2022年四川省綿陽市平武縣古城中學中考數(shù)學最后一模試卷含解析_第1頁
2022年四川省綿陽市平武縣古城中學中考數(shù)學最后一模試卷含解析_第2頁
2022年四川省綿陽市平武縣古城中學中考數(shù)學最后一模試卷含解析_第3頁
2022年四川省綿陽市平武縣古城中學中考數(shù)學最后一模試卷含解析_第4頁
2022年四川省綿陽市平武縣古城中學中考數(shù)學最后一模試卷含解析_第5頁
已閱讀5頁,還剩21頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領

文檔簡介

2022年四川省綿陽市平武縣古城中學中考數(shù)學最后一模試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如圖,在平面直角坐標系中,△ABC與△A1B1C1是以點P為位似中心的位似圖形,且頂點都在格點上,則點P的坐標為()A.(﹣4,﹣3) B.(﹣3,﹣4) C.(﹣3,﹣3) D.(﹣4,﹣4)2.下列計算正確的是()A.+= B.﹣= C.×=6 D.=43.某學校組織藝術(shù)攝影展,上交的作品要求如下:七寸照片(長7英寸,寬5英寸);將照片貼在一張矩形襯紙的正中央,照片四周外露襯紙的寬度相同;矩形襯紙的面積為照片面積的3倍.設照片四周外露襯紙的寬度為x英寸(如圖),下面所列方程正確的是()A.(7+x)(5+x)×3=7×5 B.(7+x)(5+x)=3×7×5C.(7+2x)(5+2x)×3=7×5 D.(7+2x)(5+2x)=3×7×54.下列說法錯誤的是()A.必然事件的概率為1B.數(shù)據(jù)1、2、2、3的平均數(shù)是2C.數(shù)據(jù)5、2、﹣3、0的極差是8D.如果某種游戲活動的中獎率為40%,那么參加這種活動10次必有4次中獎5.如圖,△ABC中,AB=5,BC=3,AC=4,以點C為圓心的圓與AB相切,則⊙C的半徑為()A.2.3 B.2.4 C.2.5 D.2.66.已知一組數(shù)據(jù):12,5,9,5,14,下列說法不正確的是()A.平均數(shù)是9 B.中位數(shù)是9 C.眾數(shù)是5 D.極差是57.已知二次函數(shù)圖象上部分點的坐標對應值列表如下:x…-3-2-1012…y…2-1-2-127…則該函數(shù)圖象的對稱軸是()A.x=-3 B.x=-2 C.x=-1 D.x=08.如圖,四邊形ABCD是⊙O的內(nèi)接四邊形,⊙O的半徑為6,∠ADC=60°,則劣弧AC的長為()A.2π B.4π C.5π D.6π9.已知⊙O的半徑為13,弦AB∥CD,AB=24,CD=10,則四邊形ACDB的面積是()A.119 B.289 C.77或119 D.119或28910.下列安全標志圖中,是中心對稱圖形的是()A. B. C. D.11.在下列四個圖案中既是軸對稱圖形,又是中心對稱圖形的是()A. B. C.. D.12.某種微生物半徑約為0.00000637米,該數(shù)字用科學記數(shù)法可表示為()A.0.637×10﹣5B.6.37×10﹣6C.63.7×10﹣7D.6.37×10﹣7二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如圖,Rt△ABC紙片中,∠C=90°,AC=6,BC=8,點D在邊BC上,以AD為折痕將△ABD折疊得到△AB′D,AB′與邊BC交于點E.若△DEB′為直角三角形,則BD的長是_______.14.如圖,一艘輪船自西向東航行,航行到A處測得小島C位于北偏東60°方向上,繼續(xù)向東航行10海里到達點B處,測得小島C在輪船的北偏東15°方向上,此時輪船與小島C的距離為_________海里.(結(jié)果保留根號)15.如圖所示,在菱形ABCD中,AB=4,∠BAD=120°,△AEF為正三角形,點E、F分別在菱形的邊BC、CD上滑動,且E、F不與B、C、D重合.當點E、F在BC、CD上滑動時,則△CEF的面積最大值是____.16.已知關(guān)于x的一元二次方程有兩個相等的實數(shù)根,則a的值是______.17.如圖,邊長為6cm的正三角形內(nèi)接于⊙O,則陰影部分的面積為(結(jié)果保留π)_____.18.閱讀下面材料:在數(shù)學課上,老師提出利用尺規(guī)作圖完成下面問題:已知:∠ACB是△ABC的一個內(nèi)角.求作:∠APB=∠ACB.小明的做法如下:如圖①作線段AB的垂直平分線m;②作線段BC的垂直平分線n,與直線m交于點O;③以點O為圓心,OA為半徑作△ABC的外接圓;④在弧ACB上取一點P,連結(jié)AP,BP.所以∠APB=∠ACB.老師說:“小明的作法正確.”請回答:(1)點O為△ABC外接圓圓心(即OA=OB=OC)的依據(jù)是_____;(2)∠APB=∠ACB的依據(jù)是_____.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)“六一”兒童節(jié)前夕,某縣教育局準備給留守兒童贈送一批學習用品,先對紅星小學的留守兒童人數(shù)進行抽樣統(tǒng)計,發(fā)現(xiàn)各班留守兒童人數(shù)分別為6名,7名,8名,10名,12名這五種情形,并繪制出如下的統(tǒng)計圖①和圖②.請根據(jù)相關(guān)信息,解答下列問題:(1)該校有_____個班級,補全條形統(tǒng)計圖;(2)求該校各班留守兒童人數(shù)數(shù)據(jù)的平均數(shù),眾數(shù)與中位數(shù);(3)若該鎮(zhèn)所有小學共有60個教學班,請根據(jù)樣本數(shù)據(jù),估計該鎮(zhèn)小學生中,共有多少名留守兒童.20.(6分)如圖,用紅、藍兩種顏色隨機地對A,B,C三個區(qū)域分別進行涂色,每個區(qū)域必須涂色并且只能涂一種顏色,請用列舉法(畫樹狀圖或列表)求A,C兩個區(qū)域所涂顏色不相同的概率.21.(6分)如圖,已知點A(1,a)是反比例函數(shù)y1=的圖象上一點,直線y2=﹣與反比例函數(shù)y1=的圖象的交點為點B、D,且B(3,﹣1),求:(Ⅰ)求反比例函數(shù)的解析式;(Ⅱ)求點D坐標,并直接寫出y1>y2時x的取值范圍;(Ⅲ)動點P(x,0)在x軸的正半軸上運動,當線段PA與線段PB之差達到最大時,求點P的坐標.22.(8分)如圖,已知四邊形ABCD是矩形,把矩形沿直線AC折疊,點B落在點E處,連接DE.若DE:AC=3:5,求的值.23.(8分)在平面直角坐標系xOy中,點M的坐標為,點N的坐標為,且,,我們規(guī)定:如果存在點P,使是以線段MN為直角邊的等腰直角三角形,那么稱點P為點M、N的“和諧點”.(1)已知點A的坐標為,①若點B的坐標為,在直線AB的上方,存在點A,B的“和諧點”C,直接寫出點C的坐標;②點C在直線x=5上,且點C為點A,B的“和諧點”,求直線AC的表達式.(2)⊙O的半徑為r,點為點、的“和諧點”,且DE=2,若使得與⊙O有交點,畫出示意圖直接寫出半徑r的取值范圍.24.(10分)已知關(guān)于x的一元二次方程x2﹣6x+(2m+1)=0有實數(shù)根.求m的取值范圍;如果方程的兩個實數(shù)根為x1,x2,且2x1x2+x1+x2≥20,求m的取值范圍.25.(10分)如圖,在Rt△ABC中,,過點C的直線MN∥AB,D為AB邊上一點,過點D作DE⊥BC,交直線MN于E,垂足為F,連接CD、BE.求證:CE=AD;當D在AB中點時,四邊形BECD是什么特殊四邊形?說明理由;若D為AB中點,則當=______時,四邊形BECD是正方形.26.(12分)如圖,在城市改造中,市政府欲在一條人工河上架一座橋,河的兩岸PQ與MN平行,河岸MN上有A、B兩個相距50米的涼亭,小亮在河對岸D處測得∠ADP=60°,然后沿河岸走了110米到達C處,測得∠BCP=30°,求這條河的寬.(結(jié)果保留根號)27.(12分)如圖,在Rt△ABC中,∠C=90°,AC,tanB,半徑為2的⊙C分別交AC,BC于點D、E,得到DE?。?)求證:AB為⊙C的切線.(2)求圖中陰影部分的面積.

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、A【解析】

延長A1A、B1B和C1C,從而得到P點位置,從而可得到P點坐標.【詳解】如圖,點P的坐標為(-4,-3).

故選A.【點睛】本題考查了位似變換:如果兩個圖形不僅是相似圖形,而且對應頂點的連線相交于一點,對應邊互相平行,那么這樣的兩個圖形叫做位似圖形,這個點叫做位似中心.2、B【解析】

根據(jù)同類二次根式才能合并可對A進行判斷;根據(jù)二次根式的乘法對B進行判斷;先把化為最簡二次根式,然后進行合并,即可對C進行判斷;根據(jù)二次根式的除法對D進行判斷.【詳解】解:A、與不能合并,所以A選項不正確;B、-=2?=,所以B選項正確;C、×=,所以C選項不正確;D、=÷=2÷=2,所以D選項不正確.故選B.【點睛】此題考查二次根式的混合運算,注意先化簡,再進一步利用計算公式和計算方法計算.3、D【解析】試題分析:由題意得;如圖知;矩形的長="7+2x"寬=5+2x∴矩形襯底的面積=3倍的照片的面積,可得方程為(7+2X)(5+2X)=3×7×5考點:列方程點評:找到題中的等量關(guān)系,根據(jù)兩個矩形的面積3倍的關(guān)系得到方程,注意的是矩形的間距都為等量的,從而得到大矩形的長于寬,用未知數(shù)x的代數(shù)式表示,而列出方程,屬于基礎題.4、D【解析】試題分析:A.概率值反映了事件發(fā)生的機會的大小,必然事件是一定發(fā)生的事件,所以概率為1,本項正確;B.數(shù)據(jù)1、2、2、3的平均數(shù)是1+2+2+34C.這些數(shù)據(jù)的極差為5﹣(﹣3)=8,故本項正確;D.某種游戲活動的中獎率為40%,屬于不確定事件,可能中獎,也可能不中獎,故本說法錯誤,故選D.考點:1.概率的意義;2.算術(shù)平均數(shù);3.極差;4.隨機事件5、B【解析】試題分析:在△ABC中,∵AB=5,BC=3,AC=4,∴AC2+BC2=32+42=52=AB2,∴∠C=90°,如圖:設切點為D,連接CD,∵AB是⊙C的切線,∴CD⊥AB,∵S△ABC=AC×BC=AB×CD,∴AC×BC=AB×CD,即CD===,∴⊙C的半徑為,故選B.考點:圓的切線的性質(zhì);勾股定理.6、D【解析】分別計算該組數(shù)據(jù)的平均數(shù)、中位數(shù)、眾數(shù)及極差后即可得到正確的答案平均數(shù)為(12+5+9+5+14)÷5=9,故選項A正確;重新排列為5,5,9,12,14,∴中位數(shù)為9,故選項B正確;5出現(xiàn)了2次,最多,∴眾數(shù)是5,故選項C正確;極差為:14﹣5=9,故選項D錯誤.故選D7、C【解析】

由當x=-2和x=0時,y的值相等,利用二次函數(shù)圖象的對稱性即可求出對稱軸.【詳解】解:∵x=-2和x=0時,y的值相等,∴二次函數(shù)的對稱軸為,故答案為:C.【點睛】本題考查了二次函數(shù)的性質(zhì),利用二次函數(shù)圖象的對稱性找出對稱軸是解題的關(guān)鍵.8、B【解析】

連接OA、OC,然后根據(jù)圓周角定理求得∠AOC的度數(shù),最后根據(jù)弧長公式求解.【詳解】連接OA、OC,∵∠ADC=60°,∴∠AOC=2∠ADC=120°,則劣弧AC的長為:=4π.故選B.【點睛】本題考查了弧長的計算以及圓周角定理,解答本題的關(guān)鍵是掌握弧長公式.9、D【解析】

分兩種情況進行討論:①弦AB和CD在圓心同側(cè);②弦AB和CD在圓心異側(cè);作出半徑和弦心距,利用勾股定理和垂徑定理,然后按梯形面積的求解即可.【詳解】解:①當弦AB和CD在圓心同側(cè)時,如圖1,∵AB=24cm,CD=10cm,∴AE=12cm,CF=5cm,∴OA=OC=13cm,∴EO=5cm,OF=12cm,∴EF=12-5=7cm;∴四邊形ACDB的面積②當弦AB和CD在圓心異側(cè)時,如圖2,∵AB=24cm,CD=10cm,∴.AE=12cm,CF=5cm,∵OA=OC=13cm,∴EO=5cm,OF=12cm,∴EF=OF+OE=17cm.∴四邊形ACDB的面積∴四邊形ACDB的面積為119或289.故選:D.【點睛】本題考查了勾股定理和垂徑定理的應用.此題難度適中,解題的關(guān)鍵是注意掌握數(shù)形結(jié)合思想與分類討論思想的應用,小心別漏解.10、B【解析】試題分析:A.不是中心對稱圖形,故此選項不合題意;B.是中心對稱圖形,故此選項符合題意;C.不是中心對稱圖形,故此選項不符合題意;D.不是中心對稱圖形,故此選項不合題意;故選B.考點:中心對稱圖形.11、B【解析】試題分析:根據(jù)軸對稱圖形和中心對稱圖形的定義:如果一個平面圖形沿一條直線折疊,直線兩旁的部分能夠互相重合,這個圖形就叫做軸對稱圖形;中心對稱圖形的定義:把一個圖形繞著某一個點旋轉(zhuǎn)180°,如果旋轉(zhuǎn)后的圖形能夠與原來的圖形重合,那么這個圖形叫做中心對稱圖形,這個點就是它的對稱中心,因此:A、不是軸對稱圖形,是中心對稱圖形,不符合題意;B、是軸對稱圖形,也是中心對稱圖形,符合題意;C、不是軸對稱圖形,也不是中心對稱圖形,不符合題意;D、是軸對稱圖形,不是中心對稱圖形,不符合題意.故選B.考點:軸對稱圖形和中心對稱圖形12、B【解析】

科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當原數(shù)絕對值>1時,n是正數(shù);當原數(shù)的絕對值<1時,n是負數(shù).【詳解】0.00000637的小數(shù)點向右移動6位得到6.37所以0.00000637用科學記數(shù)法表示為6.37×10﹣6,故選B.【點睛】本題考查科學記數(shù)法的表示方法.科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時關(guān)鍵要正確確定a的值以及n的值.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、5或1.【解析】

先依據(jù)勾股定理求得AB的長,然后由翻折的性質(zhì)可知:AB′=5,DB=DB′,接下來分為∠B′DE=90°和∠B′ED=90°,兩種情況畫出圖形,設DB=DB′=x,然后依據(jù)勾股定理列出關(guān)于x的方程求解即可.【詳解】∵Rt△ABC紙片中,∠C=90°,AC=6,BC=8,∴AB=5,∵以AD為折痕△ABD折疊得到△AB′D,∴BD=DB′,AB′=AB=5.如圖1所示:當∠B′DE=90°時,過點B′作B′F⊥AF,垂足為F.設BD=DB′=x,則AF=6+x,F(xiàn)B′=8-x.在Rt△AFB′中,由勾股定理得:AB′5=AF5+FB′5,即(6+x)5+(8-x)5=55.解得:x1=5,x5=0(舍去).∴BD=5.如圖5所示:當∠B′ED=90°時,C與點E重合.∵AB′=5,AC=6,∴B′E=5.設BD=DB′=x,則CD=8-x.在Rt△′BDE中,DB′5=DE5+B′E5,即x5=(8-x)5+55.解得:x=1.∴BD=1.綜上所述,BD的長為5或1.14、5【解析】

如圖,作BH⊥AC于H.在Rt△ABH中,求出BH,再在Rt△BCH中,利用等腰直角三角形的性質(zhì)求出BC即可.【詳解】如圖,作BH⊥AC于H.

在Rt△ABH中,∵AB=10海里,∠BAH=30°,

∴∠ABH=60°,BH=AB=5(海里),

在Rt△BCH中,∵∠CBH=∠C=45°,BH=5(海里),

∴BH=CH=5海里,

∴CB=5(海里).

故答案為:5.【點睛】本題考查了解直角三角形的應用-方向角問題,解題的關(guān)鍵是學會添加常用輔助線,構(gòu)造特殊三角形解決問題.15、【解析】解:如圖,連接AC,∵四邊形ABCD為菱形,∠BAD=120°,∠1+∠EAC=60°,∠3+∠EAC=60°,∴∠1=∠3,∵∠BAD=120°,∴∠ABC=60°,∴△ABC和△ACD為等邊三角形,∴∠4=60°,AC=AB.在△ABE和△ACF中,∵∠1=∠3,AC=AC,∠ABC=∠4,∴△ABE≌△ACF(ASA),∴S△ABE=S△ACF,∴S四邊形AECF=S△AEC+S△ACF=S△AEC+S△ABE=S△ABC,是定值,作AH⊥BC于H點,則BH=2,∴S四邊形AECF=S△ABC=BC?AH=BC?=,由“垂線段最短”可知:當正三角形AEF的邊AE與BC垂直時,邊AE最短,∴△AEF的面積會隨著AE的變化而變化,且當AE最短時,正三角形AEF的面積會最小,又∵S△CEF=S四邊形AECF﹣S△AEF,則此時△CEF的面積就會最大,∴S△CEF=S四邊形AECF﹣S△AEF=﹣××=.故答案為:.點睛:本題主要考查了菱形的性質(zhì)、全等三角形判定與性質(zhì)及三角形面積的計算,根據(jù)△ABE≌△ACF,得出四邊形AECF的面積是定值是解題的關(guān)鍵.16、.【解析】試題分析:∵關(guān)于x的一元二次方程有兩個相等的實數(shù)根,∴.考點:一元二次方程根的判別式.17、(4π﹣3)cm1【解析】

連接OB、OC,作OH⊥BC于H,根據(jù)圓周角定理可知∠BOC的度數(shù),根據(jù)等邊三角形的性質(zhì)可求出OB、OH的長度,利用陰影面積=S扇形OBC-S△OBC即可得答案【詳解】:連接OB、OC,作OH⊥BC于H,則BH=HC=BC=3,∵△ABC為等邊三角形,∴∠A=60°,由圓周角定理得,∠BOC=1∠A=110°,∵OB=OC,∴∠OBC=30°,∴OB==1,OH=,∴陰影部分的面積=﹣×6×=4π﹣3,故答案為:(4π﹣3)cm1.【點睛】本題主要考查圓周角定理及等邊三角形的性質(zhì),在同圓或等圓中,同弧或等弧所對的圓周角等于圓心角的一半;熟練掌握圓周角定理是解題關(guān)鍵.18、①線段垂直平分線上的點與這條線段兩個端點的距離相等;②等量代換同弧所對的圓周角相等【解析】

(1)根據(jù)線段的垂直平分線的性質(zhì)定理以及等量代換即可得出結(jié)論.

(2)根據(jù)同弧所對的圓周角相等即可得出結(jié)論.【詳解】(1)如圖2中,∵MN垂直平分AB,EF垂直平分BC,∴OA=OB,OB=OC(線段垂直平分線上的點與這條線段兩個端點的距離相等),∴OA=OB=OC(等量代換)故答案是:(2)∵,∴∠APB=∠ACB(同弧所對的圓周角相等).故答案是:(1)線段垂直平分線上的點與這條線段兩個端點的距離相等和等量代換;(2)同弧所對的圓周角相等.【點睛】考查作圖-復雜作圖、線段的垂直平分線的性質(zhì)、三角形的外心等知識,解題的關(guān)鍵是熟練掌握三角形外心的性質(zhì).三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)16;(2)平均數(shù)是3,眾數(shù)是10,中位數(shù)是3;(3)1.【解析】

(1)根據(jù)有7名留守兒童班級有2個,所占的百分比是2.5%,即可求得班級的總個數(shù),再求出有8名留守兒童班級的個數(shù),進而補全條形統(tǒng)計圖;(2)將這組數(shù)據(jù)按照從小到大排列即可求得統(tǒng)計的這組留守兒童人數(shù)數(shù)據(jù)的平均數(shù)、眾數(shù)和中位數(shù);(3)利用班級數(shù)60乘以(2)中求得的平均數(shù)即可.【詳解】解:(1)該校的班級數(shù)是:2÷2.5%=16(個).則人數(shù)是8名的班級數(shù)是:16﹣1﹣2﹣6﹣2=5(個).條形統(tǒng)計圖補充如下圖所示:故答案為16;(2)每班的留守兒童的平均數(shù)是:(1×6+2×7+5×8+6×10+2×2)÷16=3將這組數(shù)據(jù)按照從小到大排列是:6,7,7,8,8,8,8,8,10,10,10,10,10,10,2,2.故這組數(shù)據(jù)的眾數(shù)是10,中位數(shù)是(8+10)÷2=3.即統(tǒng)計的這組留守兒童人數(shù)數(shù)據(jù)的平均數(shù)是3,眾數(shù)是10,中位數(shù)是3;(3)該鎮(zhèn)小學生中,共有留守兒童60×3=1(名).答:該鎮(zhèn)小學生中共有留守兒童1名.【點睛】本題考查的是條形統(tǒng)計圖和扇形統(tǒng)計圖的綜合運用,讀懂統(tǒng)計圖,從不同的統(tǒng)計圖中得到必要的信息是解決問題的關(guān)鍵.條形統(tǒng)計圖能清楚地表示出每個項目的數(shù)據(jù);扇形統(tǒng)計圖直接反映部分占總體的百分比大?。部疾榱似骄鶖?shù)、中位數(shù)和眾數(shù)以及用樣本估計總體.20、.【解析】試題分析:先根據(jù)題意畫出樹狀圖或列表,由圖表求得所有等可能的結(jié)果與A,C兩個區(qū)域所涂顏色不相同的的情況,利用概率公式求出概率.試題解析:解:畫樹狀圖如答圖:∵共有8種不同的涂色方法,其中A,C兩個區(qū)域所涂顏色不相同的的情況有4種,∴P(A,C兩個區(qū)域所涂顏色不相同)=.考點:1.畫樹狀圖或列表法;2.概率.21、(1)反比例函數(shù)的解析式為y=﹣;(2)D(﹣2,);﹣2<x<0或x>3;(3)P(4,0).【解析】試題分析:(1)把點B(3,﹣1)帶入反比例函數(shù)中,即可求得k的值;(2)聯(lián)立直線和反比例函數(shù)的解析式構(gòu)成方程組,化簡為一個一元二次方程,解方程即可得到點D坐標,觀察圖象可得相應x的取值范圍;(3)把A(1,a)是反比例函數(shù)的解析式,求得a的值,可得點A坐標,用待定系數(shù)法求得直線AB的解析式,令y=0,解得x的值,即可求得點P的坐標.試題解析:(1)∵B(3,﹣1)在反比例函數(shù)的圖象上,∴-1=,∴m=-3,∴反比例函數(shù)的解析式為;(2),∴=,x2-x-6=0,(x-3)(x+2)=0,x1=3,x2=-2,當x=-2時,y=,∴D(-2,);y1>y2時x的取值范圍是-2<x<0或x>;(3)∵A(1,a)是反比例函數(shù)的圖象上一點,∴a=-3,∴A(1,-3),設直線AB為y=kx+b,,∴,∴直線AB為y=x-4,令y=0,則x=4,∴P(4,0)22、【解析】

根據(jù)翻折的性質(zhì)可得∠BAC=∠EAC,再根據(jù)矩形的對邊平行可得AB∥CD,根據(jù)兩直線平行,內(nèi)錯角相等可得∠DCA=∠BAC,從而得到∠EAC=∠DCA,設AE與CD相交于F,根據(jù)等角對等邊的性質(zhì)可得AF=CF,再求出DF=EF,從而得到△ACF和△EDF相似,根據(jù)相似三角形得出對應邊成比,設DF=3x,F(xiàn)C=5x,在Rt△ADF中,利用勾股定理列式求出AD,再根據(jù)矩形的對邊相等求出AB,然后代入進行計算即可得解.【詳解】解:∵矩形沿直線AC折疊,點B落在點E處,∴CE=BC,∠BAC=∠CAE,∵矩形對邊AD=BC,∴AD=CE,設AE、CD相交于點F,在△ADF和△CEF中,,∴△ADF≌△CEF(AAS),∴EF=DF,∵AB∥CD,∴∠BAC=∠ACF,又∵∠BAC=∠CAE,∴∠ACF=∠CAE,∴AF=CF,∴AC∥DE,∴△ACF∽△DEF,∴,設EF=3k,CF=5k,由勾股定理得CE=,∴AD=BC=CE=4k,又∵CD=DF+CF=3k+5k=8k,∴AB=CD=8k,∴AD:AB=(4k):(8k)=.【點睛】本題考查了翻折變換的性質(zhì),全等三角形的判定與性質(zhì),相似三角形的判定與性質(zhì),勾股定理,綜合題難度較大,求出△ACF和△DEF相似是解題的關(guān)鍵,也是本題的難點.23、(1)①點C坐標為或;②y=x+2或y=-x+3;(2)或【解析】

(1)①根據(jù)“和諧點”的定義即可解決問題;②首先求出點C坐標,再利用待定系數(shù)法即可解決問題;(2)分兩種情形畫出圖形即可解決問題.【詳解】(1)①如圖1.觀察圖象可知滿足條件的點C坐標為C(1,5)或C'(3,5);②如圖2.由圖可知,B(5,3).∵A(1,3),∴AB=3.∵△ABC為等腰直角三角形,∴BC=3,∴C1(5,7)或C2(5,﹣1).設直線AC的表達式為y=kx+b(k≠0),當C1(5,7)時,,∴,∴y=x+2,當C2(5,﹣1)時,,∴,∴y=﹣x+3.綜上所述:直線AC的表達式是y=x+2或y=﹣x+3.(2)分兩種情況討論:①當點F在點E左側(cè)時:連接OD.則OD=,∴.②當點F在點E右側(cè)時:連接OE,OD.∵E(1,2),D(1,3),∴OE=,OD=,∴.綜上所述:或.【點睛】本題考查了一次函數(shù)綜合題、圓的有關(guān)知識、等腰直角三角形的判定和性質(zhì)、“和諧點”的定義等知識,解題的關(guān)鍵是理解題意,靈活運用所學知識解決問題,學會用分類討論的首先思考問題,屬于中考壓軸題.24、(1)m≤1;(2)3≤m≤1.【解析】試題分析:(1)根據(jù)判別式的意義得到△=(-6)2-1(2m+1)≥0,然后解不等式即可;(2)根據(jù)根與系數(shù)的關(guān)系得到x1+x2=6,x1x2=2m+1,再利用2x1x2+x1+x2≥20得到2(2m+1)+6≥20,然后解不等式和利用(1)中的結(jié)論可確定滿足條件的m的取值范圍.試題解析:(1)根據(jù)題意得△=(-6)2-1(2m+1)≥0,解得m≤1;(2)根據(jù)題意得x1+x2=6,x1x2=2m+1,而2x1x2+x1+x2≥20,所以2(2

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論