版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
江蘇省蘇州市葛江中學(xué)2022年十校聯(lián)考最后數(shù)學(xué)試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫(xiě)在“答題紙”相應(yīng)位置上。2.請(qǐng)用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫(xiě)姓名和準(zhǔn)考證號(hào)。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無(wú)效。一、選擇題(共10小題,每小題3分,共30分)1.比1小2的數(shù)是()A. B. C. D.2.已知關(guān)于x的一元二次方程x2+mx+n=0的兩個(gè)實(shí)數(shù)根分別為x1=2,x2=4,則m+n的值是()A.﹣10 B.10 C.﹣6 D.23.實(shí)數(shù)a在數(shù)軸上的位置如圖所示,則下列說(shuō)法不正確的是()A.a(chǎn)的相反數(shù)大于2B.a(chǎn)的相反數(shù)是2C.|a|>2D.2a<04.鐘鼎文是我國(guó)古代的一種文字,是鑄刻在殷周青銅器上的銘文,下列鐘鼎文中,不是軸對(duì)稱圖形的是()A. B. C. D.5.一個(gè)幾何體的三視圖如圖所示,該幾何體是A.直三棱柱 B.長(zhǎng)方體 C.圓錐 D.立方體6.若代數(shù)式有意義,則實(shí)數(shù)x的取值范圍是()A.x=0 B.x=2 C.x≠0 D.x≠27.某市公園的東、西、南、北方向上各有一個(gè)入口,周末佳佳和琪琪隨機(jī)從一個(gè)入口進(jìn)入該公園游玩,則佳佳和琪琪恰好從同一個(gè)入口進(jìn)入該公園的概率是()A. B. C. D.8.如圖,若數(shù)軸上的點(diǎn)A,B分別與實(shí)數(shù)﹣1,1對(duì)應(yīng),用圓規(guī)在數(shù)軸上畫(huà)點(diǎn)C,則與點(diǎn)C對(duì)應(yīng)的實(shí)數(shù)是()A.2 B.3 C.4 D.59.一組數(shù)據(jù)1,2,3,3,4,1.若添加一個(gè)數(shù)據(jù)3,則下列統(tǒng)計(jì)量中,發(fā)生變化的是()A.平均數(shù) B.眾數(shù) C.中位數(shù) D.方差10.下列運(yùn)算正確的是()A. B.C. D.二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11.小李和小林練習(xí)射箭,射完10箭后兩人的成績(jī)?nèi)鐖D所示,通常新手的成績(jī)不太穩(wěn)定,根據(jù)圖中的信息,估計(jì)這兩人中的新手是_____.12.圖①是一個(gè)三角形,分別連接這個(gè)三角形的中點(diǎn)得到圖②;再分別連接圖②中間小三角形三邊的中點(diǎn),得到圖③.按上面的方法繼續(xù)下去,第n個(gè)圖形中有_____個(gè)三角形(用含字母n的代數(shù)式表示).13.如圖,在平面直角坐標(biāo)系中,點(diǎn)A是拋物線與y軸的交點(diǎn),點(diǎn)B是這條拋物線上的另一點(diǎn),且AB∥x軸,則以AB為邊的等邊三角形ABC的周長(zhǎng)為.14.受益于電子商務(wù)發(fā)展和法治環(huán)境改善等多重因素,快遞業(yè)務(wù)迅猛發(fā)展.預(yù)計(jì)達(dá)州市2018年快遞業(yè)務(wù)量將達(dá)到5.5億件,數(shù)據(jù)5.5億用科學(xué)記數(shù)法表示為_(kāi)____.15.如圖所示,四邊形ABCD中,,對(duì)角線AC、BD交于點(diǎn)E,且,,若,,則CE的長(zhǎng)為_(kāi)____.16.分解因式______.三、解答題(共8題,共72分)17.(8分)一艘貨輪往返于上下游兩個(gè)碼頭之間,逆流而上需要6小時(shí),順流而下需要4小時(shí),若船在靜水中的速度為20千米/時(shí),則水流的速度是多少千米/時(shí)?18.(8分)如圖①,在四邊形ABCD中,AC⊥BD于點(diǎn)E,AB=AC=BD,點(diǎn)M為BC中點(diǎn),N為線段AM上的點(diǎn),且MB=MN.(1)求證:BN平分∠ABE;(2)若BD=1,連結(jié)DN,當(dāng)四邊形DNBC為平行四邊形時(shí),求線段BC的長(zhǎng);(3)如圖②,若點(diǎn)F為AB的中點(diǎn),連結(jié)FN、FM,求證:△MFN∽△BDC.19.(8分)已知:如圖1,拋物線的頂點(diǎn)為M,平行于x軸的直線與該拋物線交于點(diǎn)A,B(點(diǎn)A在點(diǎn)B左側(cè)),根據(jù)對(duì)稱性△AMB恒為等腰三角形,我們規(guī)定:當(dāng)△AMB為直角三角形時(shí),就稱△AMB為該拋物線的“完美三角形”.(1)①如圖2,求出拋物線的“完美三角形”斜邊AB的長(zhǎng);②拋物線與的“完美三角形”的斜邊長(zhǎng)的數(shù)量關(guān)系是;(2)若拋物線的“完美三角形”的斜邊長(zhǎng)為4,求a的值;(3)若拋物線的“完美三角形”斜邊長(zhǎng)為n,且的最大值為-1,求m,n的值.20.(8分)如圖,△ABC是⊙O的內(nèi)接三角形,點(diǎn)D在上,點(diǎn)E在弦AB上(E不與A重合),且四邊形BDCE為菱形.(1)求證:AC=CE;(2)求證:BC2﹣AC2=AB?AC;(1)已知⊙O的半徑為1.①若=,求BC的長(zhǎng);②當(dāng)為何值時(shí),AB?AC的值最大?21.(8分)某商人制成了一個(gè)如圖所示的轉(zhuǎn)盤(pán),取名為“開(kāi)心大轉(zhuǎn)盤(pán)”,游戲規(guī)定:參與者自由轉(zhuǎn)動(dòng)轉(zhuǎn)盤(pán),轉(zhuǎn)盤(pán)停止后,若指針指向字母“A”,則收費(fèi)2元,若指針指向字母“B”,則獎(jiǎng)勵(lì)3元;若指針指向字母“C”,則獎(jiǎng)勵(lì)1元.一天,前來(lái)尋開(kāi)心的人轉(zhuǎn)動(dòng)轉(zhuǎn)盤(pán)80次,你認(rèn)為該商人是盈利的可能性大還是虧損的可能性大?為什么?22.(10分)如圖,已知:AD和BC相交于點(diǎn)O,∠A=∠C,AO=2,BO=4,OC=3,求OD的長(zhǎng).23.(12分)矩形ABCD一條邊AD=8,將矩形ABCD折疊,使得點(diǎn)B落在CD邊上的點(diǎn)P處.(1)如圖1,已知折痕與邊BC交于點(diǎn)O,連接AP、OP、OA.①求證:△OCP∽△PDA;②若△OCP與△PDA的面積比為1:4,求邊AB的長(zhǎng).(2)如圖2,在(1)的條件下,擦去AO和OP,連接BP.動(dòng)點(diǎn)M在線段AP上(不與點(diǎn)P、A重合),動(dòng)點(diǎn)N在線段AB的延長(zhǎng)線上,且BN=PM,連接MN交PB于點(diǎn)F,作ME⊥BP于點(diǎn)E.試問(wèn)動(dòng)點(diǎn)M、N在移動(dòng)的過(guò)程中,線段EF的長(zhǎng)度是否發(fā)生變化?若不變,求出線段EF的長(zhǎng)度;若變化,說(shuō)明理由.24.如圖,在梯形ABCD中,AD∥BC,對(duì)角線AC、BD交于點(diǎn)M,點(diǎn)E在邊BC上,且∠DAE=∠DCB,聯(lián)結(jié)AE,AE與BD交于點(diǎn)F.(1)求證:;(2)連接DE,如果BF=3FM,求證:四邊形ABED是平行四邊形.
參考答案一、選擇題(共10小題,每小題3分,共30分)1、C【解析】1-2=-1,故選C2、D【解析】
根據(jù)“一元二次方程x2+mx+n=0的兩個(gè)實(shí)數(shù)根分別為x1=2,x2=4”,結(jié)合根與系數(shù)的關(guān)系,分別列出關(guān)于m和n的一元一次不等式,求出m和n的值,代入m+n即可得到答案.【詳解】解:根據(jù)題意得:x1+x2=﹣m=2+4,解得:m=﹣6,x1?x2=n=2×4,解得:n=8,m+n=﹣6+8=2,故選D.【點(diǎn)睛】本題考查了根與系數(shù)的關(guān)系,正確掌握根與系數(shù)的關(guān)系是解決問(wèn)題的關(guān)鍵.3、B【解析】試題分析:由數(shù)軸可知,a<-2,A、a的相反數(shù)>2,故本選項(xiàng)正確,不符合題意;B、a的相反數(shù)≠2,故本選項(xiàng)錯(cuò)誤,符合題意;C、a的絕對(duì)值>2,故本選項(xiàng)正確,不符合題意;D、2a<0,故本選項(xiàng)正確,不符合題意.故選B.考點(diǎn):實(shí)數(shù)與數(shù)軸.4、A【解析】根據(jù)軸對(duì)稱圖形的概念求解.解:根據(jù)軸對(duì)稱圖形的概念可知:B,C,D是軸對(duì)稱圖形,A不是軸對(duì)稱圖形,故選A.“點(diǎn)睛”本題考查了軸對(duì)稱圖形的概念.軸對(duì)稱圖形的關(guān)鍵是尋找對(duì)稱軸,圖形兩部分折疊后可重合.5、A【解析】
根據(jù)三視圖的形狀可判斷幾何體的形狀.【詳解】觀察三視圖可知,該幾何體是直三棱柱.故選A.本題考查了幾何體的三視圖和結(jié)構(gòu)特征,根據(jù)三視圖的形狀可判斷幾何體的形狀是關(guān)鍵.6、D【解析】
根據(jù)分式的分母不等于0即可解題.【詳解】解:∵代數(shù)式有意義,∴x-2≠0,即x≠2,故選D.【點(diǎn)睛】本題考查了分式有意義的條件,屬于簡(jiǎn)單題,熟悉分式有意義的條件是解題關(guān)鍵.7、B【解析】
首先根據(jù)題意畫(huà)出樹(shù)狀圖,然后由樹(shù)狀圖求得所有等可能的結(jié)果,可求得佳佳和琪琪恰好從同一個(gè)入口進(jìn)入該公園的情況,再利用概率公式求解即可求得答案.【詳解】畫(huà)樹(shù)狀圖如下:由樹(shù)狀圖可知,共有16種等可能結(jié)果,其中佳佳和琪琪恰好從同一個(gè)入口進(jìn)入該公園的有4種等可能結(jié)果,所以佳佳和琪琪恰好從同一個(gè)入口進(jìn)入該公園的概率為,故選B.【點(diǎn)睛】本題考查的是用列表法或畫(huà)樹(shù)狀圖法求概率.列表法或畫(huà)樹(shù)狀圖法可以不重復(fù)不遺漏的列出所有可能的結(jié)果,列表法適合于兩步完成的事件,樹(shù)狀圖法適合兩步或兩步以上完成的事件.注意概率=所求情況數(shù)與總情況數(shù)之比.8、B【解析】
由數(shù)軸上的點(diǎn)A、B分別與實(shí)數(shù)﹣1,1對(duì)應(yīng),即可求得AB=2,再根據(jù)半徑相等得到BC=2,由此即求得點(diǎn)C對(duì)應(yīng)的實(shí)數(shù).【詳解】∵數(shù)軸上的點(diǎn)A,B分別與實(shí)數(shù)﹣1,1對(duì)應(yīng),∴AB=|1﹣(﹣1)|=2,∴BC=AB=2,∴與點(diǎn)C對(duì)應(yīng)的實(shí)數(shù)是:1+2=3.故選B.【點(diǎn)睛】本題考查了實(shí)數(shù)與數(shù)軸,熟記實(shí)數(shù)與數(shù)軸上的點(diǎn)是一一對(duì)應(yīng)的關(guān)系是解決本題的關(guān)鍵.9、D【解析】A.∵原平均數(shù)是:(1+2+3+3+4+1)÷6=3;添加一個(gè)數(shù)據(jù)3后的平均數(shù)是:(1+2+3+3+4+1+3)÷7=3;∴平均數(shù)不發(fā)生變化.B.∵原眾數(shù)是:3;添加一個(gè)數(shù)據(jù)3后的眾數(shù)是:3;∴眾數(shù)不發(fā)生變化;C.∵原中位數(shù)是:3;添加一個(gè)數(shù)據(jù)3后的中位數(shù)是:3;∴中位數(shù)不發(fā)生變化;D.∵原方差是:;添加一個(gè)數(shù)據(jù)3后的方差是:;∴方差發(fā)生了變化.故選D.點(diǎn)睛:本題主要考查的是眾數(shù)、中位數(shù)、方差、平均數(shù)的,熟練掌握相關(guān)概念和公式是解題的關(guān)鍵.10、D【解析】
由去括號(hào)法則:如果括號(hào)外的因數(shù)是負(fù)數(shù),去括號(hào)后原括號(hào)內(nèi)各項(xiàng)的符號(hào)與原來(lái)的符號(hào)相反;完全平方公式:(a±b)2=a2±2ab+b2;單項(xiàng)式與單項(xiàng)式相乘,把他們的系數(shù),相同字母分別相乘,對(duì)于只在一個(gè)單項(xiàng)式里含有的字母,則連同它的指數(shù)作為積的一個(gè)因式進(jìn)行計(jì)算即可.【詳解】解:A、a-(b+c)=a-b-c≠a-b+c,故原題計(jì)算錯(cuò)誤;
B、(x+1)2=x2+2x+1≠x2+1,故原題計(jì)算錯(cuò)誤;
C、(-a)3=≠,故原題計(jì)算錯(cuò)誤;
D、2a2?3a3=6a5,故原題計(jì)算正確;
故選:D.【點(diǎn)睛】本題考查了整式的乘法,解題的關(guān)鍵是掌握有關(guān)計(jì)算法則.二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11、小李.【解析】
解:根據(jù)圖中的信息找出波動(dòng)性大的即可:根據(jù)圖中的信息可知,小李的成績(jī)波動(dòng)性大,則這兩人中的新手是小李.故答案為:小李.12、4n﹣1【解析】
分別數(shù)出圖、圖、圖中的三角形的個(gè)數(shù),可以發(fā)現(xiàn):第幾個(gè)圖形中三角形的個(gè)數(shù)就是4與幾的乘積減去如圖中三角形的個(gè)數(shù)為按照這個(gè)規(guī)律即可求出第n各圖形中有多少三角形.【詳解】分別數(shù)出圖、圖、圖中的三角形的個(gè)數(shù),圖中三角形的個(gè)數(shù)為;圖中三角形的個(gè)數(shù)為;圖中三角形的個(gè)數(shù)為;可以發(fā)現(xiàn),第幾個(gè)圖形中三角形的個(gè)數(shù)就是4與幾的乘積減去1.按照這個(gè)規(guī)律,如果設(shè)圖形的個(gè)數(shù)為n,那么其中三角形的個(gè)數(shù)為.故答案為.【點(diǎn)睛】此題主要考查學(xué)生對(duì)圖形變化類這個(gè)知識(shí)點(diǎn)的理解和掌握,解答此類題目的關(guān)鍵是根據(jù)題目中給出的圖形,數(shù)據(jù)等條件,通過(guò)認(rèn)真思考,歸納總結(jié)出規(guī)律,此類題目難度一般偏大,屬于難題.13、18?!窘馕觥扛鶕?jù)二次函數(shù)的性質(zhì),拋物線的對(duì)稱軸為x=3?!逜是拋物線與y軸的交點(diǎn),點(diǎn)B是這條拋物線上的另一點(diǎn),且AB∥x軸?!郃,B關(guān)于x=3對(duì)稱?!郃B=6。又∵△ABC是等邊三角形,∴以AB為邊的等邊三角形ABC的周長(zhǎng)為6×3=18。14、5.5×1.【解析】分析:科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時(shí),要看把原數(shù)變成a時(shí),小數(shù)點(diǎn)移動(dòng)了多少位,n的絕對(duì)值與小數(shù)點(diǎn)移動(dòng)的位數(shù)相同.當(dāng)原數(shù)絕對(duì)值>10時(shí),n是正數(shù);當(dāng)原數(shù)的絕對(duì)值<1時(shí),n是負(fù)數(shù).詳解:5.5億=550000000=5.5×1,故答案為5.5×1.點(diǎn)睛:此題考查科學(xué)記數(shù)法的表示方法.科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時(shí)關(guān)鍵要正確確定a的值以及n的值.15、【解析】
此題有等腰三角形,所以可作BH⊥CD,交EC于點(diǎn)G,利用三線合一性質(zhì)及鄰補(bǔ)角互補(bǔ)可得∠BGD=120°,根據(jù)四邊形內(nèi)角和360°,得到∠ABG+∠ADG=180°.此時(shí)再延長(zhǎng)GB至K,使AK=AG,構(gòu)造出等邊△AGK.易證△ABK≌△ADG,從而說(shuō)明△ABD是等邊三角形,BD=AB=,根據(jù)DG、CG、GH線段之間的關(guān)系求出CG長(zhǎng)度,在Rt△DBH中利用勾股定理及三角函數(shù)知識(shí)得到∠EBG的正切值,然后作EF⊥BG,求出EF,在Rt△EFG中解出EG長(zhǎng)度,最后CE=CG+GE求解.【詳解】如圖,作于H,交AC于點(diǎn)G,連接DG.∵,∴BH垂直平分CD,∴,∴,∴,∴,延長(zhǎng)GB至K,連接AK使,則是等邊三角形,∴,又,∴≌(),∴,∴是等邊三角形,∴,設(shè),則,,∴,∴,在中,,解得,,當(dāng)時(shí),,所以,∴,,,作,設(shè),,,,,∴,,∴,則,故答案為【點(diǎn)睛】本題主要考查了等腰三角形的性質(zhì)及等邊三角形、全等三角形的判定和性質(zhì)以及勾股定理的運(yùn)用,綜合性較強(qiáng),正確作出輔助線是解題的關(guān)鍵.16、(x+y+z)(x﹣y﹣z).【解析】
當(dāng)被分解的式子是四項(xiàng)時(shí),應(yīng)考慮運(yùn)用分組分解法進(jìn)行分解.本題后三項(xiàng)可以為一組組成完全平方式,再用平方差公式即可.【詳解】x2-y2-z2-2yz,=x2-(y2+z2+2yz),=x2-(y+z)2,=(x+y+z)(x-y-z).故答案為(x+y+z)(x-y-z).【點(diǎn)睛】本題考查了用分組分解法進(jìn)行因式分解.難點(diǎn)是采用兩兩分組還是三一分組.本題后三項(xiàng)可組成完全平方公式,可把后三項(xiàng)分為一組.三、解答題(共8題,共72分)17、1千米/時(shí)【解析】
設(shè)水流的速度是x千米/時(shí),則順流的速度為(20+x)千米/時(shí),逆流的速度為(20﹣x)千米/時(shí),根據(jù)由貨輪往返兩個(gè)碼頭之間,可知順?biāo)叫械木嚯x與逆水航行的距離相等列出方程,解方程即可求解.【詳解】設(shè)水流的速度是x千米/時(shí),則順流的速度為(20+x)千米/時(shí),逆流的速度為(20﹣x)千米/時(shí),根據(jù)題意得:6(20﹣x)=1(20+x),解得:x=1.答:水流的速度是1千米/時(shí).【點(diǎn)睛】本題考查了一元一次方程的應(yīng)用,讀懂題意,找出等量關(guān)系,設(shè)出未知數(shù)后列出方程是解決此類題目的基本思路.18、(1)證明見(jiàn)解析;(2);(3)證明見(jiàn)解析.【解析】分析:(1)由AB=AC知∠ABC=∠ACB,由等腰三角形三線合一知AM⊥BC,從而根據(jù)∠MAB+∠ABC=∠EBC+∠ACB知∠MAB=∠EBC,再由△MBN為等腰直角三角形知∠EBC+∠NBE=∠MAB+∠ABN=∠MNB=45°可得證;(2)設(shè)BM=CM=MN=a,知DN=BC=2a,證△ABN≌△DBN得AN=DN=2a,Rt△ABM中利用勾股定理可得a的值,從而得出答案;(3)F是AB的中點(diǎn)知MF=AF=BF及∠FMN=∠MAB=∠CBD,再由即可得證.詳解:(1)∵AB=AC,∴∠ABC=∠ACB,∵M(jìn)為BC的中點(diǎn),∴AM⊥BC,在Rt△ABM中,∠MAB+∠ABC=90°,在Rt△CBE中,∠EBC+∠ACB=90°,∴∠MAB=∠EBC,又∵M(jìn)B=MN,∴△MBN為等腰直角三角形,∴∠MNB=∠MBN=45°,∴∠EBC+∠NBE=45°,∠MAB+∠ABN=∠MNB=45°,∴∠NBE=∠ABN,即BN平分∠ABE;(2)設(shè)BM=CM=MN=a,∵四邊形DNBC是平行四邊形,∴DN=BC=2a,在△ABN和△DBN中,∵,∴△ABN≌△DBN(SAS),∴AN=DN=2a,在Rt△ABM中,由AM2+MB2=AB2可得(2a+a)2+a2=1,解得:a=±(負(fù)值舍去),∴BC=2a=;(3)∵F是AB的中點(diǎn),∴在Rt△MAB中,MF=AF=BF,∴∠MAB=∠FMN,又∵∠MAB=∠CBD,∴∠FMN=∠CBD,∵,∴,∴△MFN∽△BDC.點(diǎn)睛:本題主要考查相似形的綜合問(wèn)題,解題的關(guān)鍵是掌握等腰三角形三線合一的性質(zhì)、直角三角形和平行四邊形的性質(zhì)及全等三角形與相似三角形的判定與性質(zhì)等知識(shí)點(diǎn).19、(1)AB=2;相等;(2)a=±;(3),.【解析】
(1)①過(guò)點(diǎn)B作BN⊥x軸于N,由題意可知△AMB為等腰直角三角形,設(shè)出點(diǎn)B的坐標(biāo)為(n,-n),根據(jù)二次函數(shù)得出n的值,然后得出AB的值,②因?yàn)閽佄锞€y=x2+1與y=x2的形狀相同,所以拋物線y=x2+1與y=x2的“完美三角形”的斜邊長(zhǎng)的數(shù)量關(guān)系是相等;(2)根據(jù)拋物線的性質(zhì)相同得出拋物線的完美三角形全等,從而得出點(diǎn)B的坐標(biāo),得出a的值;根據(jù)最大值得出mn-4m-1=0,根據(jù)拋物線的完美三角形的斜邊長(zhǎng)為n得出點(diǎn)B的坐標(biāo),然后代入拋物線求出m和n的值.(3)根據(jù)的最大值為-1,得到化簡(jiǎn)得mn-4m-1=0,拋物線的“完美三角形”斜邊長(zhǎng)為n,所以拋物線2的“完美三角形”斜邊長(zhǎng)為n,得出B點(diǎn)坐標(biāo),代入可得mn關(guān)系式,即可求出m、n的值.【詳解】(1)①過(guò)點(diǎn)B作BN⊥x軸于N,由題意可知△AMB為等腰直角三角形,AB∥x軸,易證MN=BN,設(shè)B點(diǎn)坐標(biāo)為(n,-n),代入拋物線,得,∴,(舍去),∴拋物線的“完美三角形”的斜邊②相等;(2)∵拋物線與拋物線的形狀相同,∴拋物線與拋物線的“完美三角形”全等,∵拋物線的“完美三角形”斜邊的長(zhǎng)為4,∴拋物線的“完美三角形”斜邊的長(zhǎng)為4,∴B點(diǎn)坐標(biāo)為(2,2)或(2,-2),∴.(3)∵的最大值為-1,∴,∴,∵拋物線的“完美三角形”斜邊長(zhǎng)為n,∴拋物線的“完美三角形”斜邊長(zhǎng)為n,∴B點(diǎn)坐標(biāo)為,∴代入拋物線,得,∴(不合題意舍去),∴,∴20、(1)證明見(jiàn)解析;(2)證明見(jiàn)解析;(1)①BC=4;②【解析】分析:(1)由菱形知∠D=∠BEC,由∠A+∠D=∠BEC+∠AEC=180°可得∠A=∠AEC,據(jù)此得證;(2)以點(diǎn)C為圓心,CE長(zhǎng)為半徑作⊙C,與BC交于點(diǎn)F,于BC延長(zhǎng)線交于點(diǎn)G,則CF=CG=AC=CE=CD,證△BEF∽△BGA得,即BF?BG=BE?AB,將BF=BC-CF=BC-AC、BG=BC+CG=BC+AC代入可得;(1)①設(shè)AB=5k、AC=1k,由BC2-AC2=AB?AC知BC=2k,連接ED交BC于點(diǎn)M,Rt△DMC中由DC=AC=1k、MC=BC=k求得DM==k,可知OM=OD-DM=1-k,在Rt△COM中,由OM2+MC2=OC2可得答案.②設(shè)OM=d,則MD=1-d,MC2=OC2-OM2=9-d2,繼而知BC2=(2MC)2=16-4d2、AC2=DC2=DM2+CM2=(1-d)2+9-d2,由(2)得AB?AC=BC2-AC2,據(jù)此得出關(guān)于d的二次函數(shù),利用二次函數(shù)的性質(zhì)可得答案.詳解:(1)∵四邊形EBDC為菱形,∴∠D=∠BEC,∵四邊形ABDC是圓的內(nèi)接四邊形,∴∠A+∠D=180°,又∠BEC+∠AEC=180°,∴∠A=∠AEC,∴AC=CE;(2)以點(diǎn)C為圓心,CE長(zhǎng)為半徑作⊙C,與BC交于點(diǎn)F,于BC延長(zhǎng)線交于點(diǎn)G,則CF=CG,由(1)知AC=CE=CD,∴CF=CG=AC,∵四邊形AEFG是⊙C的內(nèi)接四邊形,∴∠G+∠AEF=180°,又∵∠AEF+∠BEF=180°,∴∠G=∠BEF,∵∠EBF=∠GBA,∴△BEF∽△BGA,∴,即BF?BG=BE?AB,∵BF=BC﹣CF=BC﹣AC、BG=BC+CG=BC+AC,BE=CE=AC,∴(BC﹣AC)(BC+AC)=AB?AC,即BC2﹣AC2=AB?AC;(1)設(shè)AB=5k、AC=1k,∵BC2﹣AC2=AB?AC,∴BC=2k,連接ED交BC于點(diǎn)M,∵四邊形BDCE是菱形,∴DE垂直平分BC,則點(diǎn)E、O、M、D共線,在Rt△DMC中,DC=AC=1k,MC=BC=k,∴DM=,∴OM=OD﹣DM=1﹣k,在Rt△COM中,由OM2+MC2=OC2得(1﹣k)2+(k)2=12,解得:k=或k=0(舍),∴BC=2k=4;②設(shè)OM=d,則MD=1﹣d,MC2=OC2﹣OM2=9﹣d2,∴BC2=(2MC)2=16﹣4d2,AC2=DC2=DM2+CM2=(1﹣d)2+9﹣d2,由(2)得AB?AC=BC2﹣AC2=﹣4d2+6d+18=﹣4(d﹣)2+,∴當(dāng)d=,即OM=時(shí),AB?AC最大,最大值為,∴DC2=,∴AC=DC=,∴AB=,此時(shí).點(diǎn)睛:本題主要考查圓的綜合問(wèn)題,解題的關(guān)鍵是掌握?qǐng)A的有關(guān)性質(zhì)、圓內(nèi)接四邊形的性質(zhì)及菱形的性質(zhì)、相似三角形的判定與性質(zhì)、二次函數(shù)的性質(zhì)等知識(shí)點(diǎn).21、商人盈利的可能性大.【解析】試題分析:根據(jù)幾何概率的定義,面積比即概率.圖中A,B,C所占的面積與總面積之比即為A,B,C各自的概率,算出相應(yīng)的可能性,乘以錢(qián)數(shù),比較即可.試題解析:商人盈利的可能性大.商人收費(fèi):80××2=80(元),商人獎(jiǎng)勵(lì):80××3+80××1=60(元),因?yàn)?0>60,所以商人盈利的可能性大.22、OD=6.【解析】
(1)根據(jù)有兩個(gè)角相等的三角形相似,直接列出比例式,求出OD的長(zhǎng),即可解決問(wèn)題.【詳解】在△AOB與△COD中,,∴△AOB~△COD,∴,∴,∴OD=6.【點(diǎn)睛】該題主要考查了相似三角形的判定及其性質(zhì)的應(yīng)用問(wèn)題;解題的關(guān)鍵是準(zhǔn)確找出圖形中的對(duì)應(yīng)元素,正確列出比例式;對(duì)分析問(wèn)題解決問(wèn)題的能力提出了一定的要求.23、(1)①證明見(jiàn)解析;②10;(2)線段EF的長(zhǎng)度不變,它的長(zhǎng)度為25..【解析】試題分析:(1)先證出∠C=∠D=90°,再根據(jù)∠1+∠3=90°,∠1+∠2=90°,得出∠2=∠3,即可證出△OCP∽△PDA;根據(jù)△OCP與△PDA的面積比為1:4,得出CP=12(2)作MQ∥AN,交PB于點(diǎn)Q,求出MP=MQ,BN=QM,得出MP=MQ,根據(jù)ME⊥PQ,得出EQ=12PQ,根據(jù)∠QMF=∠BNF,證出△MFQ≌△NFB,得出QF=12QB,再求出EF=12試題解析:(1)如圖1,∵四邊形ABCD是矩形,∴∠C=∠D=90°,∴∠1+
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- GB/T 24503-2024礦用圓環(huán)鏈驅(qū)動(dòng)鏈輪
- 幼兒園承包合同的人力資源配置
- 進(jìn)出口貿(mào)易合同參考樣本
- 培訓(xùn)機(jī)構(gòu)講師合作合同示范
- 污水處理站運(yùn)營(yíng)托管合同
- 旅行社餐飲合作合同
- 規(guī)范的人民調(diào)解協(xié)議書(shū)格式
- 版權(quán)合作共享協(xié)議書(shū)
- 擔(dān)保期限的法律規(guī)定2024年
- 2024年噴漆工職業(yè)危害告知書(shū)
- 心理學(xué)專業(yè)就業(yè)前景分析
- 嬰幼兒保育技能大賽考試題庫(kù)(濃縮500題)
- 大學(xué)生職業(yè)生涯發(fā)展展示
- 學(xué)校物業(yè)服務(wù)保潔服務(wù)管理方案
- 農(nóng)場(chǎng)銷(xiāo)售部提成激勵(lì)專項(xiàng)方案
- (多種情景)設(shè)備居間合同范本(實(shí)用)
- 偉大的數(shù)學(xué)家華羅庚
- 避免穿著危險(xiǎn)的衣物和鞋子
- 心理學(xué)基礎(chǔ)課件:社會(huì)心理
- 殯葬從業(yè)人員培訓(xùn)課件
- 辦公用品售后服務(wù)方案范文
評(píng)論
0/150
提交評(píng)論