廣西柳州市十二中學市級名校2022年中考數學對點突破模擬試卷含解析_第1頁
廣西柳州市十二中學市級名校2022年中考數學對點突破模擬試卷含解析_第2頁
廣西柳州市十二中學市級名校2022年中考數學對點突破模擬試卷含解析_第3頁
廣西柳州市十二中學市級名校2022年中考數學對點突破模擬試卷含解析_第4頁
廣西柳州市十二中學市級名校2022年中考數學對點突破模擬試卷含解析_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

廣西柳州市十二中學市級名校2022年中考數學對點突破模擬試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.2017年新設了雄安新區(qū),周邊經濟受到刺激綜合實力大幅躍升,其中某地區(qū)生產總值預計可增長到305.5億元其中305.5億用科學記數法表示為()A.305.5×104B.3.055×102C.3.055×1010D.3.055×10112.如圖,兩根竹竿AB和AD斜靠在墻CE上,量得∠ABC=,∠ADC=,則竹竿AB與AD的長度之比為A. B. C. D.3.如圖,直線a∥b,直線c與直線a、b分別交于點A、點B,AC⊥AB于點A,交直線b于點C.如果∠1=34°,那么∠2的度數為()A.34° B.56° C.66° D.146°4.下列計算正確的有()個①(﹣2a2)3=﹣6a6②(x﹣2)(x+3)=x2﹣6③(x﹣2)2=x2﹣4④﹣2m3+m3=﹣m3⑤﹣16=﹣1.A.0 B.1 C.2 D.35.如圖,中,,且,設直線截此三角形所得陰影部分的面積為S,則S與t之間的函數關系的圖象為下列選項中的A. B. C. D.6.計算的結果為()A.1 B.x C. D.7.一次函數y=ax+b與反比例函數y=在同一平面直角坐標系中的圖象如左圖所示,則二次函數y=ax2+bx+c的圖象可能是()A. B. C. D.8.下列幾何體中三視圖完全相同的是()A. B. C. D.9.下列選項中,可以用來證明命題“若a2>b2,則a>b“是假命題的反例是()A.a=﹣2,b=1 B.a=3,b=﹣2 C.a=0,b=1 D.a=2,b=110.下列圖案中,既是軸對稱圖形又是中心對稱圖形的是()A. B. C. D.11.如圖是一個正方體被截去一角后得到的幾何體,從上面看得到的平面圖形是()A. B. C. D.12.已知兩點都在反比例函數圖象上,當時,,則的取值范圍是()A. B. C. D.二、填空題:(本大題共6個小題,每小題4分,共24分.)13.4的平方根是.14.三角形兩邊的長是3和4,第三邊的長是方程x2﹣14x+48=0的根,則該三角形的周長為_____.15.已知一粒米的質量是1.111121千克,這個數字用科學記數法表示為__________.16.如圖,在矩形ABCD中,對角線AC、BD相交于點O,點E、F分別是AO、AD的中點,若AB=6cm,BC=8cm,則EF=_____cm.17.已知反比例函數y=在第二象限內的圖象如圖,經過圖象上兩點A、E分別引y軸與x軸的垂線,交于點C,且與y軸與x軸分別交于點M、B.連接OC交反比例函數圖象于點D,且,連接OA,OE,如果△AOC的面積是15,則△ADC與△BOE的面積和為_____.18.若使代數式有意義,則x的取值范圍是_____.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)如圖,已知平行四邊形OBDC的對角線相交于點E,其中O(0,0),B(3,4),C(m,0),反比例函數y=(k≠0)的圖象經過點B.求反比例函數的解析式;若點E恰好落在反比例函數y=上,求平行四邊形OBDC的面積.20.(6分)如圖,在△ABC中,AB=AC,AE是角平分線,BM平分∠ABC交AE于點M,經過B、M兩點的⊙O交BC于點G,交AB于點F,FB恰為⊙O的直徑.(1)判斷AE與⊙O的位置關系,并說明理由;(2)若BC=6,AC=4CE時,求⊙O的半徑.21.(6分)科技改變生活,手機導航極大方便了人們的出行,如圖,小明一家自駕到古鎮(zhèn)C游玩,到達A地后,導航顯示車輛應沿北偏西55°方向行駛4千米至B地,再沿北偏東35°方向行駛一段距離到達古鎮(zhèn)C,小明發(fā)現古鎮(zhèn)C恰好在A地的正北方向,求B、C兩地的距離(結果保留整數)(參考數據:tan55°≈1.4,tan35°≈0.7,sin55°≈0.8)22.(8分)計算:|﹣2|+2cos30°﹣(﹣)2+(tan45°)﹣123.(8分)如圖,一次函數y=kx+b與反比例函數y=的圖象相較于A(2,3),B(﹣3,n)兩點.求一次函數與反比例函數的解析式;根據所給條件,請直接寫出不等式kx+b>的解集;過點B作BC⊥x軸,垂足為C,求S△ABC.24.(10分)小明對,,,四個中小型超市的女工人數進行了統(tǒng)計,并繪制了下面的統(tǒng)計圖表,已知超市有女工20人.所有超市女工占比統(tǒng)計表超市女工人數占比62.5%62.5%50%75%超市共有員工多少人?超市有女工多少人?若從這些女工中隨機選出一個,求正好是超市的概率;現在超市又招進男、女員工各1人,超市女工占比還是75%嗎?甲同學認為是,乙同學認為不是.你認為誰說的對,并說明理由.25.(10分)如圖,AB是半圓O的直徑,D為弦BC的中點,延長OD交弧BC于點E,點F為OD的延長線上一點且滿足∠OBC=∠OFC,求證:CF為⊙O的切線;若四邊形ACFD是平行四邊形,求sin∠BAD的值.26.(12分)已知:如圖,平行四邊形ABCD,對角線AC與BD相交于點E,點G為AD的中點,連接CG,CG的延長線交BA的延長線于點F,連接FD.求證:AB=AF;若AG=AB,∠BCD=120°,判斷四邊形ACDF的形狀,并證明你的結論.27.(12分)深圳某書店為了迎接“讀書節(jié)”制定了活動計劃,以下是活動計劃書的部分信息:“讀書節(jié)“活動計劃書書本類別科普類文學類進價(單位:元)1812備注(1)用不超過16800元購進兩類圖書共1000本;(2)科普類圖書不少于600本;…(1)已知科普類圖書的標價是文學類圖書標價的1.5倍,若顧客用540元購買的圖書,能單獨購買科普類圖書的數量恰好比單獨購買文學類圖書的數量少10本,請求出兩類圖書的標價;(2)經市場調査后發(fā)現:他們高估了“讀書節(jié)”對圖書銷售的影響,便調整了銷售方案,科普類圖書每本標價降低a(0<a<5)元銷售,文學類圖書價格不變,那么書店應如何進貨才能獲得最大利潤?

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、C【解析】解:305.5億=3.055×1.故選C.2、B【解析】

在兩個直角三角形中,分別求出AB、AD即可解決問題;【詳解】在Rt△ABC中,AB=,在Rt△ACD中,AD=,∴AB:AD=:=,故選B.【點睛】本題考查解直角三角形的應用、銳角三角函數等知識,解題的關鍵是學會利用參數解決問題.3、B【解析】分析:先根據平行線的性質得出∠2+∠BAD=180°,再根據垂直的定義求出∠2的度數.詳解:∵直線a∥b,∴∠2+∠BAD=180°.∵AC⊥AB于點A,∠1=34°,∴∠2=180°﹣90°﹣34°=56°.故選B.點睛:本題主要考查了平行線的性質,解題的關鍵是掌握兩直線平行,同旁內角互補,此題難度不大.4、C【解析】

根據積的乘方法則,多項式乘多項式的計算法則,完全平方公式,合并同類項的計算法則,乘方的定義計算即可求解.【詳解】①(﹣2a2)3=﹣8a6,錯誤;②(x﹣2)(x+3)=x2+x﹣6,錯誤;③(x﹣2)2=x2﹣4x+4,錯誤④﹣2m3+m3=﹣m3,正確;⑤﹣16=﹣1,正確.計算正確的有2個.故選C.【點睛】考查了積的乘方,多項式乘多項式,完全平方公式,合并同類項,乘方,關鍵是熟練掌握計算法則正確進行計算.5、D【解析】

Rt△AOB中,AB⊥OB,且AB=OB=3,所以很容易求得∠AOB=∠A=45°;再由平行線的性質得出∠OCD=∠A,即∠AOD=∠OCD=45°,進而證明OD=CD=t;最后根據三角形的面積公式,解答出S與t之間的函數關系式,由函數解析式來選擇圖象.【詳解】解:∵Rt△AOB中,AB⊥OB,且AB=OB=3,∴∠AOB=∠A=45°,∵CD⊥OB,∴CD∥AB,∴∠OCD=∠A,∴∠AOD=∠OCD=45°,∴OD=CD=t,∴S△OCD=×OD×CD=t2(0≤t≤3),即S=t2(0≤t≤3).故S與t之間的函數關系的圖象應為定義域為[0,3],開口向上的二次函數圖象;故選D.【點睛】本題主要考查的是二次函數解析式的求法及二次函數的圖象特征,解答本題的關鍵是根據三角形的面積公式,解答出S與t之間的函數關系式,由函數解析式來選擇圖象.6、A【解析】

根據同分母分式的加減運算法則計算可得.【詳解】原式===1,故選:A.【點睛】本題主要考查分式的加減法,解題的關鍵是掌握同分母分式的加減運算法則.7、B【解析】

根據題中給出的函數圖像結合一次函數性質得出a<0,b>0,再由反比例函數圖像性質得出c<0,從而可判斷二次函數圖像開口向下,對稱軸:>0,即在y軸的右邊,與y軸負半軸相交,從而可得答案.【詳解】解:∵一次函數y=ax+b圖像過一、二、四,∴a<0,b>0,又∵反比例函數y=圖像經過二、四象限,∴c<0,∴二次函數對稱軸:>0,∴二次函數y=ax2+bx+c圖像開口向下,對稱軸在y軸的右邊,與y軸負半軸相交,故答案為B.【點睛】本題考查了二次函數的圖形,一次函數的圖象,反比例函數的圖象,熟練掌握二次函數的有關性質:開口方向、對稱軸、與y軸的交點坐標等確定出a、b、c的情況是解題的關鍵.8、A【解析】

找到從物體正面、左面和上面看得到的圖形全等的幾何體即可.【詳解】解:A、球的三視圖完全相同,都是圓,正確;B、圓柱的俯視圖與主視圖和左視圖不同,錯誤;C、圓錐的俯視圖與主視圖和左視圖不同,錯誤;D、四棱錐的俯視圖與主視圖和左視圖不同,錯誤;故選A.【點睛】考查三視圖的有關知識,注意三視圖都相同的常見的幾何體有球和正方體.9、A【解析】

根據要證明一個結論不成立,可以通過舉反例的方法來證明一個命題是假命題.由此即可解答.【詳解】∵當a=﹣2,b=1時,(﹣2)2>12,但是﹣2<1,∴a=﹣2,b=1是假命題的反例.故選A.【點睛】本題考查了命題與定理,要說明數學命題的錯誤,只需舉出一個反例即可,這是數學中常用的一種方法.10、B【解析】

根據軸對稱圖形與中心對稱圖形的概念求解.【詳解】A、是軸對稱圖形,不是中心對稱圖形,故此選項錯誤;

B、是軸對稱圖形,也是中心對稱圖形,故此選項正確;

C、不是軸對稱圖形,是中心對稱圖形,故此選項錯誤;

D、不是軸對稱圖形,是中心對稱圖形,故此選項錯誤.

故選B.【點睛】考查了中心對稱圖形與軸對稱圖形的概念.軸對稱圖形的關鍵是尋找對稱軸,圖形兩部分折疊后可重合,中心對稱圖形是要尋找對稱中心,旋轉180度后兩部分重合.11、B【解析】

根據俯視圖是從上面看到的圖形可得俯視圖為正方形以及右下角一個三角形.【詳解】從上面看,是正方形右邊有一條斜線,如圖:故選B.【點睛】考查了三視圖的知識,根據俯視圖是從物體的上面看得到的視圖得出是解題關鍵.12、B【解析】

根據反比例函數的性質判斷即可.【詳解】解:∵當x1<x2<0時,y1<y2,

∴在每個象限y隨x的增大而增大,

∴k<0,

故選:B.【點睛】本題考查了反比例函數的性質,解題的關鍵是熟練掌握反比例函數的性質.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、±1.【解析】試題分析:∵,∴4的平方根是±1.故答案為±1.考點:平方根.14、13【解析】

利用因式分解法求出解已知方程的解確定出第三邊,即可求出該三角形的周長.【詳解】方程x2-14x+48=0,分解因式得:(x-6)(x-8)=0,解得:x=6或x=8,當x=6時,三角形周長為3+4+6=13,當x=8時,3+4<8不能構成三角形,舍去,綜上,該三角形的周長為13,故答案為13【點睛】此題考查了解一元二次方程-因式分解法,以及三角形三邊關系,熟練掌握運算法則是解本題的關鍵.15、2.1×【解析】

絕對值小于1的正數也可以利用科學記數法表示,一般形式為a×11-n,與較大數的科學記數法不同的是其所使用的是負指數冪,指數由原數左邊起第一個不為零的數字前面的1的個數所決定.【詳解】解:1.111121=2.1×11-2.

故答案為:2.1×11-2.【點睛】本題考查用科學記數法表示較小的數,一般形式為a×11-n,其中1≤|a|<11,n由原數左邊起第一個不為零的數字前面的1的個數所決定.16、2.1【解析】

根據勾股定理求出AC,根據矩形性質得出∠ABC=90°,BD=AC,BO=OD,求出BD、OD,根據三角形中位線求出即可.【詳解】∵四邊形ABCD是矩形,∴∠ABC=90°,BD=AC,BO=OD,∵AB=6cm,BC=8cm,∴由勾股定理得:BD=AC==10(cm),∴DO=1cm,∵點E、F分別是AO、AD的中點,∴EF=OD=2.1cm,故答案為2.1.【點評】本題考查了勾股定理,矩形性質,三角形中位線的應用,熟練掌握相關性質及定理是解題的關鍵.17、1.【解析】連結AD,過D點作DG∥CM,∵,△AOC的面積是15,∴CD:CO=1:3,OG:OM=2:3,∴△ACD的面積是5,△ODF的面積是15×=,∴四邊形AMGF的面積=,∴△BOE的面積=△AOM的面積=×=12,∴△ADC與△BOE的面積和為5+12=1,故答案為:1.18、x≠﹣2【解析】

直接利用分式有意義則其分母不為零,進而得出答案.【詳解】∵分式有意義,∴x的取值范圍是:x+2≠0,解得:x≠?2.故答案是:x≠?2.【點睛】本題考查了分式有意義的條件,解題的關鍵是熟練的掌握分式有意義的條件.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)y=;(2)1;【解析】

(1)把點B的坐標代入反比例解析式求得k值,即可求得反比例函數的解析式;(2)根據點B(3,4)、C(m,0)的坐標求得邊BC的中點E坐標為(,2),將點E的坐標代入反比例函數的解析式求得m的值,根據平行四邊形的面積公式即可求解.【詳解】(1)把B坐標代入反比例解析式得:k=12,則反比例函數解析式為y=;(2)∵B(3,4),C(m,0),∴邊BC的中點E坐標為(,2),將點E的坐標代入反比例函數得2=,解得:m=9,則平行四邊形OBCD的面積=9×4=1.【點睛】本題為反比例函數的綜合應用,考查的知識點有待定系數法、平行四邊形的性質、中點的求法.在(1)中注意待定系數法的應用,在(2)中用m表示出E點的坐標是解題的關鍵.20、(1)AE與⊙O相切.理由見解析.(2)2.1【解析】

(1)連接OM,則OM=OB,利用平行的判定和性質得到OM∥BC,∠AMO=∠AEB,再利用等腰三角形的性質和切線的判定即可得證;(2)設⊙O的半徑為r,則AO=12﹣r,利用等腰三角形的性質和解直角三角形的有關知識得到AB=12,易證△AOM∽△ABE,根據相似三角形的性質即可求解.【詳解】解:(1)AE與⊙O相切.理由如下:連接OM,則OM=OB,∴∠OMB=∠OBM,∵BM平分∠ABC,∴∠OBM=∠EBM,∴∠OMB=∠EBM,∴OM∥BC,∴∠AMO=∠AEB,在△ABC中,AB=AC,AE是角平分線,∴AE⊥BC,∴∠AEB=90°,∴∠AMO=90°,∴OM⊥AE,∴AE與⊙O相切;(2)在△ABC中,AB=AC,AE是角平分線,∴BE=BC,∠ABC=∠C,∵BC=6,cosC=,∴BE=3,cos∠ABC=,在△ABE中,∠AEB=90°,∴AB===12,設⊙O的半徑為r,則AO=12﹣r,∵OM∥BC,∴△AOM∽△ABE,∴,∴=,解得:r=2.1,∴⊙O的半徑為2.1.21、B、C兩地的距離大約是6千米.【解析】

過B作BD⊥AC于點D,在直角△ABD中利用三角函數求得BD的長,然后在直角△BCD中利用三角函數求得BC的長.【詳解】解:過B作于點D.在中,千米,中,,千米,千米.答:B、C兩地的距離大約是6千米.【點睛】此題考查了方向角問題.此題難度適中,解此題的關鍵是將方向角問題轉化為解直角三角形的知識,利用三角函數的知識求解.22、1【解析】

本題涉及絕對值、特殊角的三角函數值、負指數冪、二次根式化簡、乘方5個考點,先針對每個考點分別進行計算,然后根據實數的運算法則求得計算結果即可.【詳解】解:原式=2﹣+2×﹣3+1=1.【點睛】本題考查實數的綜合運算能力,是各地中考題中常見的計算題型,解決此類題目的關鍵是熟練掌握絕對值、特殊角的三角函數值、負指數冪、二次根式化簡、乘方等考點的運算.23、(1)反比例函數的解析式為:y=,一次函數的解析式為:y=x+1;(2)﹣3<x<0或x>2;(3)1.【解析】

(1)根據點A位于反比例函數的圖象上,利用待定系數法求出反比例函數解析式,將點B坐標代入反比例函數解析式,求出n的值,進而求出一次函數解析式(2)根據點A和點B的坐標及圖象特點,即可求出反比例函數值大于一次函數值時x的取值范圍(3)由點A和點B的坐標求得三角形以BC為底的高是10,從而求得三角形ABC的面積【詳解】解:(1)∵點A(2,3)在y=的圖象上,∴m=6,∴反比例函數的解析式為:y=,∴n==﹣2,∵A(2,3),B(﹣3,﹣2)兩點在y=kx+b上,∴,解得:,∴一次函數的解析式為:y=x+1;(2)由圖象可知﹣3<x<0或x>2;(3)以BC為底,則BC邊上的高為3+2=1,∴S△ABC=×2×1=1.24、(1)32(人),25(人);(2);(3)乙同學,見解析.【解析】

(1)用A超市有女工人數除以女工人數占比,可求A超市共有員工多少人;先求出D超市女工所占圓心角度數,進一步得到四個中小型超市的女工人數比,從而求得B超市有女工多少人;

(2)先求出C超市有女工人數,進一步得到四個中小型超市共有女工人數,再根據概率的定義即可求解;

(3)先求出D超市有女工人數、共有員工多少人,再得到D超市又招進男、女員工各1人,D超市有女工人數、共有員工多少人,再根據概率的定義即可求解.【詳解】解:(1)A超市共有員工:20÷62.5%=32(人),∵360°-80°-100°-120°=60°,∴四個超市女工人數的比為:80:100:120:60=4:5:6:3,∴B超市有女工:20×=25(人);(2)C超市有女工:20×=30(人).四個超市共有女工:20×=90(人).從這些女工中隨機選出一個,正好是C超市的概率為=.(3)乙同學.理由:D超市有女工20×=15(人),共有員工15÷75%=20(人),再招進男、女員工各1人,共有員工22人,其中女工是16人,女工占比為=≠75%.【點睛】本題考查了統(tǒng)計表與扇形統(tǒng)計圖的綜合,以及概率的知識.用到的知識點為:概率=所求情況數與總情況數之比.25、(1)見解析;(2).【解析】

(1)連接OC,根據等腰三角形的性質得到∠OCB=∠B,∠OCB=∠F,根據垂徑定理得到OF⊥BC,根據余角的性質得到∠OCF=90°,于是得到結論;

(2)過D作DH⊥AB于H,根據三角形的中位線的想知道的OD=AC,根據平行四邊形的性質得到DF=AC,設OD=x,得到AC=DF=2x,根據射影定理得到CD=x,求得BD=x,根據勾股定理得到AD=x,于是得到結論.【詳解】解:(1)連接OC,

∵OC=OB,

∴∠OCB=∠B,

∵∠B=∠F,

∴∠OCB=∠F,

∵D為BC的中點,

∴OF⊥BC,

∴∠F+∠FCD=90°,

∴∠OCB+∠FCD=90°,

∴∠OCF=90°,

∴CF為⊙O的切線;

(2)過D作DH⊥AB于H,

∵AO=OB,CD=DB,

∴OD=AC,

∵四邊形ACFD是平行四邊形,

∴DF=AC,

設OD=x,

∴AC=DF=2x,

∵∠OCF=90°,CD⊥OF,

∴CD2=OD?DF=2x2,

∴CD=x,

∴BD=x,

∴AD=x,

∵OD=x,BD=x,

∴OB=x,

∴DH=x,

∴sin∠BAD==.【點睛】本題考查了切線的判定和性質,平行四邊形的性質,垂徑定理,射影定理,勾股定理,三角函數的定義,正確的作出輔助線是解題的關鍵.26、(1)證明見解析;(2)結論:四邊形ACDF是矩形.理由見解析.【解析】

(1)只要證明AB=CD,AF=CD即可解決問題;(2)結論:四邊形ACDF是矩形.根據對角線相等的平行四邊形是矩形判斷即可;【詳解】(1)證明:∵四邊形ABCD是平行四邊形,∴BE∥CD,AB=CD,∴∠AFC=∠DCG,∵GA=GD,∠AGF=∠CGD,∴△AGF≌△DGC,∴AF=CD,∴AB=CF.(2)解:結論:四邊形ACDF是矩形.理由:∵AF=CD,AF∥CD,∴四邊形ACDF是平行四邊形,∵四邊形ABCD是

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論