![2025年吉林省舒蘭一中蛟河一中等百校聯(lián)盟學業(yè)水平考試數(shù)學試題試卷含解析_第1頁](http://file4.renrendoc.com/view12/M00/09/34/wKhkGWbbnR2AFVukAAJegsLlvJg180.jpg)
![2025年吉林省舒蘭一中蛟河一中等百校聯(lián)盟學業(yè)水平考試數(shù)學試題試卷含解析_第2頁](http://file4.renrendoc.com/view12/M00/09/34/wKhkGWbbnR2AFVukAAJegsLlvJg1802.jpg)
![2025年吉林省舒蘭一中蛟河一中等百校聯(lián)盟學業(yè)水平考試數(shù)學試題試卷含解析_第3頁](http://file4.renrendoc.com/view12/M00/09/34/wKhkGWbbnR2AFVukAAJegsLlvJg1803.jpg)
![2025年吉林省舒蘭一中蛟河一中等百校聯(lián)盟學業(yè)水平考試數(shù)學試題試卷含解析_第4頁](http://file4.renrendoc.com/view12/M00/09/34/wKhkGWbbnR2AFVukAAJegsLlvJg1804.jpg)
![2025年吉林省舒蘭一中蛟河一中等百校聯(lián)盟學業(yè)水平考試數(shù)學試題試卷含解析_第5頁](http://file4.renrendoc.com/view12/M00/09/34/wKhkGWbbnR2AFVukAAJegsLlvJg1805.jpg)
版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2025年吉林省舒蘭一中,蛟河一中等百校聯(lián)盟學業(yè)水平考試數(shù)學試題試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.如圖所示,在平面直角坐標系中,是橢圓的右焦點,直線與橢圓交于,兩點,且,則該橢圓的離心率是()A. B. C. D.2.自2019年12月以來,在湖北省武漢市發(fā)現(xiàn)多起病毒性肺炎病例,研究表明,該新型冠狀病毒具有很強的傳染性各級政府反應迅速,采取了有效的防控阻擊措施,把疫情控制在最低范圍之內.某社區(qū)按上級要求做好在鄂返鄉(xiāng)人員體格檢查登記,有3個不同的住戶屬在鄂返鄉(xiāng)住戶,負責該小區(qū)體格檢查的社區(qū)診所共有4名醫(yī)生,現(xiàn)要求這4名醫(yī)生都要分配出去,且每個住戶家里都要有醫(yī)生去檢查登記,則不同的分配方案共有()A.12種 B.24種 C.36種 D.72種3.已知集合,集合,若,則()A. B. C. D.4.已知等差數(shù)列的前項和為,且,則()A.45 B.42 C.25 D.365.i是虛數(shù)單位,若,則乘積的值是()A.-15 B.-3 C.3 D.156.已知函數(shù),則函數(shù)的圖象大致為()A. B.C. D.7.已知函數(shù),對任意的,,當時,,則下列判斷正確的是()A. B.函數(shù)在上遞增C.函數(shù)的一條對稱軸是 D.函數(shù)的一個對稱中心是8.公元263年左右,我國數(shù)學家劉徽發(fā)現(xiàn)當圓內接正多邊形的邊數(shù)無限增加時,多邊形面積可無限逼近圓的面積,并創(chuàng)立了“割圓術”,利用“割圓術”劉徽得到了圓周率精確到小數(shù)點后兩位的近似值,這就是著名的“徽率”。如圖是利用劉徽的“割圓術”思想設計的一個程序框圖,則輸出的值為()(參考數(shù)據(jù):)A.48 B.36 C.24 D.129.命題:存在實數(shù),對任意實數(shù),使得恒成立;:,為奇函數(shù),則下列命題是真命題的是()A. B. C. D.10.已知函數(shù)則函數(shù)的圖象的對稱軸方程為()A. B.C. D.11.在平面直角坐標系xOy中,已知橢圓的右焦點為,若F到直線的距離為,則E的離心率為()A. B. C. D.12.已知正四面體外接球的體積為,則這個四面體的表面積為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在中,已知,則的最小值是________.14.“直線l1:與直線l2:平行”是“a=2”的_______條件(填“充分不必要”、“必要不充分”、“充分必要”或“既不充分又不必要”).15.銳角中,角,,所對的邊分別為,,,若,則的取值范圍是______.16.已知雙曲線:(,),直線:與雙曲線的兩條漸近線分別交于,兩點.若(點為坐標原點)的面積為32,且雙曲線的焦距為,則雙曲線的離心率為________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù).(1)求函數(shù)的單調區(qū)間;(2)當時,如果方程有兩個不等實根,求實數(shù)t的取值范圍,并證明.18.(12分)已知三棱錐中,為等腰直角三角形,,設點為中點,點為中點,點為上一點,且.(1)證明:平面;(2)若,求直線與平面所成角的正弦值.19.(12分)已知函數(shù)和的圖象關于原點對稱,且.(1)解關于的不等式;(2)如果對,不等式恒成立,求實數(shù)的取值范圍.20.(12分)已知函數(shù).(1)若是的極值點,求的極大值;(2)求實數(shù)的范圍,使得恒成立.21.(12分)已知函數(shù),其中e為自然對數(shù)的底數(shù).(1)討論函數(shù)的單調性;(2)用表示中較大者,記函數(shù).若函數(shù)在上恰有2個零點,求實數(shù)a的取值范圍.22.(10分)(1)已知數(shù)列滿足:,且(為非零常數(shù),),求數(shù)列的前項和;(2)已知數(shù)列滿足:(ⅰ)對任意的;(ⅱ)對任意的,,且.①若,求數(shù)列是等比數(shù)列的充要條件.②求證:數(shù)列是等比數(shù)列,其中.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.A【解析】
聯(lián)立直線方程與橢圓方程,解得和的坐標,然后利用向量垂直的坐標表示可得,由離心率定義可得結果.【詳解】由,得,所以,.由題意知,所以,.因為,所以,所以.所以,所以,故選:A.本題考查了直線與橢圓的交點,考查了向量垂直的坐標表示,考查了橢圓的離心率公式,屬于基礎題.2.C【解析】
先將4名醫(yī)生分成3組,其中1組有2人,共有種選法,然后將這3組醫(yī)生分配到3個不同的住戶中去,有種方法,由分步原理可知共有種.【詳解】不同分配方法總數(shù)為種.故選:C此題考查的是排列組合知識,解此類題時一般先組合再排列,屬于基礎題.3.A【解析】
根據(jù)或,驗證交集后求得的值.【詳解】因為,所以或.當時,,不符合題意,當時,.故選A.本小題主要考查集合的交集概念及運算,屬于基礎題.4.D【解析】
由等差數(shù)列的性質可知,進而代入等差數(shù)列的前項和的公式即可.【詳解】由題,.故選:D本題考查等差數(shù)列的性質,考查等差數(shù)列的前項和.5.B【解析】,∴,選B.6.A【解析】
用排除法,通過函數(shù)圖像的性質逐個選項進行判斷,找出不符合函數(shù)解析式的圖像,最后剩下即為此函數(shù)的圖像.【詳解】設,由于,排除B選項;由于,所以,排除C選項;由于當時,,排除D選項.故A選項正確.故選:A本題考查了函數(shù)圖像的性質,屬于中檔題.7.D【解析】
利用輔助角公式將正弦函數(shù)化簡,然后通過題目已知條件求出函數(shù)的周期,從而得到,即可求出解析式,然后利用函數(shù)的性質即可判斷.【詳解】,又,即,有且僅有滿足條件;又,則,,函數(shù),對于A,,故A錯誤;對于B,由,解得,故B錯誤;對于C,當時,,故C錯誤;對于D,由,故D正確.故選:D本題考查了簡單三角恒等變換以及三角函數(shù)的性質,熟記性質是解題的關鍵,屬于基礎題.8.C【解析】
由開始,按照框圖,依次求出s,進行判斷?!驹斀狻?,故選C.框圖問題,依據(jù)框圖結構,依次準確求出數(shù)值,進行判斷,是解題關鍵。9.A【解析】
分別判斷命題和的真假性,然后根據(jù)含有邏輯聯(lián)結詞命題的真假性判斷出正確選項.【詳解】對于命題,由于,所以命題為真命題.對于命題,由于,由解得,且,所以是奇函數(shù),故為真命題.所以為真命題.、、都是假命題.故選:A本小題主要考查誘導公式,考查函數(shù)的奇偶性,考查含有邏輯聯(lián)結詞命題真假性的判斷,屬于基礎題.10.C【解析】
,將看成一個整體,結合的對稱性即可得到答案.【詳解】由已知,,令,得.故選:C.本題考查余弦型函數(shù)的對稱性的問題,在處理余弦型函數(shù)的性質時,一般采用整體法,結合三角函數(shù)的性質,是一道容易題.11.A【解析】
由已知可得到直線的傾斜角為,有,再利用即可解決.【詳解】由F到直線的距離為,得直線的傾斜角為,所以,即,解得.故選:A.本題考查橢圓離心率的問題,一般求橢圓離心率的問題時,通常是構造關于的方程或不等式,本題是一道容易題.12.B【解析】
設正四面體ABCD的外接球的半徑R,將該正四面體放入一個正方體內,使得每條棱恰好為正方體的面對角線,根據(jù)正方體和正四面體的外接球為同一個球計算出正方體的棱長,從而得出正四面體的棱長,最后可求出正四面體的表面積.【詳解】將正四面體ABCD放在一個正方體內,設正方體的棱長為a,如圖所示,設正四面體ABCD的外接球的半徑為R,則,得.因為正四面體ABCD的外接球和正方體的外接球是同一個球,則有,∴.而正四面體ABCD的每條棱長均為正方體的面對角線長,所以,正四面體ABCD的棱長為,因此,這個正四面體的表面積為.故選:B.本題考查球的內接多面體,解決這類問題就是找出合適的模型將球體的半徑與幾何體的一些幾何量聯(lián)系起來,考查計算能力,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】分析:可先用向量的數(shù)量積公式將原式變形為:,然后再結合余弦定理整理為,再由cosC的余弦定理得到a,b的關系式,最后利用基本不等式求解即可.詳解:已知,可得,將角A,B,C的余弦定理代入得,由,當a=b時取到等號,故cosC的最小值為.點睛:考查向量的數(shù)量積、余弦定理、基本不等式的綜合運用,能正確轉化是解題關鍵.屬于中檔題.14.必要不充分【解析】
先求解直線l1與直線l2平行的等價條件,然后進行判斷.【詳解】“直線l1:與直線l2:平行”等價于a=±2,故“直線l1:與直線l2:平行”是“a=2”的必要不充分條件.故答案為:必要不充分.本題主要考查充分必要條件的判定,把已知條件進行等價轉化是求解這類問題的關鍵,側重考查邏輯推理的核心素養(yǎng).15.【解析】
由余弦定理,正弦定理得出,從而得出,推出的范圍,由余弦函數(shù)的性質得出的范圍,再利用二倍角公式化簡,即可得出答案.【詳解】由題意得由正弦定理得化簡得又為銳角三角形,則,,.故答案為本題主要考查了正弦定理和余弦定理的應用,屬于中檔題.16.或【解析】
用表示出的面積,求得等量關系,聯(lián)立焦距的大小,以及,即可容易求得,則離心率得解.【詳解】聯(lián)立解得.所以的面積,所以.而由雙曲線的焦距為知,,所以.聯(lián)立解得或故雙曲線的離心率為或.故答案為:或.本題考查雙曲線的方程與性質,考查運算求解能力以及函數(shù)與方程思想,屬中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1)當時,的單調遞增區(qū)間是,單調遞減區(qū)間是;當時,的單調遞增區(qū)間是,單調遞減區(qū)間是;(2),證明見解析.【解析】
(1)求出,對分類討論,分別求出的解,即可得出結論;(2)由(1)得出有兩解時的范圍,以及關系,將,等價轉化為證明,不妨設,令,則,即證,構造函數(shù),只要證明對于任意恒成立即可.【詳解】(1)的定義域為R,且.由,得;由,得.故當時,函數(shù)的單調遞增區(qū)間是,單調遞減區(qū)間是;當時,函數(shù)的單調遞增區(qū)間是,單調遞減區(qū)間是.(2)由(1)知當時,,且.當時,;當時,.當時,直線與的圖像有兩個交點,實數(shù)t的取值范圍是.方程有兩個不等實根,,,,,,即.要證,只需證,即證,不妨設.令,則,則要證,即證.令,則.令,則,在上單調遞增,.,在上單調遞增,,即成立,即成立..本題考查函數(shù)與導數(shù)的綜合應用,涉及到函數(shù)單調性、極值、零點、不等式證明,構造函數(shù)函數(shù)是解題的關鍵,意在考查直觀想象、邏輯推理、數(shù)學計算能力,屬于較難題.18.(1)證明見解析;(2)【解析】
(1)連接交于點,連接,通過證,并說明平面,來證明平面(2)采用建系法以、、所在直線分別為、、軸建立空間直角坐標系,分別表示出對應的點坐標,設平面的一個法向量為,結合直線對應的和法向量,利用向量夾角的余弦公式進行求解即可【詳解】證明:如圖,連接交于點,連接,點為的中點,點為的中點,點為的重心,則,,,又平面,平面,平面;,,,,,,可得,又,則以、、所在直線分別為、、軸建立空間直角坐標系,則,,,,,,.設平面的一個法向量為,由,取,得.設直線與平面所成角為,則.直線與平面所成角的正弦值為.本題考查線面平行的判定定理的使用,利用建系法來求解線面夾角問題,整體難度不大,本題中的線面夾角的正弦值公式使用廣泛,需要識記19.(1)(2)【解析】試題分析:(1)由函數(shù)和的圖象關于原點對稱可得的表達式,再去掉絕對值即可解不等式;(2)對,不等式成立等價于,去絕對值得不等式組,即可求得實數(shù)的取值范圍.試題解析:(1)∵函數(shù)和的圖象關于原點對稱,∴,∴原不等式可化為,即或,解得不等式的解集為;(2)不等式可化為:,即,即,則只需,解得,的取值范圍是.20.(1).(2)【解析】
(1)先對函數(shù)求導,結合極值存在的條件可求t,然后結合導數(shù)可研究函數(shù)的單調性,進而可求極大值;(2)由已知代入可得,x2+(t﹣2)x﹣tlnx≥0在x>0時恒成立,構造函數(shù)g(x)=x2+(t﹣2)x﹣tlnx,結合導數(shù)及函數(shù)的性質可求.【詳解】(1),x>0,由題意可得,0,解可得t=﹣4,∴,易得,當x>2,0<x<1時,f′(x)>0,函數(shù)單調遞增,當1<x<2時,f′(x)<0,函數(shù)單調遞減,故當x=1時,函數(shù)取得極大值f(1)=﹣3;(2)由f(x)=x2+(t﹣2)x﹣tlnx+2≥2在x>0時恒成立可得,x2+(t﹣2)x﹣tlnx≥0在x>0時恒成立,令g(x)=x2+(t﹣2)x﹣tlnx,則,(i)當t≥0時,g(x)在(0,1)上單調遞減,在(1,+∞)上單調遞增,所以g(x)min=g(1)=t﹣1≥0,解可得t≥1,(ii)當﹣2<t<0時,g(x)在()上單調遞減,在(0,),(1,+∞)上單調遞增,此時g(1)=t﹣1<﹣1不合題意,舍去;(iii)當t=﹣2時,g′(x)0,即g(x)在(0,+∞)上單調遞增,此時g(1)=﹣3不合題意;(iv)當t<﹣2時,g(x)在(1,)上單調遞減,在(0,1),()上單調遞增,此時g(1)=t﹣1<﹣3不合題意,綜上,t≥1時,f(x)≥2恒成立.本題主要考查了利用導數(shù)求解函數(shù)的單調性及極值,利用導數(shù)與函數(shù)的性質處理不等式的恒成立問題,分類討論思想,屬于中檔題.21.(1)函數(shù)的單調遞增區(qū)間為和,單調遞減區(qū)間為;(2).【解析】
(1)由題可得,結合的范圍判斷的正負,即可求解;(2)結合導數(shù)及函數(shù)的零點的判定定理,分類討論進行求解【詳解】(1),①當時,,∴函數(shù)在內單調遞增;②當時,令,解得或,當或時,,則單調遞增,當時,,則單調遞減,∴函數(shù)的單調遞增區(qū)間為和,單調遞減區(qū)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年中國全銅水槽落水頭市場調查研究報告
- 2025至2031年中國音頻電療機行業(yè)投資前景及策略咨詢研究報告
- 2025年窗配件項目可行性研究報告
- 2025至2031年中國電腦花織帶行業(yè)投資前景及策略咨詢研究報告
- 2025至2031年中國無紡紙行業(yè)投資前景及策略咨詢研究報告
- 2025年掛鎖項目可行性研究報告
- 2025年奧運熒光筆項目可行性研究報告
- 2025至2031年中國全自動圓角切斷機行業(yè)投資前景及策略咨詢研究報告
- 2025年便攜式酒精檢測儀項目可行性研究報告
- 2025年T/C染色線卡項目可行性研究報告
- 中考物理復習備考策略
- 博士后進站申請書博士后進站申請書八篇
- 小報:人工智能科技科學小報手抄報電子小報word小報
- GB/T 41509-2022綠色制造干式切削工藝性能評價規(guī)范
- 全面介紹現(xiàn)貨中遠期交易
- 公安系防暴安全03安檢
- 孫權勸學教案全國一等獎教學設計
- 企業(yè)生產(chǎn)現(xiàn)場6S管理知識培訓課件
- 五年級下冊數(shù)學課件 第10課時 練習課 蘇教版(共11張PPT)
- 電梯口包邊施工方案正式
- 三年級道德與法治下冊我是獨特的
評論
0/150
提交評論