版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2024-2025學(xué)年北京市中學(xué)國人民大附屬中學(xué)初三第二學(xué)期月考試卷(二)數(shù)學(xué)試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.對于兩組數(shù)據(jù)A,B,如果sA2>sB2,且,則()A.這兩組數(shù)據(jù)的波動相同 B.?dāng)?shù)據(jù)B的波動小一些C.它們的平均水平不相同 D.?dāng)?shù)據(jù)A的波動小一些2.已知實數(shù)a<0,則下列事件中是必然事件的是()A.a(chǎn)+3<0 B.a(chǎn)﹣3<0 C.3a>0 D.a(chǎn)3>03.小張同學(xué)制作了四張材質(zhì)和外觀完全一樣的書簽,每個書簽上寫著一本書的名稱或一個作者姓名,分別是:《西游記》、施耐庵、《安徒生童話》、安徒生,從這四張書簽中隨機抽取兩張,則抽到的書簽正好是相對應(yīng)的書名和作者姓名的概率是()A. B. C. D.4.用教材中的計算器依次按鍵如下,顯示的結(jié)果在數(shù)軸上對應(yīng)點的位置介于()之間.A.B與C B.C與D C.E與F D.A與B5.如果向北走6km記作+6km,那么向南走8km記作()A.+8kmB.﹣8kmC.+14kmD.﹣2km6.如圖,點A所表示的數(shù)的絕對值是()A.3 B.﹣3 C. D.7.下列計算正確的是()A.()2=±8 B.+=6 C.(﹣)0=0 D.(x﹣2y)﹣3=8.如圖,在四邊形ABCD中,∠A=120°,∠C=80°.將△BMN沿著MN翻折,得到△FMN.若MF∥AD,F(xiàn)N∥DC,則∠F的度數(shù)為()A.70° B.80° C.90° D.100°9.下列運算正確的是()A.4x+5y=9xy B.(?m)3?m7=m10C.(x3y)5=x8y5 D.a(chǎn)12÷a8=a410.如圖,按照三視圖確定該幾何體的側(cè)面積是(單位:cm)()A.24πcm2 B.48πcm2 C.60πcm2 D.80πcm211.下列事件中,屬于不確定事件的是()A.科學(xué)實驗,前100次實驗都失敗了,第101次實驗會成功B.投擲一枚骰子,朝上面出現(xiàn)的點數(shù)是7點C.太陽從西邊升起來了D.用長度分別是3cm,4cm,5cm的細(xì)木條首尾順次相連可組成一個直角三角形12.要使式子有意義,x的取值范圍是()A.x≠1 B.x≠0 C.x>﹣1且≠0 D.x≥﹣1且x≠0二、填空題:(本大題共6個小題,每小題4分,共24分.)13.中,,,高,則的周長為______。14.如圖,在△ABC中,∠A=60°,若剪去∠A得到四邊形BCDE,則∠1+∠2=______.15.如圖,在網(wǎng)格中,小正方形的邊長均為1,點A、B、O都在格點上,則∠OAB的正弦值是_____.16.矩形紙片ABCD中,AB=3cm,BC=4cm,現(xiàn)將紙片折疊壓平,使A與C重合,設(shè)折痕為EF,則重疊部分△AEF的面積等于_____.17.如圖,點A在反比例函數(shù)y=(x>0)的圖像上,過點A作AD⊥y軸于點D,延長AD至點C,使CD=2AD,過點A作AB⊥x軸于點B,連結(jié)BC交y軸于點E,若△ABC的面積為6,則k的值為________.18.如圖,點O(0,0),B(0,1)是正方形OBB1C的兩個頂點,以對角線OB1為一邊作正方形OB1B2C1,再以正方形OB1B2C1的對角線OB2為一邊作正方形OB2B3C2,……,依次下去.則點B6的坐標(biāo)____________.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)八年級(1)班學(xué)生在完成課題學(xué)習(xí)“體質(zhì)健康測試中的數(shù)據(jù)分析”后,利用課外活動時間積極參加體育鍛煉,每位同學(xué)從籃球、跳繩、立定跳遠(yuǎn)、長跑、鉛球中選一項進(jìn)行訓(xùn)練,訓(xùn)練后都進(jìn)行了測試.現(xiàn)將項目選擇情況及訓(xùn)練后籃球定時定點投籃測試成績整理后作出如下統(tǒng)計圖.請你根據(jù)上面提供的信息回答下列問題:扇形圖中跳繩部分的扇形圓心角為度,該班共有學(xué)生人,訓(xùn)練后籃球定時定點投籃平均每個人的進(jìn)球數(shù)是.老師決定從選擇鉛球訓(xùn)練的3名男生和1名女生中任選兩名學(xué)生先進(jìn)行測試,請用列表或畫樹形圖的方法求恰好選中兩名男生的概率.20.(6分)如圖,AB是⊙O的直徑,,連結(jié)AC,過點C作直線l∥AB,點P是直線l上的一個動點,直線PA與⊙O交于另一點D,連結(jié)CD,設(shè)直線PB與直線AC交于點E.求∠BAC的度數(shù);當(dāng)點D在AB上方,且CD⊥BP時,求證:PC=AC;在點P的運動過程中①當(dāng)點A在線段PB的中垂線上或點B在線段PA的中垂線上時,求出所有滿足條件的∠ACD的度數(shù);②設(shè)⊙O的半徑為6,點E到直線l的距離為3,連結(jié)BD,DE,直接寫出△BDE的面積.21.(6分)如圖,將矩形ABCD沿對角線AC翻折,點B落在點F處,F(xiàn)C交AD于E.求證:△AFE≌△CDF;若AB=4,BC=8,求圖中陰影部分的面積.22.(8分)閱讀材料:對于線段的垂直平分線我們有如下結(jié)論:到線段兩個端點距離相等的點在線段的垂直平分線上.即如圖①,若PA=PB,則點P在線段AB的垂直平分線上請根據(jù)閱讀材料,解決下列問題:如圖②,直線CD是等邊△ABC的對稱軸,點D在AB上,點E是線段CD上的一動點(點E不與點C、D重合),連結(jié)AE、BE,△ABE經(jīng)順時針旋轉(zhuǎn)后與△BCF重合.(I)旋轉(zhuǎn)中心是點,旋轉(zhuǎn)了(度);(II)當(dāng)點E從點D向點C移動時,連結(jié)AF,設(shè)AF與CD交于點P,在圖②中將圖形補全,并探究∠APC的大小是否保持不變?若不變,請求出∠APC的度數(shù);若改變,請說出變化情況.23.(8分)如圖,在ABCD中,點E是AB邊的中點,DE與CB的延長線交于點F(1)求證:△ADE≌△BFE;(2)若DF平分∠ADC,連接CE,試判斷CE和DF的位置關(guān)系,并說明理由.24.(10分)如圖,在每個小正方形的邊長為1的網(wǎng)格中,點A,B,M,N均在格點上,P為線段MN上的一個動點(1)MN的長等于_______,(2)當(dāng)點P在線段MN上運動,且使PA2+PB2取得最小值時,請借助網(wǎng)格和無刻度的直尺,在給定的網(wǎng)格中畫出點P的位置,并簡要說明你是怎么畫的,(不要求證明)25.(10分)(11分)閱讀資料:如圖1,在平面之間坐標(biāo)系xOy中,A,B兩點的坐標(biāo)分別為A(x1,y1),B(x1,y1),由勾股定理得AB1=|x1﹣x1|1+|y1﹣y1|1,所以A,B兩點間的距離為AB=.我們知道,圓可以看成到圓心距離等于半徑的點的集合,如圖1,在平面直角坐標(biāo)系xoy中,A(x,y)為圓上任意一點,則A到原點的距離的平方為OA1=|x﹣0|1+|y﹣0|1,當(dāng)⊙O的半徑為r時,⊙O的方程可寫為:x1+y1=r1.問題拓展:如果圓心坐標(biāo)為P(a,b),半徑為r,那么⊙P的方程可以寫為.綜合應(yīng)用:如圖3,⊙P與x軸相切于原點O,P點坐標(biāo)為(0,6),A是⊙P上一點,連接OA,使tan∠POA=,作PD⊥OA,垂足為D,延長PD交x軸于點B,連接AB.①證明AB是⊙P的切點;②是否存在到四點O,P,A,B距離都相等的點Q?若存在,求Q點坐標(biāo),并寫出以Q為圓心,以O(shè)Q為半徑的⊙O的方程;若不存在,說明理由.26.(12分)計算:(-)-2–2()+27.(12分)某省為解決農(nóng)村飲用水問題,省財政部門共投資20億元對各市的農(nóng)村飲用水的“改水工程”予以一定比例的補助.2008年,A市在省財政補助的基礎(chǔ)上投入600萬元用于“改水工程”,計劃以后每年以相同的增長率投資,2010年該市計劃投資“改水工程”1176萬元.求A市投資“改水工程”的年平均增長率;從2008年到2010年,A市三年共投資“改水工程”多少萬元?
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、B【解析】試題解析:方差越小,波動越小.數(shù)據(jù)B的波動小一些.故選B.點睛:本題考查方差的意義.方差是用來衡量一組數(shù)據(jù)波動大小的量,方差越大,表明這組數(shù)據(jù)偏離平均數(shù)越大,即波動越大,數(shù)據(jù)越不穩(wěn)定;反之,方差越小,表明這組數(shù)據(jù)分布比較集中,各數(shù)據(jù)偏離平均數(shù)越小,即波動越小,數(shù)據(jù)越穩(wěn)定.2、B【解析】A、a+3<0是隨機事件,故A錯誤;B、a﹣3<0是必然事件,故B正確;C、3a>0是不可能事件,故C錯誤;D、a3>0是隨機事件,故D錯誤;故選B.點睛:本題考查了隨機事件.解決本題需要正確理解必然事件、不可能事件、隨機事件的概念.必然事件指在一定條件下,一定發(fā)生的事件.不可能事件指一定條件下,一定不發(fā)生的事件.不確定事件即隨機事件是指在一定條件下,可能發(fā)生也可能不發(fā)生的事件.3、D【解析】
根據(jù)題意先畫出樹狀圖得出所有等情況數(shù)和到的書簽正好是相對應(yīng)的書名和作者姓名的情況數(shù),再根據(jù)概率公式即可得出答案.【詳解】解:根據(jù)題意畫圖如下:共有12種等情況數(shù),抽到的書簽正好是相對應(yīng)的書名和作者姓名的有2種情況,則抽到的書簽正好是相對應(yīng)的書名和作者姓名的概率是=;故選D.此題考查的是用列表法或樹狀圖法求概率.列表法可以不重復(fù)不遺漏的列出所有可能的結(jié)果,適合于兩步完成的事件;樹狀圖法適合兩步或兩步以上完成的事件;解題時要注意此題是放回實驗還是不放回實驗.用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.4、A【解析】試題分析:在計算器上依次按鍵轉(zhuǎn)化為算式為﹣=-1.414…;計算可得結(jié)果介于﹣2與﹣1之間.故選A.考點:1、計算器—數(shù)的開方;2、實數(shù)與數(shù)軸5、B【解析】
正負(fù)數(shù)的應(yīng)用,先判斷向北、向南是不是具有相反意義的量,再用正負(fù)數(shù)表示出來【詳解】解:向北和向南互為相反意義的量.若向北走6km記作+6km,那么向南走8km記作﹣8km.故選:B.本題考查正負(fù)數(shù)在生活中的應(yīng)用.注意用正負(fù)數(shù)表示的量必須是具有相反意義的量.6、A【解析】
根據(jù)負(fù)數(shù)的絕對值是其相反數(shù)解答即可.【詳解】|-3|=3,故選A.此題考查絕對值問題,關(guān)鍵是根據(jù)負(fù)數(shù)的絕對值是其相反數(shù)解答.7、D【解析】
各項中每項計算得到結(jié)果,即可作出判斷.【詳解】解:A.原式=8,錯誤;B.原式=2+4,錯誤;C.原式=1,錯誤;D.原式=x6y﹣3=,正確.故選D.此題考查了實數(shù)的運算,熟練掌握運算法則是解本題的關(guān)鍵.8、B【解析】
首先利用平行線的性質(zhì)得出∠BMF=120°,∠FNB=80°,再利用翻折變換的性質(zhì)得出∠FMN=∠BMN=60°,∠FNM=∠MNB=40°,進(jìn)而求出∠B的度數(shù)以及得出∠F的度數(shù).【詳解】∵M(jìn)F∥AD,F(xiàn)N∥DC,∠A=120°,∠C=80°,
∴∠BMF=120°,∠FNB=80°,
∵將△BMN沿MN翻折得△FMN,
∴∠FMN=∠BMN=60°,∠FNM=∠MNB=40°,
∴∠F=∠B=180°-60°-40°=80°,
故選B.主要考查了平行線的性質(zhì)以及多邊形內(nèi)角和定理以及翻折變換的性質(zhì),得出∠FMN=∠BMN,∠FNM=∠MNB是解題關(guān)鍵.9、D【解析】
各式計算得到結(jié)果,即可作出判斷.【詳解】解:A、4x+5y=4x+5y,錯誤;B、(-m)3?m7=-m10,錯誤;C、(x3y)5=x15y5,錯誤;D、a12÷a8=a4,正確;故選D.此題考查了整式的混合運算,熟練掌握運算法則是解本題的關(guān)鍵.10、A【解析】
由主視圖和左視圖確定是柱體,錐體還是球體,再由俯視圖確定具體形狀,確定圓錐的母線長和底面半徑,從而確定其側(cè)面積.【詳解】解:由主視圖和左視圖為三角形判斷出是錐體,由俯視圖是圓形可判斷出這個幾何體應(yīng)該是圓錐;根據(jù)三視圖知:該圓錐的母線長為6cm,底面半徑為8÷1=4cm,故側(cè)面積=πrl=π×6×4=14πcm1.故選:A.此題考查學(xué)生對三視圖掌握程度和靈活運用能力,同時也體現(xiàn)了對空間想象能力方面的考查.11、A【解析】
根據(jù)事件發(fā)生的可能性大小判斷相應(yīng)事件的類型即可.【詳解】解:A、是隨機事件,故A符合題意;B、是不可能事件,故B不符合題意;C、是不可能事件,故C不符合題意;D、是必然事件,故D不符合題意;故選A.本題考查了隨機事件,解決本題需要正確理解必然事件、不可能事件、隨機事件的概念.必然事件指在一定條件下,一定發(fā)生的事件.不可能事件是指在一定條件下,一定不發(fā)生的事件,不確定事件即隨機事件是指在一定條件下,可能發(fā)生也可能不發(fā)生的事件.12、D【解析】
根據(jù)二次根式由意義的條件是:被開方數(shù)大于或等于1,和分母不等于1,即可求解.【詳解】根據(jù)題意得:,解得:x≥-1且x≠1.故選:D.本題考查的知識點為:分式有意義,分母不為1;二次根式的被開方數(shù)是非負(fù)數(shù).二、填空題:(本大題共6個小題,每小題4分,共24分.)13、32或42【解析】
根據(jù)題意,分兩種情況討論:①若∠ACB是銳角,②若∠ACB是鈍角,分別畫出圖形,利用勾股定理,即可求解.【詳解】分兩種情況討論:①若∠ACB是銳角,如圖1,∵,,高,∴在Rt?ABD中,,即:,同理:,∴的周長=9+5+15+13=42,②若∠ACB是鈍角,如圖2,∵,,高,∴在Rt?ABD中,,即:,同理:,∴的周長=9-5+15+13=32,故答案是:32或42.本題主要考查勾股定理,根據(jù)題意,畫出圖形,分類進(jìn)行計算,是解題的關(guān)鍵.14、240.【解析】
試題分析:∠1+∠2=180°+60°=240°.考點:1.三角形的外角性質(zhì);2.三角形內(nèi)角和定理.15、【解析】
如圖,過點O作OC⊥AB的延長線于點C,則AC=4,OC=2,在Rt△ACO中,AO=,∴sin∠OAB=.故答案為.16、7516【解析】試題分析:要求重疊部分△AEF的面積,選擇AF作為底,高就等于AB的長;而由折疊可知∠AEF=∠CEF,由平行得∠CEF=∠AFE,代換后,可知AE=AF,問題轉(zhuǎn)化為在Rt△ABE中求AE.因此設(shè)AE=x,由折疊可知,EC=x,BE=4﹣x,在Rt△ABE中,AB2+BE2=AE2,即32+(4﹣x)2=x2,解得:x=258,即AE=AF=25因此可求得S△AEF=12×AF×AB=12×考點:翻折變換(折疊問題)17、1【解析】
連結(jié)BD,利用三角形面積公式得到S△ADB=S△ABC=2,則S矩形OBAD=2S△ADB=1,于是可根據(jù)反比例函數(shù)的比例系數(shù)k的幾何意義得到k的值.【詳解】連結(jié)BD,如圖,∵DC=2AD,∴S△ADB=S△BDC=S△BAC=×6=2,∵AD⊥y軸于點D,AB⊥x軸,∴四邊形OBAD為矩形,∴S矩形OBAD=2S△ADB=2×2=1,∴k=1.故答案為:1.本題考查了反比例函數(shù)的比例系數(shù)k的幾何意義:在反比例函數(shù)y=圖象中任取一點,過這一個點向x軸和y軸分別作垂線,與坐標(biāo)軸圍成的矩形的面積是定值|k|.18、(-1,0)【解析】根據(jù)已知條件由圖中可以得到B1所在的正方形的對角線長為,B2所在的正方形的對角線長為()2,B3所在的正方形的對角線長為()3;B4所在的正方形的對角線長為()4;B5所在的正方形的對角線長為()5;可推出B6所在的正方形的對角線長為()6=1.又因為B6在x軸負(fù)半軸,所以B6(-1,0).解:如圖所示∵正方形OBB1C,∴OB1=,B1所在的象限為第一象限;∴OB2=()2,B2在x軸正半軸;∴OB3=()3,B3所在的象限為第四象限;∴OB4=()4,B4在y軸負(fù)半軸;∴OB5=()5,B5所在的象限為第三象限;∴OB6=()6=1,B6在x軸負(fù)半軸.∴B6(-1,0).故答案為(-1,0).三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、(1)36,40,1;(2).【解析】
(1)先求出跳繩所占比例,再用比例乘以360°即可,用籃球的人數(shù)除以所占比例即可;根據(jù)加權(quán)平均數(shù)的概念計算訓(xùn)練后籃球定時定點投籃人均進(jìn)球數(shù).(2)畫出樹狀圖,根據(jù)概率公式求解即可.【詳解】(1)扇形圖中跳繩部分的扇形圓心角為360°×(1-10%-20%-10%-10%)=36度;
該班共有學(xué)生(2+1+7+4+1+1)÷10%=40人;
訓(xùn)練后籃球定時定點投籃平均每個人的進(jìn)球數(shù)是=1,
故答案為:36,40,1.(2)三名男生分別用A1,A2,A3表示,一名女生用B表示.根據(jù)題意,可畫樹形圖如下:由上圖可知,共有12種等可能的結(jié)果,選中兩名學(xué)生恰好是兩名男生(記為事件M)的結(jié)果有6種,∴P(M)==.20、(1)45°;(2)見解析;(3)①∠ACD=15°;∠ACD=105°;∠ACD=60°;∠ACD=120°;②36或.【解析】
(1)易得△ABC是等腰直角三角形,從而∠BAC=∠CBA=45°;(2)分當(dāng)B在PA的中垂線上,且P在右時;B在PA的中垂線上,且P在左;A在PB的中垂線上,且P在右時;A在PB的中垂線上,且P在左時四中情況求解;(3)①先說明四邊形OHEF是正方形,再利用△DOH∽△DFE求出EF的長,然后利用割補法求面積;②根據(jù)△EPC∽△EBA可求PC=4,根據(jù)△PDC∽△PCA可求PD?PA=PC2=16,再根據(jù)S△ABP=S△ABC得到,利用勾股定理求出k2,然后利用三角形面積公式求解.【詳解】(1)解:(1)連接BC,∵AB是直徑,∴∠ACB=90°.∴△ABC是等腰直角三角形,∴∠BAC=∠CBA=45°;(2)解:∵,∴∠CDB=∠CDP=45°,CB=CA,∴CD平分∠BDP又∵CD⊥BP,∴BE=EP,即CD是PB的中垂線,∴CP=CB=CA,(3)①(Ⅰ)如圖2,當(dāng)B在PA的中垂線上,且P在右時,∠ACD=15°;(Ⅱ)如圖3,當(dāng)B在PA的中垂線上,且P在左,∠ACD=105°;(Ⅲ)如圖4,A在PB的中垂線上,且P在右時∠ACD=60°;(Ⅳ)如圖5,A在PB的中垂線上,且P在左時∠ACD=120°②(Ⅰ)如圖6,,.(Ⅱ)如圖7,,,.,.,,,.設(shè)BD=9k,PD=2k,,,,.本題是圓的綜合題,熟練掌握30°角所對的直角邊等于斜邊的一半,平行線的性質(zhì),垂直平分線的性質(zhì),相似三角形的判定與性質(zhì),圓周角定理,圓內(nèi)接四邊形的性質(zhì),勾股定理,同底等高的三角形的面積相等是解答本題的關(guān)鍵.21、(1)證明見解析;(2)1.【解析】試題分析:(1)根據(jù)矩形的性質(zhì)得到AB=CD,∠B=∠D=90°,根據(jù)折疊的性質(zhì)得到∠E=∠B,AB=AE,根據(jù)全等三角形的判定定理即可得到結(jié)論;(2)根據(jù)全等三角形的性質(zhì)得到AF=CF,EF=DF,根據(jù)勾股定理得到DF=3,根據(jù)三角形的面積公式即可得到結(jié)論.試題解析:(1)∵四邊形ABCD是矩形,∴AB=CD,∠B=∠D=90°,∵將矩形ABCD沿對角線AC翻折,點B落在點E處,∴∠E=∠B,AB=AE,∴AE=CD,∠E=∠D,在△AEF與△CDF中,∵∠E=∠D,∠AFE=∠CFD,AE=CD,∴△AEF≌△CDF;(2)∵AB=4,BC=8,∴CE=AD=8,AE=CD=AB=4,∵△AEF≌△CDF,∴AF=CF,EF=DF,∴DF2+CD2=CF2,即DF2+42=(8﹣DF)2,∴DF=3,∴EF=3,∴圖中陰影部分的面積=S△ACE﹣S△AEF=×4×8﹣×4×3=1.點睛:本題考查了翻折變換﹣折疊的性質(zhì),熟練掌握折疊的性質(zhì)是解題的關(guān)鍵.22、B60【解析】分析:(1)根據(jù)旋轉(zhuǎn)的性質(zhì)可得出結(jié)論;(2)根據(jù)旋轉(zhuǎn)的性質(zhì)可得BF=CF,則點F在線段BC的垂直平分線上,又由AC=AB,可得點A在線段BC的垂直平分線上,由AF垂直平分BC,即∠CQP=90,進(jìn)而得出∠APC的度數(shù).詳解:(1)B,60;(2)補全圖形如圖所示;的大小保持不變,理由如下:設(shè)與交于點∵直線是等邊的對稱軸∴,∵經(jīng)順時針旋轉(zhuǎn)后與重合∴,∴∴點在線段的垂直平分線上∵∴點在線段的垂直平分線上∴垂直平分,即∴點睛:本題考查了旋轉(zhuǎn)的性質(zhì),解題的關(guān)鍵是熟記旋轉(zhuǎn)的性質(zhì)及垂直平分線的性質(zhì),注意只證明一點是不能說明這條直線是垂直平分線的.23、(1)見解析;(1)見解析.【解析】
(1)由全等三角形的判定定理AAS證得結(jié)論.(1)由(1)中全等三角形的對應(yīng)邊相等推知點E是邊DF的中點,∠1=∠1;根據(jù)角平分線的性質(zhì)、等量代換以及等角對等邊證得DC=FC,則由等腰三角形的“三合一”的性質(zhì)推知CE⊥DF.【詳解】解:(1)證明:如圖,∵四邊形ABCD是平行四邊形,∴AD∥BC.又∵點F在CB的延長線上,∴AD∥CF.∴∠1=∠1.∵點E是AB邊的中點,∴AE=BE,∵在△ADE與△BFE中,,∴△ADE≌△BFE(AAS).(1)CE⊥DF.理由如下:如圖,連接CE,由(1)知,△ADE≌△BFE,∴DE=FE,即點E是DF的中點,∠1=∠1.∵DF平分∠ADC,∴∠1=∠2.∴∠2=∠1.∴CD=CF.∴CE⊥DF.24、(1);(2)見解析.【解析】
(1)根據(jù)勾股定理即可得到結(jié)論;
(2)取格點S,T,得點R;取格點E,F(xiàn),得點G;連接GR交MN于點P即可得到結(jié)果.【詳解】(1);(2)取格點S,T,得點R;取格點E,F(xiàn),得點G;連接GR交MN于點P本題考查了作圖-應(yīng)用與設(shè)計作圖,軸對稱-最短距離問題,正確的作出圖形是解題的關(guān)鍵.25、問題拓展:(x﹣a)1+(y﹣b)1=r1綜合應(yīng)用:①見解析②點Q的坐標(biāo)為(4,3),方程為(x﹣4)1+(y﹣3)1=15.【解析】試題分析:問題拓展:設(shè)A(x,y)為⊙P上任意一點,則有AP=r,根據(jù)閱讀材料中的兩點之間距離公式即可求出⊙P的方程;綜合應(yīng)用:①由PO=PA,PD⊥OA可得∠OPD=∠APD,從而可證到△POB≌△PAB,則有∠POB=∠PAB.由⊙P與x軸相切于原點O可得∠POB=90°,即可得到∠PAB=90°,由此可得AB是⊙P的切線;②當(dāng)點Q在線段BP中點時,根據(jù)直角三角形斜邊上的中線等于斜邊的一半可得QO=QP=BQ=AQ.易證∠OBP=∠POA,則有t
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 租賃合同租戶維修請求臺賬
- 水電站水利工程合同
- 城市步行街噴泉施工合同
- 投標(biāo)聯(lián)合體責(zé)任分配協(xié)議
- 土地復(fù)墾預(yù)算協(xié)議
- 虛擬現(xiàn)實設(shè)備保修協(xié)議
- 木質(zhì)教學(xué)器材制作合同
- 文具市場水電設(shè)施施工協(xié)議
- 吉林省四平市(2024年-2025年小學(xué)五年級語文)人教版期中考試((上下)學(xué)期)試卷及答案
- 頸椎病分幾種類型
- 教育培訓(xùn)掛靠合作協(xié)議
- 2024天津中考數(shù)學(xué)二輪重難題型專題訓(xùn)練 題型一 第12題二次函數(shù)的圖象與性質(zhì) (含答案)
- 《BIQS基礎(chǔ)培訓(xùn)》課件
- 【淺析PLC在數(shù)控機床中的應(yīng)用5000字(論文)】
- 企業(yè)經(jīng)營模擬實訓(xùn)智慧樹知到期末考試答案章節(jié)答案2024年華南農(nóng)業(yè)大學(xué)
- 家長會課件:主題班會高二家長會課件
- 市政設(shè)施維護(hù)方案
- 建筑防水工程技術(shù)規(guī)程DBJ-T 15-19-2020
- 大學(xué)會計生涯發(fā)展展示
- 2024年“312”新高考志愿填報指南
- 13區(qū)域分析與區(qū)域規(guī)劃(第三版)電子教案(第十三章)
評論
0/150
提交評論