2025年河南省新鄉(xiāng)七中高三數學試題月測(四)試題含解析_第1頁
2025年河南省新鄉(xiāng)七中高三數學試題月測(四)試題含解析_第2頁
2025年河南省新鄉(xiāng)七中高三數學試題月測(四)試題含解析_第3頁
2025年河南省新鄉(xiāng)七中高三數學試題月測(四)試題含解析_第4頁
2025年河南省新鄉(xiāng)七中高三數學試題月測(四)試題含解析_第5頁
已閱讀5頁,還剩18頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2025年河南省新鄉(xiāng)七中高三數學試題月測(四)試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.某網店2019年全年的月收支數據如圖所示,則針對2019年這一年的收支情況,下列說法中錯誤的是()A.月收入的極差為60 B.7月份的利潤最大C.這12個月利潤的中位數與眾數均為30 D.這一年的總利潤超過400萬元2.函數的圖象如圖所示,則它的解析式可能是()A. B.C. D.3.執(zhí)行如圖所示的程序框圖,則輸出的結果為()A. B. C. D.4.若復數滿足,則(其中為虛數單位)的最大值為()A.1 B.2 C.3 D.45.已知復數,滿足,則()A.1 B. C. D.56.函數的圖像大致為().A. B.C. D.7.正三棱柱中,,是的中點,則異面直線與所成的角為()A. B. C. D.8.我國古代數學著作《九章算術》中有如下問題:“今有器中米,不知其數,前人取半,中人三分取一,后人四分取一,余米一斗五升(注:一斗為十升).問,米幾何?”下圖是解決該問題的程序框圖,執(zhí)行該程序框圖,若輸出的S=15(單位:升),則輸入的k的值為()?A.45 B.60 C.75 D.1009.某幾何體的三視圖如圖所示,三視圖是腰長為1的等腰直角三角形和邊長為1的正方形,則該幾何體中最長的棱長為().A. B. C.1 D.10.已知全集,集合,則()A. B. C. D.11.設函數恰有兩個極值點,則實數的取值范圍是()A. B.C. D.12.數列{an},滿足對任意的n∈N+,均有an+an+1+an+2為定值.若a7=2,a9=3,a98=4,則數列{an}的前100項的和S100=()A.132 B.299 C.68 D.99二、填空題:本題共4小題,每小題5分,共20分。13.在平面直角坐標系中,若函數在處的切線與圓存在公共點,則實數的取值范圍為_____.14.已知不等式組所表示的平面區(qū)域為,則區(qū)域的外接圓的面積為______.15.已知雙曲線-=1(a>0,b>0)與拋物線y2=8x有一個共同的焦點F,兩曲線的一個交點為P,若|FP|=5,則點F到雙曲線的漸近線的距離為_____.16.在數列中,已知,則數列的的前項和為__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在△ABC中,角A,B,C的對邊分別為a,b,c,已知a=4,.(1)求A的余弦值;(2)求△ABC面積的最大值.18.(12分)已知.(1)求的單調區(qū)間;(2)當時,求證:對于,恒成立;(3)若存在,使得當時,恒有成立,試求的取值范圍.19.(12分)已知數列是公比為正數的等比數列,其前項和為,滿足,且成等差數列.(1)求的通項公式;(2)若數列滿足,求的值.20.(12分)如圖,在直角中,,通過以直線為軸順時針旋轉得到().點為斜邊上一點.點為線段上一點,且.(1)證明:平面;(2)當直線與平面所成的角取最大值時,求二面角的正弦值.21.(12分)在如圖所示的多面體中,平面平面,四邊形是邊長為2的菱形,四邊形為直角梯形,四邊形為平行四邊形,且,,(1)若分別為,的中點,求證:平面;(2)若,與平面所成角的正弦值,求二面角的余弦值.22.(10分)在①;②;③這三個條件中任選一個,補充在下面問題中的橫線上,并解答相應的問題.在中,內角A,B,C的對邊分別為a,b,c,且滿足________________,,求的面積.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.D【解析】

直接根據折線圖依次判斷每個選項得到答案.【詳解】由圖可知月收入的極差為,故選項A正確;1至12月份的利潤分別為20,30,20,10,30,30,60,40,30,30,50,30,7月份的利潤最高,故選項B正確;易求得總利潤為380萬元,眾數為30,中位數為30,故選項C正確,選項D錯誤.故選:.本題考查了折線圖,意在考查學生的理解能力和應用能力.2.B【解析】

根據定義域排除,求出的值,可以排除,考慮排除.【詳解】根據函數圖象得定義域為,所以不合題意;選項,計算,不符合函數圖象;對于選項,與函數圖象不一致;選項符合函數圖象特征.故選:B此題考查根據函數圖象選擇合適的解析式,主要利用函數性質分析,常見方法為排除法.3.D【解析】循環(huán)依次為直至結束循環(huán),輸出,選D.點睛:算法與流程圖的考查,側重于對流程圖循環(huán)結構的考查.先明晰算法及流程圖的相關概念,包括選擇結構、循環(huán)結構、偽代碼,其次要重視循環(huán)起點條件、循環(huán)次數、循環(huán)終止條件,更要通過循環(huán)規(guī)律,明確流程圖研究的數學問題,是求和還是求項.4.B【解析】

根據復數的幾何意義可知復數對應的點在以原點為圓心,1為半徑的圓上,再根據復數的幾何意義即可確定,即可得的最大值.【詳解】由知,復數對應的點在以原點為圓心,1為半徑的圓上,表示復數對應的點與點間的距離,又復數對應的點所在圓的圓心到的距離為1,所以.故選:B本題考查了復數模的定義及其幾何意義應用,屬于基礎題.5.A【解析】

首先根據復數代數形式的除法運算求出,求出的模即可.【詳解】解:,,故選:A本題考查了復數求模問題,考查復數的除法運算,屬于基礎題.6.A【解析】

本題采用排除法:由排除選項D;根據特殊值排除選項C;由,且無限接近于0時,排除選項B;【詳解】對于選項D:由題意可得,令函數,則,;即.故選項D排除;對于選項C:因為,故選項C排除;對于選項B:當,且無限接近于0時,接近于,,此時.故選項B排除;故選項:A本題考查函數解析式較復雜的圖象的判斷;利用函數奇偶性、特殊值符號的正負等有關性質進行逐一排除是解題的關鍵;屬于中檔題.7.C【解析】

取中點,連接,,根據正棱柱的結構性質,得出//,則即為異面直線與所成角,求出,即可得出結果.【詳解】解:如圖,取中點,連接,,由于正三棱柱,則底面,而底面,所以,由正三棱柱的性質可知,為等邊三角形,所以,且,所以平面,而平面,則,則//,,∴即為異面直線與所成角,設,則,,,則,∴.故選:C.本題考查通過幾何法求異面直線的夾角,考查計算能力.8.B【解析】

根據程序框圖中程序的功能,可以列方程計算.【詳解】由題意,.故選:B.本題考查程序框圖,讀懂程序的功能是解題關鍵.9.B【解析】

首先由三視圖還原幾何體,進一步求出幾何體的棱長.【詳解】解:根據三視圖還原幾何體如圖所示,所以,該四棱錐體的最長的棱長為.故選:B.本題主要考查由三視圖還原幾何體,考查運算能力和推理能力,屬于基礎題.10.D【解析】

根據函數定義域的求解方法可分別求得集合,由補集和交集定義可求得結果.【詳解】,,,.故選:.本題考查集合運算中的補集和交集運算問題,涉及到函數定義域的求解,屬于基礎題.11.C【解析】

恰有兩個極值點,則恰有兩個不同的解,求出可確定是它的一個解,另一個解由方程確定,令通過導數判斷函數值域求出方程有一個不是1的解時t應滿足的條件.【詳解】由題意知函數的定義域為,.因為恰有兩個極值點,所以恰有兩個不同的解,顯然是它的一個解,另一個解由方程確定,且這個解不等于1.令,則,所以函數在上單調遞增,從而,且.所以,當且時,恰有兩個極值點,即實數的取值范圍是.故選:C本題考查利用導數研究函數的單調性與極值,函數與方程的應用,屬于中檔題.12.B【解析】

由為定值,可得,則是以3為周期的數列,求出,即求.【詳解】對任意的,均有為定值,,故,是以3為周期的數列,故,.故選:.本題考查周期數列求和,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】

利用導數的幾何意義可求得函數在處的切線,再根據切線與圓存在公共點,利用圓心到直線的距離滿足的條件列式求解即可.【詳解】解:由條件得到又所以函數在處的切線為,即圓方程整理可得:即有圓心且所以圓心到直線的距離,即.解得或,故答案為:.本題主要考查了導數的幾何意義求解切線方程的問題,同時也考查了根據直線與圓的位置關系求解參數范圍的問題,屬于基礎題.14.【解析】

先作可行域,根據解三角形得外接圓半徑,最后根據圓面積公式得結果.【詳解】由題意作出區(qū)域,如圖中陰影部分所示,易知,故,又,設的外接圓的半徑為,則由正弦定理得,即,故所求外接圓的面積為.線性規(guī)劃問題,首先明確可行域對應的是封閉區(qū)域還是開放區(qū)域、分界線是實線還是虛線,其次確定目標函數的幾何意義,是求直線的截距、兩點間距離的平方、直線的斜率、還是點到直線的距離、可行域面積、可行域外接圓等等,最后結合圖形確定目標函數最值取法、值域范圍.15.【解析】

設點為,由拋物線定義知,,求出點P坐標代入雙曲線方程得到的關系式,求出雙曲線的漸近線方程,利用點到直線的距離公式求解即可.【詳解】由題意得F(2,0),因為點P在拋物線y2=8x上,|FP|=5,設點為,由拋物線定義知,,解得,不妨取P(3,2),代入雙曲線-=1,得-=1,又因為a2+b2=4,解得a=1,b=,因為雙曲線的漸近線方程為,所以雙曲線的漸近線為y=±x,由點到直線的距離公式可得,點F到雙曲線的漸近線的距離.故答案為:本題考查雙曲線和拋物線方程及其幾何性質;考查運算求解能力和知識遷移能力;靈活運用雙曲線和拋物線的性質是求解本題的關鍵;屬于中檔題、??碱}型.16.【解析】

由已知數列遞推式可得數列的所有奇數項與偶數項分別構成以2為公比的等比數列,求其通項公式,得到,再由求解.【詳解】解:由,得,,則數列的所有奇數項與偶數項分別構成以2為公比的等比數列.,..故答案為:.本題考查數列遞推式,考查等差數列與等比數列的通項公式,訓練了數列的分組求和,屬于中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1);(2)【解析】

(1)根據正弦定理化簡得到,故,得到答案.(2)計算,再利用面積公式計算得到答案.【詳解】(1),則,即,故,,故.(2),故,故.當時等號成立.,故,,故△ABC面積的最大值為.本題考查了正弦定理,面積公式,均值不等式,意在考查學生的綜合應用能力.18.(1)單調減區(qū)間為,單調增區(qū)間為;(2)詳見解析;(3).【解析】

試題分析:(1)對函數求導后,利用導數和單調性的關系,可求得函數的單調區(qū)間.(2)構造函數,利用導數求得函數在上遞減,且,則,故原不等式成立.(3)同(2)構造函數,對分成三類,討論函數的單調性、極值和最值,由此求得的取值范圍.試題解析:(1),當時,.解得.當時,解得.所以單調減區(qū)間為,單調增區(qū)間為.(2)設,當時,由題意,當時,恒成立.,∴當時,恒成立,單調遞減.又,∴當時,恒成立,即.∴對于,恒成立.(3)因為.由(2)知,當時,恒成立,即對于,,不存在滿足條件的;當時,對于,,此時.∴,即恒成立,不存在滿足條件的;當時,令,可知與符號相同,當時,,,單調遞減.∴當時,,即恒成立.綜上,的取值范圍為.點睛:本題主要考查導數和單調區(qū)間,導數與不等式的證明,導數與恒成立問題的求解方法.第一問求函數的單調區(qū)間,這是導數問題的基本題型,也是基本功,先求定義域,然后求導,要注意通分和因式分解.二、三兩問一個是恒成立問題,一個是存在性問題,要注意取值是最大值還是最小值.19.(1)(2)【解析】

(1)由公比表示出,由成等差數列可求得,從而數列的通項公式;(2)求(1)得,然后對和式兩兩并項后利用等差數列的前項和公式可求解.【詳解】(1)∵是等比數列,且成等差數列∴,即∴,解得:或∵,∴∵∴(2)∵∴本題考查等比數列的通項公式,考查并項求和法及等差數列的項和公式.本題求數列通項公式所用方法為基本量法,求和是用并項求和法.數列的求和除公式法外,還有錯位相關法、裂項相消法、分組(并項)求和法等等.20.(1)見解析;(2)【解析】

(1)先算出的長度,利用勾股定理證明,再由已知可得,利用線面垂直的判定定理即可證明;(2)由(1)可得為直線與平面所成的角,要使其最大,則應最小,可得為中點,然后建系分別求出平面的法向量即可算得二面角的余弦值,進一步得到正弦值.【詳解】(1)在中,,由余弦定理得,∴,∴,由題意可知:∴,,,∴平面,平面,∴,又,∴平面.(2)以為坐標原點,以,,的方向為,,軸的正方向,建立空間直角坐標系.∵平面,∴在平面上的射影是,∴與平面所成的角是,∴最大時,即,點為中點.,,,,,,,設平面的法向量,由,得,令,得,所以平面的法向量,同理,設平面的法向量,由,得,令,得,所以平面的法向量,∴,,故二面角的正弦值為.本題考查線面垂直的判定定理以及利用向量法求二面角的正弦值,考查學生的運算求解能力,是一道中檔題.21.(1)見解析(2)【解析】試題分析:(1)第(1)問,轉化成證明平面,再轉化成證明和.(2)第(2)問,先利用幾何法找到與平面所成角,再根據與平面所成角的正弦值為求出再建立空間直角坐標系,求出二面角的余弦值.試題解析:(1)連接,因為四邊形為菱形,所以.因為平面平面,平面平面,平面,,所以平面.又平面,所以.因為,所以.因為,所以平面.因為分別為,的中點,所以,所以平面(2)設,由(1)得平面.由,,得,.過點作,與的延長線交于點,取的中點,連接,,如圖所示,又,所以為等邊三角形,所以,又平面平面,平面平面,平面,故平面.因為為平行四邊形,所以,所以平面.又因為,所以平面.

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論