二次方程,解之可求出m的值;②當2m?2≤m≤2m?2,即2≤m≤2時,x=m時y取最大值,利用二次函數(shù)圖象上點的坐標特征可得出關(guān)于m的一元一次方程,解之可求出m的值;③當m<2m?2,即m>2時,x=2m?2時y取最大值,利用二次函數(shù)圖象上點的坐標特征可得出關(guān)于m的一元一次方程,解之可求出m的值.綜上即可得出結(jié)論.詳解:(1)∵y=ax2﹣2amx+am2+2m﹣2=a(x﹣m)2+2m﹣2,∴拋物線的頂點坐標為(m,2m﹣2),故答案為(m,2m﹣2);(2)過點C作直線AB的垂線,交線段AB的延長線于點D,如圖所示,∵AB∥x軸,且AB=1,∴點B的坐標為(m+2,1a+2m﹣2),∵∠ABC=132°,∴設(shè)BD=t,則CD=t,∴點C的坐標為(m+2+t,1a+2m﹣2﹣t),∵點C在拋物線y=a(x﹣m)2+2m﹣2上,∴1a+2m﹣2﹣t=a(2+t)2+2m﹣2,整理,得:at2+(1a+1)t=0,解得:t1=0(舍去),t2=﹣,∴S△ABC=AB?CD=﹣;(3)∵△ABC的面積為2,∴﹣=2,解得:a=﹣,∴拋物線的解析式為y=﹣(x﹣m)2+2m﹣2.分三種情況考慮:①當m>2m﹣2,即m<2時,有﹣(2m﹣2﹣m)2+2m﹣2=2,整理,得:m2﹣11m+39=0,解得:m1=7﹣(舍去),m2=7+(舍去);②當2m﹣2≤m≤2m﹣2,即2≤m≤2時,有2m﹣2=2,解得:m=;③當m<2m﹣2,即m>2時,有﹣(2m﹣2﹣m)2+2m﹣2=2,整理,得:m2﹣20m+60=0,解得:m3=10﹣2(舍去),m1=10+2.綜上所述:m的值為或10+2.點睛:本題考查了二次函數(shù)解析式的三種形式、二次函數(shù)圖象上點的坐標特征、等腰直角三角形、解一元二次方程以及二次函數(shù)的最值,解題的關(guān)鍵是:(1)利用配方法將二次函數(shù)解析式變形為頂點式;(2)利用等腰直角三角形的性質(zhì)找出點C的坐標;(3)分m<2、2≤m≤2及m>2三種情況考慮.20、答案見解析【解析】試題分析:連接BD,由已知可得MN是△BCD的中位線,則MN=BD,根據(jù)向量減法表示出BD即可得.試題解析:連接BD,∵點M、N分別是邊DC、BC的中點,∴MN是△BCD的中位線,∴MN∥BD,MN=BD,∵,∴.21、(1)△ABC的外接圓的R為1;(2)EF的最小值為2;(3)存在,AC的最小值為9.【解析】

(1)如圖1中,作△ABC的外接圓,連接OA,OC.證明∠AOC=90°即可解決問題;(2)如圖2中,作AH⊥BC于H.當直徑AD的值一定時,EF的值也確定,根據(jù)垂線段最短可知當AD與AH重合時,AD的值最短,此時EF的值也最短;(3)如圖3中,將△ADC繞點A順時針旋轉(zhuǎn)90°得到△ABE,連接EC,作EH⊥CB交CB的延長線于H,設(shè)BE=CD=x.證明EC=AC,構(gòu)建二次函數(shù)求出EC的最小值即可解決問題.【詳解】解:(1)如圖1中,作△ABC的外接圓,連接OA,OC.∵∠B=180°﹣∠BAC﹣∠ACB=180°﹣75°﹣10°=45°,又∵∠AOC=2∠B,∴∠AOC=90°,∴AC=1,∴OA=OC=1,∴△ABC的外接圓的R為1.(2)如圖2中,作AH⊥BC于H.∵AC=8,∠C=45°,∴AH=AC?sin45°=8×=8,∵∠BAC=10°,∴當直徑AD的值一定時,EF的值也確定,根據(jù)垂線段最短可知當AD與AH重合時,AD的值最短,此時EF的值也最短,如圖2﹣1中,當AD⊥BC時,作OH⊥EF于H,連接OE,OF.∵∠EOF=2∠BAC=20°,OE=OF,OH⊥EF,∴EH=HF,∠OEF=∠OFE=30°,∴EH=OF?cos30°=4?=1,∴EF=2EH=2,∴EF的最小值為2.(3)如圖3中,將△ADC繞點A順時針旋轉(zhuǎn)90°得到△ABE,連接EC,作EH⊥CB交CB的延長線于H,設(shè)BE=CD=x.∵∠AE=AC,∠CAE=90°,∴EC=AC,∠AEC=∠ACE=45°,∴EC的值最小時,AC的值最小,∵∠BCD=∠ACB+∠ACD=∠ACB+∠AEB=30°,∴∠∠BEC+∠BCE=10°,∴∠EBC=20°,∴∠EBH=10°,∴∠BEH=30°,∴BH=x,EH=x,∵CD+BC=2,CD=x,∴BC=2﹣x∴EC2=EH2+CH2=(x)2+=x2﹣2x+432,∵a=1>0,∴當x=﹣=1時,EC的長最小,此時EC=18,∴AC=EC=9,∴AC的最小值為9.【點睛】本題屬于圓綜合題,考查了圓周角定理,勾股定理,解直角三角形,二次函數(shù)的性質(zhì)等知識,解題的關(guān)鍵是學會添加常用輔助線,學會構(gòu)建二次函數(shù)解決最值問題,屬于中考壓軸題.22、(1),,或;(2).【解析】【分析】(1)將P(m,n)代入y=kx,再結(jié)合m=2n即可求得k的值,聯(lián)立y=與y=kx組成方程組,解方程組即可求得點P的坐標;(2)畫出兩個函數(shù)的圖象,觀察函數(shù)的圖象即可得.【詳解】(1)∵函數(shù)的圖象交于點,∴n=mk,∵m=2n,∴n=2nk,∴k=,∴直線解析式為:y=x,解方程組,得,,∴交點P的坐標為:(,)或(-,-);(2)由題意畫出函數(shù)的圖象與函數(shù)的圖象如圖所示,∵函數(shù)的圖象與函數(shù)的交點P的坐標為(m,n),∴當k=1時,P的坐標為(1,1)或(-1,-1),此時|m|=|n|,當k>1時,結(jié)合圖象可知此時|m|<|n|,∴當時,≥1.【點睛】本題考查了反比例函數(shù)與正比例函數(shù)的交點,待定系數(shù)法等,運用數(shù)形結(jié)合思想解題是關(guān)鍵.23、x=1【解析】

分式方程變形后去分母轉(zhuǎn)化為整式方程,求出整式方程的解得到x的值,經(jīng)檢驗即可得到分式方程的解.【詳解】化為整式方程得:2﹣3x=x﹣2,解得:x=1,經(jīng)檢驗x=1是原方程的解,所以原方程的解是x=1.【點睛】此題考查了解分式方程,解分式方程的基本思想是“轉(zhuǎn)化思想”,把分式方程轉(zhuǎn)化為整式方程求解.解分式方程一定注意要驗根.24、(1)10,補圖見解析;(2)眾數(shù)是5,中位數(shù)是1;(3)活動時間不少于1天的學生人數(shù)大約有5400人.【解析】

(1)用1減去其他天數(shù)所占的百分比即可得到a的值,用310°乘以它所占的百分比,即可求出該扇形所對圓心角的度數(shù);根據(jù)1天的人數(shù)和所占的百分比求出總?cè)藬?shù),再乘以8天的人數(shù)所占的百分比,即可補全統(tǒng)計圖;(2)根據(jù)眾數(shù)和中位數(shù)的定義即可求出答案;(3)用總?cè)藬?shù)乘以活動時間不少于1天的人數(shù)所占的百分比即可求出答案.【詳解】解:(1)扇形統(tǒng)計圖中a=1﹣5%﹣40%﹣20%﹣25%=10%,該扇形所對圓心角的度數(shù)為310°×10%=31°,參加社會實踐活動的天數(shù)為8天的人數(shù)是:×10%=10(人),補圖如下:故答案為10;(2)抽樣調(diào)查中總?cè)藬?shù)為100人,結(jié)合條形統(tǒng)計圖可得:眾數(shù)是5,中位數(shù)是1.(3)根據(jù)題意得:9000×(25%+10%+5%+20%)=5400(人),活動時間不少于1天的學生人數(shù)大約有5400人.【點睛】本題考查的是條形統(tǒng)計圖和扇形統(tǒng)計圖的綜合運用,讀懂統(tǒng)計圖,從不同的統(tǒng)計圖中得到必要的信息是解決問題的關(guān)鍵.條形統(tǒng)計圖能清楚地表示出每個項目的數(shù)據(jù);扇形統(tǒng)計圖直接反映部分占總體的百分比大小.25、(1)y=x2﹣x,點D的坐標為(2,﹣);(2)t=2;(3)M點的坐標為(2,0)或(6,0).【解析】

(1)利用待定系數(shù)法求拋物線解析式;利用配方法把一般式化為頂點式得到點D的坐標;(2)連接AC,如圖①,先計算出AB=4,則判斷平行四邊形OCBA為菱形,再證明△AOC和△ACB都是等邊三角形,接著證明△OCM≌△ACN得到CM=CN,∠OCM=∠ACN,則判斷△CMN為等邊三角形得到MN=CM,于是△AMN的周長=OA+CM,由于CM⊥OA時,CM的值最小,△AMN的周長最小,從而得到t的值;(3)先利用勾股定理的逆定理證明△OCD為直角三角形,∠COD=90°,設(shè)M(t,0),則E(t,t2-t),根據(jù)相似三角形的判定方法,當時,△AME∽△COD,即|t-4|:4=|t2-t|:,當時,△AME∽△DOC,即|t-4|:=|t2-t|:4,然后分別解絕對值方程可得到對應的M點的坐標.【詳解】解:(1)把A(4,0)和B(6,2)代入y=ax2+bx得,解得,∴拋物線解析式為y=x2-x;∵y=x2-x=-2)2-;∴點D的坐標為(2,-);(2)連接AC,如圖①,AB==4,而OA=4,∴平行四邊形OCBA為菱形,∴OC=BC=4,∴C(2,2),∴AC==4,∴OC=OA=AC=AB=BC,∴△AOC和△ACB都是等邊三角形,∴∠AOC=∠COB=∠OCA=60°,而OC=AC,OM=AN,∴△OCM≌△ACN,∴CM=CN,∠OCM=∠ACN,∵∠OCM+∠ACM=60°,∴∠ACN+∠ACM=60°,∴△CMN為等邊三角形,∴MN=CM,∴△AMN的周長=AM+AN+MN=OM+AM+MN=OA+CM=4+CM,當CM⊥OA時,CM的值最小,△AMN的周長最小,此時OM=2,∴t=2;(3)∵C(2,2),D(2,-),∴CD=,∵OD=,OC=4,∴OD2+OC2=CD2,∴△OCD

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論