![《數(shù)據(jù)挖掘》英文版全冊(cè)配套課件_第1頁](http://file4.renrendoc.com/view14/M07/33/0E/wKhkGWbYOX-ANHUgAACy4qPWptE437.jpg)
![《數(shù)據(jù)挖掘》英文版全冊(cè)配套課件_第2頁](http://file4.renrendoc.com/view14/M07/33/0E/wKhkGWbYOX-ANHUgAACy4qPWptE4372.jpg)
![《數(shù)據(jù)挖掘》英文版全冊(cè)配套課件_第3頁](http://file4.renrendoc.com/view14/M07/33/0E/wKhkGWbYOX-ANHUgAACy4qPWptE4373.jpg)
![《數(shù)據(jù)挖掘》英文版全冊(cè)配套課件_第4頁](http://file4.renrendoc.com/view14/M07/33/0E/wKhkGWbYOX-ANHUgAACy4qPWptE4374.jpg)
![《數(shù)據(jù)挖掘》英文版全冊(cè)配套課件_第5頁](http://file4.renrendoc.com/view14/M07/33/0E/wKhkGWbYOX-ANHUgAACy4qPWptE4375.jpg)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
《數(shù)據(jù)挖掘》全冊(cè)配套課件DataMining:IntroductionLectureNotesforChapter1IntroductiontoDataMiningbyTan,Steinbach,KumarLotsofdataisbeingcollected
andwarehousedWebdata,e-commercepurchasesatdepartment/
grocerystoresBank/CreditCard
transactionsComputershavebecomecheaperandmorepowerfulCompetitivePressureisStrongProvidebetter,customizedservicesforanedge(e.g.inCustomerRelationshipManagement)WhyMineData?CommercialViewpointWhyMineData?ScientificViewpointDatacollectedandstoredat
enormousspeeds(GB/hour)remotesensorsonasatellitetelescopesscanningtheskiesmicroarraysgeneratinggene
expressiondatascientificsimulations
generatingterabytesofdataTraditionaltechniquesinfeasibleforrawdataDataminingmayhelpscientistsinclassifyingandsegmentingdatainHypothesisFormationMiningLargeDataSets-MotivationThereisofteninformation“hidden”inthedatathatis
notreadilyevidentHumananalystsmaytakeweekstodiscoverusefulinformationMuchofthedataisneveranalyzedatallTheDataGapTotalnewdisk(TB)since1995NumberofanalystsFrom:R.Grossman,C.Kamath,V.Kumar,“DataMiningforScientificandEngineeringApplications”WhatisDataMining?ManyDefinitionsNon-trivialextractionofimplicit,previouslyunknownandpotentiallyusefulinformationfromdataExploration&analysis,byautomaticor
semi-automaticmeans,of
largequantitiesofdata
inordertodiscover
meaningfulpatterns
Whatis(not)DataMining?WhatisDataMining?
CertainnamesaremoreprevalentincertainUSlocations(O’Brien,O’Rurke,O’Reilly…inBostonarea)Grouptogethersimilardocumentsreturnedbysearchengineaccordingtotheircontext(e.g.Amazonrainforest,A,)WhatisnotDataMining?Lookupphonenumberinphonedirectory
QueryaWebsearchengineforinformationabout“Amazon”Drawsideasfrommachinelearning/AI,patternrecognition,statistics,anddatabasesystemsTraditionalTechniques
maybeunsuitableduetoEnormityofdataHighdimensionality
ofdataHeterogeneous,
distributednature
ofdataOriginsofDataMiningMachineLearning/Pattern
RecognitionStatistics/
AIDataMiningDatabasesystemsDataMiningTasksPredictionMethodsUsesomevariablestopredictunknownorfuturevaluesofothervariables.DescriptionMethodsFindhuman-interpretablepatternsthatdescribethedata.From[Fayyad,et.al.]AdvancesinKnowledgeDiscoveryandDataMining,1996DataMiningTasks...Classification[Predictive]Clustering[Descriptive]AssociationRuleDiscovery[Descriptive]SequentialPatternDiscovery[Descriptive]Regression[Predictive]DeviationDetection[Predictive]Classification:DefinitionGivenacollectionofrecords(trainingset)Eachrecordcontainsasetofattributes,oneoftheattributesistheclass.Findamodelforclassattributeasafunctionofthevaluesofotherattributes.Goal:previouslyunseenrecordsshouldbeassignedaclassasaccuratelyaspossible.Atestsetisusedtodeterminetheaccuracyofthemodel.Usually,thegivendatasetisdividedintotrainingandtestsets,withtrainingsetusedtobuildthemodelandtestsetusedtovalidateit.ClassificationExamplecategoricalcategoricalcontinuousclassTestSetTrainingSetModelLearnClassifierClassification:Application1DirectMarketingGoal:Reducecostofmailingbytargetingasetofconsumerslikelytobuyanewcell-phoneproduct.Approach:Usethedataforasimilarproductintroducedbefore.Weknowwhichcustomersdecidedtobuyandwhichdecidedotherwise.This{buy,don’tbuy}decisionformstheclassattribute.Collectvariousdemographic,lifestyle,andcompany-interactionrelatedinformationaboutallsuchcustomers.Typeofbusiness,wheretheystay,howmuchtheyearn,etc.Usethisinformationasinputattributestolearnaclassifiermodel.From[Berry&Linoff]DataMiningTechniques,1997Classification:Application2FraudDetectionGoal:Predictfraudulentcasesincreditcardtransactions.Approach:Usecreditcardtransactionsandtheinformationonitsaccount-holderasattributes.Whendoesacustomerbuy,whatdoeshebuy,howoftenhepaysontime,etcLabelpasttransactionsasfraudorfairtransactions.Thisformstheclassattribute.Learnamodelfortheclassofthetransactions.Usethismodeltodetectfraudbyobservingcreditcardtransactionsonanaccount.Classification:Application3CustomerAttrition/Churn:Goal:Topredictwhetheracustomerislikelytobelosttoacompetitor.Approach:Usedetailedrecordoftransactionswitheachofthepastandpresentcustomers,tofindattributes.Howoftenthecustomercalls,wherehecalls,whattime-of-thedayhecallsmost,hisfinancialstatus,maritalstatus,etc.Labelthecustomersasloyalordisloyal.Findamodelforloyalty.From[Berry&Linoff]DataMiningTechniques,1997Classification:Application4SkySurveyCatalogingGoal:Topredictclass(starorgalaxy)ofskyobjects,especiallyvisuallyfaintones,basedonthetelescopicsurveyimages(fromPalomarObservatory).3000imageswith23,040x23,040pixelsperimage.Approach:Segmenttheimage.Measureimageattributes(features)-40ofthemperobject.Modeltheclassbasedonthesefeatures.SuccessStory:Couldfind16newhighred-shiftquasars,someofthefarthestobjectsthataredifficulttofind!From[Fayyad,et.al.]AdvancesinKnowledgeDiscoveryandDataMining,1996ClassifyingGalaxiesEarlyIntermediateLateDataSize:72millionstars,20milliongalaxiesObjectCatalog:9GBImageDatabase:150GB
Class:StagesofFormationAttributes:Imagefeatures,Characteristicsoflightwavesreceived,etc.Courtesy:ClusteringDefinitionGivenasetofdatapoints,eachhavingasetofattributes,andasimilaritymeasureamongthem,findclusterssuchthatDatapointsinoneclusteraremoresimilartooneanother.Datapointsinseparateclustersarelesssimilartooneanother.SimilarityMeasures:EuclideanDistanceifattributesarecontinuous.OtherProblem-specificMeasures.IllustratingClusteringEuclideanDistanceBasedClusteringin3-Dspace.IntraclusterdistancesareminimizedInterclusterdistancesaremaximizedClustering:Application1MarketSegmentation:Goal:subdivideamarketintodistinctsubsetsofcustomerswhereanysubsetmayconceivablybeselectedasamarkettargettobereachedwithadistinctmarketingmix.Approach:Collectdifferentattributesofcustomersbasedontheirgeographicalandlifestylerelatedinformation.Findclustersofsimilarcustomers.Measuretheclusteringqualitybyobservingbuyingpatternsofcustomersinsameclustervs.thosefromdifferentclusters.Clustering:Application2DocumentClustering:Goal:Tofindgroupsofdocumentsthataresimilartoeachotherbasedontheimportanttermsappearinginthem.Approach:Toidentifyfrequentlyoccurringtermsineachdocument.Formasimilaritymeasurebasedonthefrequenciesofdifferentterms.Useittocluster.Gain:InformationRetrievalcanutilizetheclusterstorelateanewdocumentorsearchtermtoclustereddocuments.IllustratingDocumentClusteringClusteringPoints:3204ArticlesofLosAngelesTimes.SimilarityMeasure:Howmanywordsarecommoninthesedocuments(aftersomewordfiltering).ClusteringofS&P500StockDataObserveStockMovementseveryday.Clusteringpoints:Stock-{UP/DOWN}SimilarityMeasure:Twopointsaremoresimilariftheeventsdescribedbythemfrequentlyhappentogetheronthesameday.Weusedassociationrulestoquantifyasimilaritymeasure.
AssociationRuleDiscovery:DefinitionGivenasetofrecordseachofwhichcontainsomenumberofitemsfromagivencollection;Producedependencyruleswhichwillpredictoccurrenceofanitembasedonoccurrencesofotheritems.RulesDiscovered:
{Milk}-->{Coke}{Diaper,Milk}-->{Beer}AssociationRuleDiscovery:Application1MarketingandSalesPromotion:Lettherulediscoveredbe
{Bagels,…}-->{PotatoChips}PotatoChips
asconsequent=>Canbeusedtodeterminewhatshouldbedonetoboostitssales.Bagelsintheantecedent=>Canbeusedtoseewhichproductswouldbeaffectedifthestorediscontinuessellingbagels.Bagelsinantecedent
and
Potatochipsinconsequent
=>CanbeusedtoseewhatproductsshouldbesoldwithBagelstopromotesaleofPotatochips!AssociationRuleDiscovery:Application2Supermarketshelfmanagement.Goal:Toidentifyitemsthatareboughttogetherbysufficientlymanycustomers.Approach:Processthepoint-of-saledatacollectedwithbarcodescannerstofinddependenciesamongitems.Aclassicrule--Ifacustomerbuysdiaperandmilk,thenheisverylikelytobuybeer.So,don’tbesurprisedifyoufindsix-packsstackednexttodiapers!AssociationRuleDiscovery:Application3InventoryManagement:Goal:Aconsumerappliancerepaircompanywantstoanticipatethenatureofrepairsonitsconsumerproductsandkeeptheservicevehiclesequippedwithrightpartstoreduceonnumberofvisitstoconsumerhouseholds.Approach:Processthedataontoolsandpartsrequiredinpreviousrepairsatdifferentconsumerlocationsanddiscovertheco-occurrencepatterns.SequentialPatternDiscovery:DefinitionGivenisasetofobjects,witheachobjectassociatedwithitsowntimelineofevents,findrulesthatpredictstrongsequentialdependenciesamongdifferentevents.Rulesareformedbyfirstdisoveringpatterns.Eventoccurrencesinthepatternsaregovernedbytimingconstraints.(AB)(C)(DE)<=ms<=xg>ng<=ws(AB)(C)(DE)SequentialPatternDiscovery:ExamplesIntelecommunicationsalarmlogs,
(Inverter_ProblemExcessive_Line_Current)(Rectifier_Alarm)-->(Fire_Alarm)Inpoint-of-saletransactionsequences,ComputerBookstore: (Intro_To_Visual_C)(C++_Primer)--> (Perl_for_dummies,Tcl_Tk)AthleticApparelStore: (Shoes)(Racket,Racketball)-->(Sports_Jacket)RegressionPredictavalueofagivencontinuousvaluedvariablebasedonthevaluesofothervariables,assumingalinearornonlinearmodelofdependency.Greatlystudiedinstatistics,neuralnetworkfields.Examples:Predictingsalesamountsofnewproductbasedonadvetisingexpenditure.Predictingwindvelocitiesasafunctionoftemperature,humidity,airpressure,etc.Timeseriespredictionofstockmarketindices.Deviation/AnomalyDetectionDetectsignificantdeviationsfromnormalbehaviorApplications:CreditCardFraudDetectionNetworkIntrusion
Detection
TypicalnetworktrafficatUniversitylevelmayreachover100millionconnectionsperdayChallengesofDataMiningScalabilityDimensionalityComplexandHeterogeneousDataDataQualityDataOwnershipandDistributionPrivacyPreservationStreamingDataMaterials“IntroductiontoDataMining”,Pang-NingTan,MichaelSteinbach,VipinKumar“MiningMassiveDatasets”,JureLeskovec,AnandRajaraman,andJeffUllmanDataMining:DataLectureNotesforChapter2IntroductiontoDataMiningbyTan,Steinbach,KumarWhatisData?CollectionofdataobjectsandtheirattributesAnattributeisapropertyorcharacteristicofanobjectExamples:eyecolorofaperson,temperature,etc.Attributeisalsoknownasvariable,field,characteristic,orfeatureAcollectionofattributesdescribeanobjectObjectisalsoknownasrecord,point,case,sample,entity,orinstanceAttributesObjectsAttributeValuesAttributevaluesarenumbersorsymbolsassignedtoanattributeDistinctionbetweenattributesandattributevaluesSameattributecanbemappedtodifferentattributevaluesExample:heightcanbemeasuredinfeetormetersDifferentattributescanbemappedtothesamesetofvaluesExample:AttributevaluesforIDandageareintegersButpropertiesofattributevaluescanbedifferentIDhasnolimitbutagehasamaximumandminimumvalueMeasurementofLengthThewayyoumeasureanattributeissomewhatmaynotmatchtheattributesproperties.TypesofAttributesTherearedifferenttypesofattributesNominalExamples:IDnumbers,eyecolor,zipcodesOrdinalExamples:rankings(e.g.,tasteofpotatochipsonascalefrom1-10),grades,heightin{tall,medium,short}IntervalExamples:calendardates,temperaturesinCelsiusorFahrenheit.RatioExamples:temperatureinKelvin,length,time,countsPropertiesofAttributeValuesThetypeofanattributedependsonwhichofthefollowingpropertiesitpossesses:Distinctness: =
Order: <> Addition: +- Multiplication: */Nominalattribute:distinctnessOrdinalattribute:distinctness&orderIntervalattribute:distinctness,order&additionRatioattribute:all4propertiesAttributeTypeDescriptionExamplesOperationsNominalThevaluesofanominalattributearejustdifferentnames,i.e.,nominalattributesprovideonlyenoughinformationtodistinguishoneobjectfromanother.(=,
)zipcodes,employeeIDnumbers,eyecolor,sex:{male,female}mode,entropy,contingencycorrelation,
2testOrdinalThevaluesofanordinalattributeprovideenoughinformationtoorderobjects.(<,>)hardnessofminerals,{good,better,best},
grades,streetnumbersmedian,percentiles,rankcorrelation,runtests,signtestsIntervalForintervalattributes,thedifferencesbetweenvaluesaremeaningful,i.e.,aunitofmeasurementexists.
(+,-)calendardates,temperatureinCelsiusorFahrenheitmean,standarddeviation,Pearson'scorrelation,tandFtestsRatioForratiovariables,bothdifferencesandratiosaremeaningful.(*,/)temperatureinKelvin,monetaryquantities,counts,age,mass,length,electricalcurrentgeometricmean,harmonicmean,percentvariationAttributeLevelTransformationCommentsNominalAnypermutationofvaluesIfallemployeeIDnumberswerereassigned,woulditmakeanydifference?OrdinalAnorderpreservingchangeofvalues,i.e.,
new_value=f(old_value)
wherefisamonotonicfunction.Anattributeencompassingthenotionofgood,betterbestcanberepresentedequallywellbythevalues{1,2,3}orby{0.5,1,10}.Intervalnew_value=a*old_value+bwhereaandbareconstantsThus,theFahrenheitandCelsiustemperaturescalesdifferintermsofwheretheirzerovalueisandthesizeofaunit(degree).Rationew_value=a*old_valueLengthcanbemeasuredinmetersorfeet.DiscreteandContinuousAttributesDiscreteAttributeHasonlyafiniteorcountablyinfinitesetofvaluesExamples:zipcodes,counts,orthesetofwordsinacollectionofdocumentsOftenrepresentedasintegervariables.Note:binaryattributesareaspecialcaseofdiscreteattributesContinuousAttributeHasrealnumbersasattributevaluesExamples:temperature,height,orweight.Practically,realvaluescanonlybemeasuredandrepresentedusingafinitenumberofdigits.Continuousattributesaretypicallyrepresentedasfloating-pointvariables.TypesofdatasetsRecordDataMatrixDocumentDataTransactionDataGraphWorldWideWebMolecularStructuresOrderedSpatialDataTemporalDataSequentialDataGeneticSequenceDataImportantCharacteristicsofStructuredDataDimensionalityCurseofDimensionalitySparsityOnlypresencecountsResolutionPatternsdependonthescaleRecordDataDatathatconsistsofacollectionofrecords,eachofwhichconsistsofafixedsetofattributesDataMatrixIfdataobjectshavethesamefixedsetofnumericattributes,thenthedataobjectscanbethoughtofaspointsinamulti-dimensionalspace,whereeachdimensionrepresentsadistinctattributeSuchdatasetcanberepresentedbyanmbynmatrix,wheretherearemrows,oneforeachobject,andncolumns,oneforeachattributeDocumentDataEachdocumentbecomesa`term'vector,eachtermisacomponent(attribute)ofthevector,thevalueofeachcomponentisthenumberoftimesthecorrespondingtermoccursinthedocument.TransactionDataAspecialtypeofrecorddata,whereeachrecord(transaction)involvesasetofitems.Forexample,consideragrocerystore.Thesetofproductspurchasedbyacustomerduringoneshoppingtripconstituteatransaction,whiletheindividualproductsthatwerepurchasedaretheitems.GraphDataExamples:GenericgraphandHTMLLinksChemicalDataBenzeneMolecule:C6H6OrderedDataSequencesoftransactionsAnelementofthesequenceItems/EventsOrderedDataGenomicsequencedataOrderedDataSpatio-TemporalDataAverageMonthlyTemperatureoflandandoceanDataQualityWhatkindsofdataqualityproblems?Howcanwedetectproblemswiththedata?Whatcanwedoabouttheseproblems?Examplesofdataqualityproblems:NoiseandoutliersmissingvaluesduplicatedataNoiseNoisereferstomodificationoforiginalvaluesExamples:distortionofaperson’svoicewhentalkingonapoorphoneand“snow”ontelevisionscreenTwoSineWavesTwoSineWaves+NoiseOutliersOutliersaredataobjectswithcharacteristicsthatareconsiderablydifferentthanmostoftheotherdataobjectsinthedatasetMissingValuesReasonsformissingvaluesInformationisnotcollected
(e.g.,peopledeclinetogivetheirageandweight)Attributesmaynotbeapplicabletoallcases
(e.g.,annualincomeisnotapplicabletochildren)HandlingmissingvaluesEliminateDataObjectsEstimateMissingValuesIgnoretheMissingValueDuringAnalysisReplacewithallpossiblevalues(weightedbytheirprobabilities)DuplicateDataDatasetmayincludedataobjectsthatareduplicates,oralmostduplicatesofoneanotherMajorissuewhenmergingdatafromheterogeoussourcesExamples:SamepersonwithmultipleemailaddressesDatacleaningProcessofdealingwithduplicatedataissuesDataPreprocessingAggregationSamplingDimensionalityReductionFeaturesubsetselectionFeaturecreationDiscretizationandBinarizationAttributeTransformationAggregationCombiningtwoormoreattributes(orobjects)intoasingleattribute(orobject)PurposeDatareductionReducethenumberofattributesorobjectsChangeofscaleCitiesaggregatedintoregions,states,countries,etcMore“stable”dataAggregateddatatendstohavelessvariabilityAggregationStandardDeviationofAverageMonthlyPrecipitationStandardDeviationofAverageYearlyPrecipitationVariationofPrecipitationinAustraliaSamplingSamplingisthemaintechniqueemployedfordataselection.Itisoftenusedforboththepreliminaryinvestigationofthedataandthefinaldataanalysis.
Statisticianssamplebecauseobtainingtheentiresetofdataofinterestistooexpensiveortimeconsuming.
Samplingisusedindataminingbecauseprocessingtheentiresetofdataofinterestistooexpensiveortimeconsuming.Sampling…Thekeyprincipleforeffectivesamplingisthefollowing:usingasamplewillworkalmostaswellasusingtheentiredatasets,ifthesampleisrepresentative
Asampleisrepresentativeifithasapproximatelythesameproperty(ofinterest)astheoriginalsetofdataTypesofSamplingSimpleRandomSamplingThereisanequalprobabilityofselectinganyparticularitemSamplingwithoutreplacementAseachitemisselected,itisremovedfromthepopulationSamplingwithreplacementObjectsarenotremovedfromthepopulationastheyareselectedforthesample.Insamplingwithreplacement,thesameobjectcanbepickedupmorethanonceStratifiedsamplingSplitthedataintoseveralpartitions;thendrawrandomsamplesfromeachpartitionSampleSize
8000points 2000Points 500PointsSampleSizeWhatsamplesizeisnecessarytogetatleastoneobjectfromeachof10groups.CurseofDimensionalityWhendimensionalityincreases,databecomesincreasinglysparseinthespacethatitoccupiesDefinitionsofdensityanddistancebetweenpoints,whichiscriticalforclusteringandoutlierdetection,becomelessmeaningfulRandomlygenerate500pointsComputedifferencebetweenmaxandmindistancebetweenanypairofpointsDimensionalityReductionPurpose:AvoidcurseofdimensionalityReduceamountoftimeandmemoryrequiredbydataminingalgorithmsAllowdatatobemoreeasilyvisualizedMayhelptoeliminateirrelevantfeaturesorreducenoiseTechniquesPrincipleComponentAnalysisSingularValueDecompositionOthers:supervisedandnon-lineartechniquesDimensionalityReduction:PCAGoalistofindaprojectionthatcapturesthelargestamountofvariationindatax2x1eDimensionalityReduction:PCAFindtheeigenvectorsofthecovariancematrixTheeigenvectorsdefinethenewspacex2x1eDimensionalityReduction:ISOMAPConstructaneighbourhoodgraphForeachpairofpointsinthegraph,computetheshortestpathdistances–geodesicdistancesBy:Tenenbaum,deSilva,Langford(2000)DimensionalityReduction:PCAFeatureSubsetSelectionAnotherwaytoreducedimensionalityofdataRedundantfeaturesduplicatemuchoralloftheinformationcontainedinoneormoreotherattributesExample:purchasepriceofaproductandtheamountofsalestaxpaidIrrelevantfeaturescontainnoinformationthatisusefulforthedataminingtaskathandExample:students'IDisoftenirrelevanttothetaskofpredictingstudents'GPAFeatureSubsetSelectionTechniques:Brute-forceapproch:TryallpossiblefeaturesubsetsasinputtodataminingalgorithmEmbeddedapproaches:FeatureselectionoccursnaturallyaspartofthedataminingalgorithmFilterapproaches:FeaturesareselectedbeforedataminingalgorithmisrunWrapperapproaches:UsethedataminingalgorithmasablackboxtofindbestsubsetofattributesFeatureCreationCreatenewattributesthatcancapturetheimportantinformationinadatasetmuchmoreefficientlythantheoriginalattributesThreegeneralmethodologies:FeatureExtractiondomain-specificMappingDatatoNewSpaceFeatureConstructioncombiningfeaturesMappingDatatoaNewSpaceTwoSineWavesTwoSineWaves+NoiseFrequencyFouriertransformWavelettransformDiscretizationUsingClassLabelsEntropybasedapproach3categoriesforbothxandy5categoriesforbothxandyDiscretizationWithoutUsingClassLabelsDataEqualintervalwidthEqualfrequencyK-meansAttributeTransformationAfunctionthatmapstheentiresetofvaluesofagivenattributetoanewsetofreplacementvaluessuchthateacholdvaluecanbeidentifiedwithoneofthenewvaluesSimplefunctions:xk,log(x),ex,|x|StandardizationandNormalizationSimilarityandDissimilaritySimilarityNumericalmeasureofhowaliketwodataobjectsare.Ishigherwhenobjectsaremorealike.Oftenfallsintherange[0,1]DissimilarityNumericalmeasureofhowdifferentaretwodataobjectsLowerwhenobjectsaremorealikeMinimumdissimilarityisoften0UpperlimitvariesProximityreferstoasimilarityordissimilaritySimilarity/DissimilarityforSimpleAttributespandqaretheattributevaluesfortwodataobjects.EuclideanDistanceEuclideanDistance
Wherenisthenumberofdimensions(attributes)andpkandqkare,respectively,thekthattributes(components)ordataobjectspandq.Standardizationisnecessary,ifscalesdiffer.EuclideanDistanceDistanceMatrixMinkowskiDistanceMinkowskiDistanceisageneralizationofEuclideanDistance
Whererisaparameter,nisthenumberofdimensions(attributes)andpkandqkare,respectively,thekthattributes(components)ordataobjectspandq.MinkowskiDistance:Examplesr=1.Cityblock(Manhattan,taxicab,L1norm)distance.AcommonexampleofthisistheHammingdistance,whichisjustthenumberofbitsthataredifferentbetweentwobinaryvectorsr=2.Euclideandistancer
.“supremum”(Lmaxnorm,L
norm)distance.ThisisthemaximumdifferencebetweenanycomponentofthevectorsDonotconfuserwithn,i.e.,allthesedistancesaredefinedforallnumbersofdimensions.MinkowskiDistanceDistanceMatrixMahalanobisDistanceForredpoints,theEuclideandistanceis14.7,Mahalanobisdistanceis6.isthecovariancematrixoftheinputdataXMahalanobisDistanceCovarianceMatrix:BACA:(0.5,0.5)B:(0,1)C:(1.5,1.5)Mahal(A,B)=5Mahal(A,C)=4CommonPropertiesofaDistanceDistances,suchastheEuclideandistance,havesomewellknownproperties.d(p,q)
0forallpandqandd(p,q)=0onlyif
p
=q.(Positivedefiniteness)d(p,q)=d(q,p)forallpandq.(Symmetry)d(p,r)
d(p,q)+d(q,r)forallpointsp,q,andr.
(TriangleInequality) whered(p,q)isthedistance(dissimilarity)betweenpoints(dataobjects),pandq.AdistancethatsatisfiesthesepropertiesisametricCommonPropertiesofaSimilaritySimilarities,alsohavesomewellknownproperties.s(p,q)=1(ormaximumsimilarity)onlyifp
=q.
s(p,q)=s(q,p)forallpandq.(Symmetry)
wheres(p,q)isthesimilaritybetweenpoints(dataobjects),pandq.SimilarityBetweenBinaryVectorsCommonsituationisthatobjects,pandq,haveonlybinaryattributesComputesimilaritiesusingthefollowingquantities M01
=thenumberofattributeswherepwas0andqwas1 M10=thenumberofattributeswherepwas1andqwas0 M00
=thenumberofattributeswherepwas0andqwas0 M11
=thenumberofattributeswherepwas1andqwas1SimpleMatchingandJaccardCoefficients SMC=numberofmatches/numberofattributes =(M11+M00)/(M01+M10+M11+M00) J=numberof11matches/numberofnot-both-zeroattributesvalues =(M11)/(M01+M10+M11)SMCversusJaccard:Examplep=1000000000
q=0000001001
M01
=2(thenumberofattributeswherepwas0andqwas1)M10
=1(thenumberofattributeswherepwas1andqwas0)M00
=7(thenumberofattributeswherepwas0andqwas0)M11
=0(thenumberofattributeswherepwas1andqwas1)
SMC=(M11+M00)/(M01+M10+M11+M00)=(0+7)/(2+1+0+7)=0.7
J=(M11)/(M01+M10+M11)=0/(2+1+0)=0
CosineSimilarityIfd1andd2aretwodocumentvectors,thencos(d1,d2)=(d1
d2)/||d1||||d2||,where
indicatesvectordotproductand||d||isthelengthofvectord.
Example:
d1
=3205000200 d2
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 山西工商學(xué)院《學(xué)前教育學(xué)(媒)》2023-2024學(xué)年第二學(xué)期期末試卷
- 海南軟件職業(yè)技術(shù)學(xué)院《科技論文寫作》2023-2024學(xué)年第二學(xué)期期末試卷
- 南京林業(yè)大學(xué)《面向?qū)ο蟪绦蛟O(shè)計(jì)及C++》2023-2024學(xué)年第二學(xué)期期末試卷
- 江西冶金職業(yè)技術(shù)學(xué)院《國(guó)際市場(chǎng)營(yíng)銷B(雙語)》2023-2024學(xué)年第二學(xué)期期末試卷
- 通化師范學(xué)院《機(jī)械工程檢測(cè)技術(shù)》2023-2024學(xué)年第二學(xué)期期末試卷
- 親子主題餐廳裝修合同
- 二零二五年度蘇州工業(yè)園區(qū)勞動(dòng)合同管理與薪酬福利設(shè)計(jì)
- 2025年度互聯(lián)網(wǎng)企業(yè)員工勞動(dòng)集體合同(創(chuàng)新發(fā)展)
- 《核裂變與核聚變》課件
- 《句式變換好》課件
- 四川省自貢市2024-2025學(xué)年上學(xué)期八年級(jí)英語期末試題(含答案無聽力音頻及原文)
- 2025-2030年中國(guó)汽車防滑鏈行業(yè)競(jìng)爭(zhēng)格局展望及投資策略分析報(bào)告新版
- 2025年上海用人單位勞動(dòng)合同(4篇)
- 二年級(jí)上冊(cè)口算題3000道-打印版讓孩子口算無憂
- 高中英語北師大版必修第一冊(cè)全冊(cè)單詞表(按單元編排)
- 新教科版科學(xué)小學(xué)四年級(jí)下冊(cè)全冊(cè)教案
- 2024中考語文試卷及答案長(zhǎng)沙
- 2024年高考生物總復(fù)習(xí)高中生物必修一全冊(cè)重點(diǎn)知識(shí)梳理筆記(全冊(cè)完整版)
- 商業(yè)綜合體物業(yè)運(yùn)營(yíng)方案
- 2025年生物安全年度工作計(jì)劃
- 人教版數(shù)學(xué)六年級(jí)下冊(cè)全冊(cè)核心素養(yǎng)目標(biāo)教學(xué)設(shè)計(jì)
評(píng)論
0/150
提交評(píng)論