版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2024年山東省聊城四中中考數(shù)學(xué)一模試卷
一、選擇題:本題共9小題,每小題4分,共36分。在每小題給出的選項(xiàng)中,只有一項(xiàng)是符合題目要求的。
1.如圖所示的幾何體是由一個(gè)圓柱和一個(gè)長方體組成的,它的主視圖是()
A.
主視方向
2.如圖,在數(shù)軸上,點(diǎn)/表示的數(shù)是-v|:6,點(diǎn)£C表示的數(shù)是兩個(gè)連續(xù)?”
的整數(shù),則這兩個(gè)整數(shù)為()6
A.5和IB.I和3C.3和4D.4和5
2xW3(1+1)
(?,,的解集,在數(shù)軸上表示正確的是()
-5-4-3-2-10I
C-5-461
4.小飛研究二次函數(shù)"―r小……為常數(shù))性質(zhì)時(shí)如下結(jié)論:
①這個(gè)函數(shù)圖象的頂點(diǎn)始終在直線,,,二J,1上;
②存在一個(gè)加的值,使得函數(shù)圖象的頂點(diǎn)與x軸的兩個(gè)交點(diǎn)構(gòu)成等腰直角三角形;
第1頁,共26頁
③點(diǎn)」/i“l(fā)與點(diǎn)"在函數(shù)圖象上,若1,則“V2;
④當(dāng),」時(shí),了隨x的增大而增大,則根的取值范圍為-2.
其中錯(cuò)誤結(jié)論的序號(hào)是()
A.①B.②C.③D.@
5.如圖所示是汽車燈的剖面圖,從位于。點(diǎn)燈發(fā)出光照射到凹面鏡上反射出的光線
BA,CD都是水平線,若乙=4X70=60°,則NBOC的度數(shù)為()
A.1i>?
B.12na
C.Ml,,)
D」
6.地球周圍的大氣層阻擋了紫外線和宇宙射線對(duì)地球生命的傷害,同時(shí)產(chǎn)生一定的大氣壓,海拔不同,大
氣壓不同.觀察圖中數(shù)據(jù),你發(fā)現(xiàn)()
A.海拔越高,大氣壓越大
B.圖中曲線是反比例函數(shù)的圖象
C.海拔為4千米時(shí),大氣壓約為70千帕
D.圖中曲線表達(dá)了大氣壓和海拔兩個(gè)量之間的變化關(guān)系
第2頁,共26頁
7.斑馬線前“車讓人”,不僅體現(xiàn)著一座城市對(duì)生命的尊重,也直接反映著城市的文明程度.如圖,某路
口的斑馬線路段.1a廠橫穿雙向行駛車道,其中.18.12米,在綠燈亮?xí)r,小敏共用22秒通過
NC路段,其中通過8C路段的速度是通過路段速度的倍,則小敏通過AB路段時(shí)的速度是()
111JA
A.0.5米/秒B.1米/秒C.15米/秒D.2米/秒
8.如圖,在.4BC中,ZB=9O°,AB3rw,BC6cm,動(dòng)點(diǎn)尸從點(diǎn)/開始
沿月8向點(diǎn)3以l,“,、的速度移動(dòng),動(dòng)點(diǎn)。從點(diǎn)8開始沿3C向點(diǎn)C以》,,「'的速
度移動(dòng),若P,。兩點(diǎn)分別從4,2兩點(diǎn)同時(shí)出發(fā),P點(diǎn)到達(dá)3點(diǎn)運(yùn)動(dòng)停止,則八〃Q
的面積S隨出發(fā)時(shí)間/的函數(shù)關(guān)系圖象大致是()
A.B.
9.下列命題正確的是()
A.三角形的內(nèi)心到三角形三個(gè)頂點(diǎn)的距離相等
B.三角形的內(nèi)心不一定在三角形的內(nèi)部
C.等邊三角形的內(nèi)心,外心重合
D.一個(gè)圓一定有唯一一個(gè)外切三角形
二、多選題:本題共3小題,共12分。在每小題給出的選項(xiàng)中,有多項(xiàng)符合題目要求。全部選對(duì)的得4分,
部分選對(duì)的得2分,有選錯(cuò)的得0分。
10.甲、乙兩位同學(xué)連續(xù)五次的數(shù)學(xué)達(dá)標(biāo)成績?nèi)鐖D所示:下列說法正確的是()
第3頁,共26頁
A.甲的平均分是70B.乙的平均分小于80C.、D.、
11.下列命題的逆命題是真命題的是()
A.兩直線平行,同位角相等B.平行四邊形的對(duì)角線互相平分
C.菱形的四條邊相等D.正方形的四個(gè)角都是直角
12.如圖,實(shí)數(shù)a,6在數(shù)軸上的對(duì)應(yīng)點(diǎn)在原點(diǎn)兩側(cè),下列各式成立的是()
―?---------1----?~>
a0b
A.I.?IB.C.ah-IID.
三、填空題:本題共4小題,每小題5分,共20分。
13.方程組的解是
14.如圖,將矩形的四個(gè)角向內(nèi)折起,恰好拼成一個(gè)無縫隙無重疊的四邊形
EFGH,///1T厘米,_16厘米,則邊40的長是.
15.《九章算術(shù)》是我國古代數(shù)學(xué)成就的杰出代表作,其中《方田》章計(jì)算弧田面積所用的經(jīng)驗(yàn)公式是:弧
田面積-‘弦?矢+矢一弧田是由圓弧和其所對(duì)的弦圍成?如圖中的陰影部分I,公式中“弦”指圓弧所對(duì)
?)f
弦長,“矢”等于半徑長與圓心到弦的距離之差,運(yùn)用垂徑定理I當(dāng)半徑■.弦時(shí),。。平分.1/,'可
以求解.現(xiàn)已知弦,米,半徑等于5米的弧田,按照上述公式計(jì)算出弧田的面積為平方米.
16.如圖,在平面直角坐標(biāo)系中,把一個(gè)點(diǎn)從原點(diǎn)開始向上平移1個(gè)單位,再向右平移1個(gè)單位,得到點(diǎn)
.hd.li;把點(diǎn)兒向上平移2個(gè)單位,再向左平移2個(gè)單位,得到點(diǎn)八:[-1.3|;把點(diǎn)八向下平移3個(gè)單位,
第4頁,共26頁
再向左平移3個(gè)單位,得到點(diǎn)」;,1.HI;把點(diǎn)1向下平移4個(gè)單位,再向右平移4個(gè)單位,得到點(diǎn)
…;按此做法進(jìn)行下去,則點(diǎn)的坐標(biāo)為
四、解答題:本題共7小題,共82分。解答應(yīng)寫出文字說明,證明過程或演算步驟。
17.?本小題8分?
計(jì)算
(1)(-2)+(~
£
w+mm
18.本小題8分?
數(shù)學(xué)實(shí)驗(yàn)室:有一個(gè)直角三角形紙板,.L';?,,,,/“:.小明計(jì)劃以三角形的一條邊
為直徑所在的邊,先剪出一個(gè)最大的半圓,用這個(gè)半圓圍成一個(gè)圓錐的側(cè)面,然后在剩下的紙板上再剪出
一個(gè)完整的圓,用這個(gè)圓作為圓錐的底面圓.如圖1,小明首先以斜邊為直徑所在的邊進(jìn)行嘗試,發(fā)現(xiàn)無法
實(shí)現(xiàn)他的計(jì)劃,他打算換成直角邊來繼續(xù)實(shí)驗(yàn).
M請(qǐng)你在圖2中,任選一條直角邊為直徑所在的邊,幫小明畫出一個(gè)最大的半圓I請(qǐng)使用無刻度的直尺和
圓規(guī)完成作圖I;
」如果小明按照你選的直角邊繼續(xù)往下操作,他能否順利得到這個(gè)圓錐的底面圓?如果能,請(qǐng)說明理由;
如果不能,那么換另一條直角邊能否實(shí)現(xiàn)?同樣請(qǐng)說明理由友情提醒:請(qǐng)利用圖3完成題1的解答)
第5頁,共26頁
19.?本小題12分,
繼北京冬奧會(huì)之后,第19屆亞運(yùn)會(huì)將于今年9月23日至10月8日在杭州舉行,中國將再次因體育盛會(huì)引
來全球目光.某校為了解學(xué)生對(duì)體育鍛煉的認(rèn)識(shí)情況,組織七、八年級(jí)全體學(xué)生進(jìn)行了相關(guān)知識(shí)競賽.為了解
競賽成績,抽樣調(diào)查了七、八年級(jí)部分學(xué)生的分?jǐn)?shù),過程如下:
【收集數(shù)據(jù)】從該校七、八年級(jí)學(xué)生中各隨機(jī)抽取20位學(xué)生的分?jǐn)?shù),其中八年級(jí)學(xué)生的分?jǐn)?shù)如下:75,90,
55,60,85,85,95,100,80,85,80,85,90,75,65,60,80,100,70,7:
【整理、描述數(shù)據(jù)】將抽取的七、八年級(jí)學(xué)生的競賽成績"分)分組整理如下表:
分?jǐn)?shù)(分)JT<f>0GII」71?70x<8071-(■“90W工wHNI
七年級(jí)人數(shù)1人,23654
八年級(jí)人數(shù)1人'13a7b
【分析數(shù)據(jù)】七、八年級(jí)學(xué)生競賽成績的平均數(shù)、中位數(shù)、眾數(shù)如下表:
年級(jí)平均數(shù)中位數(shù)眾數(shù)
七年級(jí)77*?7585
八年級(jí)7一C85
根據(jù)以上提供的信息,解答下列問題:
1填空:a=,b
已知該校七、八年級(jí)共有1200位學(xué)生,為表揚(yáng)在這次競賽中表現(xiàn)優(yōu)異的學(xué)生,該校決定給兩個(gè)年級(jí)競
賽成績?cè)?0分及以上的學(xué)生頒發(fā)獎(jiǎng)狀,請(qǐng)估計(jì)需要準(zhǔn)備多少張獎(jiǎng)狀?
該校決定從七、八年級(jí)競賽獲得100分的4名學(xué)生(其中七年級(jí)2位,八年級(jí)2位)中隨機(jī)選取2位學(xué)生
參加市級(jí)競賽,請(qǐng)用列表或畫樹狀圖的方法求選中的兩位學(xué)生恰好在同一年級(jí)的概率.
20」本小題12分,
已知點(diǎn)C為線段上一點(diǎn),分別以NC、3c為邊在線段的同側(cè)作\(〃和“/,且,1!>,
Cli(1,\(1>-I,直線與5D交于點(diǎn)F.
⑴如圖1,若N4CDw,則則,如圖2,若乙4CD.90T,則,W,如
圖3,若一",則(用含。的式子表示I;
,設(shè),〃,將圖3中的木〃繞點(diǎn)C順時(shí)針旋轉(zhuǎn)任意角度I交點(diǎn)廠至少在AD、/£中的一條線段
上),如圖4,試探究.db8與,,的數(shù)量關(guān)系,并予以證明.
第6頁,共26頁
21.?本小題14分)
如圖1為北京冬奧會(huì)“雪飛天”滑雪大跳臺(tái)賽道的橫截面示意圖.取水平線。E為x軸,鉛垂線。。為y軸,
建立平面直角坐標(biāo)系.運(yùn)動(dòng)員以速度從。點(diǎn)滑出,運(yùn)動(dòng)軌跡近似拋物線"-.1>?
某運(yùn)動(dòng)員7次試跳的軌跡如圖?在著陸坡CE上設(shè)置點(diǎn)人與。。相距作為標(biāo)準(zhǔn)點(diǎn),著陸點(diǎn)在K點(diǎn)或
超過K點(diǎn)視為成績達(dá)標(biāo).
Ib求線段CE的函數(shù)表達(dá)式I寫出x的取值范圍|.
⑵當(dāng)a—:時(shí),著陸點(diǎn)為尸,求尸的橫坐標(biāo)并判斷成績是否達(dá)標(biāo).
國在試跳中發(fā)現(xiàn)運(yùn)動(dòng)軌跡與滑出速度v的大小有關(guān),進(jìn)一步探究,測算得7組。與,的對(duì)應(yīng)數(shù)據(jù),在平面
直角坐標(biāo)系中描點(diǎn)如圖J
①猜想。關(guān)于廠'的函數(shù)類型,求函數(shù)表達(dá)式,并任選一對(duì)對(duì)應(yīng)值驗(yàn)證.
②當(dāng)v為多少山、時(shí),運(yùn)動(dòng)員的成績恰能達(dá)標(biāo)(精確到1/、i?I參考數(shù)據(jù):1口,「,J>
22.(本小題14分)
裝有水的水槽放置在水平臺(tái)面上,其橫截面是以為直徑的半圓。,Ml,,如圖1和圖2所示,
為水面截線,G8為臺(tái)面截線,“、3H
計(jì)算:在圖1中,已知卜…,作OC_LMN于點(diǎn)C.
11求。C的長.
操作將圖1中的水槽沿GH向右作無滑動(dòng)的滾動(dòng),使水流出一部分,當(dāng)一-“時(shí)停止?jié)L動(dòng).如圖」.其
第7頁,共26頁
中,半圓的中點(diǎn)為。,G”與半圓的切點(diǎn)為E,連接。£交〃N于點(diǎn)〃
探究在圖2中.
j操作后水面高度下降了多少?
」連接。。并延長交G8于點(diǎn)R求線段所與R的長度,并比較大小.
23.?本小題14分?
綜合與探究
如圖1,平面直角坐標(biāo)系中,拋物線y“廠-hr+X與x軸分別交于點(diǎn).1;21)1,〃;I.H,與y軸交于點(diǎn)
C,點(diǎn)。是y軸負(fù)半軸上一點(diǎn),直線5。與拋物線”.6.1--3在第三象限交于點(diǎn)/IoI點(diǎn)尸是拋物
線”“廣?日,:,上的一點(diǎn),且點(diǎn)尸在直線上方,將點(diǎn)尸沿平行于x軸的直線向右平移機(jī)個(gè)單位長度
后恰好落在直線上的點(diǎn)G處.
Hi求拋物線”“廠.%,;;的表達(dá)式,并求點(diǎn)£的坐標(biāo);
曰設(shè)點(diǎn)尸的橫坐標(biāo)為「I解決下列問題:
①當(dāng)點(diǎn)G與點(diǎn)D重合時(shí),求平移距離m的值;
②用含x的式子表示平移距離加,并求加的最大值;
,:如圖2,過點(diǎn)尸作x軸的垂線FP,交直線于點(diǎn)P,垂足為尸,連接/").是否存在點(diǎn)尸,使「『與
/?〃<;的面積比為1:2?若存在,直接寫出點(diǎn)歹的坐標(biāo);若不存在,說明理由.
第8頁,共26頁
答案和解析
1.【答案】A
【解析】解:從正面看,上邊是一個(gè)長方形,下邊也是一個(gè)長方形,
故選:A
根據(jù)從正面看得到的圖形是主視圖判斷即可.
本題考查了簡單幾何體的三視圖,需掌握:從正面看得到的圖形是主視圖,從上面看得到的圖形是俯視圖,
從左面看得到的圖形是左視圖.
2.【答案】B
【解析】解:,|:i16,
3<vU<I,
故選:11
先估算、1.1的大小,再求出的大小即可判斷.
本題考查了實(shí)數(shù)與數(shù)軸,解題關(guān)鍵是會(huì)估二次根式的大小.
3.【答案】C
2x43(x+1)?
{2-->3?
解不等式①,得--3,
解不等式②,得「?,
?.該不等式組的解集為3,2,
故選:(,.
先求解此不等式組,再根據(jù)解集辨別、求解.
此題考查了解不等式組和用數(shù)軸表示不等式組解集的能力,關(guān)鍵是能準(zhǔn)確理解和運(yùn)用以上知識(shí)進(jìn)行正確地
求解.
4.【答案】C
【解析】解:二次函數(shù)“,—(j--m)2m+l(m為常數(shù))
①\?頂點(diǎn)坐標(biāo)為(m.m+1)且當(dāng)工…時(shí),一m+1
,這個(gè)函數(shù)圖象的頂點(diǎn)始終在直線,,,I上
第9頁,共26頁
故結(jié)論①正確;
②假設(shè)存在一個(gè)加的值,使得函數(shù)圖象的頂點(diǎn)與X軸的兩個(gè)交點(diǎn)構(gòu)成等腰直角三角形
令!/=",得-I:III,其中"I〈1
解得:,r[\—“I+1,,r_i=HJ+y-m+i
「頂點(diǎn)坐標(biāo)為I”,.”,,11,且頂點(diǎn)與X軸的兩個(gè)交點(diǎn)構(gòu)成等腰直角三角形
|—m+11=|m-(m—v—m+l)|
解得:“,“或1
當(dāng)“,I時(shí),二次函數(shù)"一.,1「,此時(shí)頂點(diǎn)為II川,,與x軸的交點(diǎn)也為lIJi,不構(gòu)成三角形,舍去;
存在,““,使得函數(shù)圖象的頂點(diǎn)與x軸的兩個(gè)交點(diǎn)構(gòu)成等腰直角三角形
故結(jié)論②正確;
(§),.■X|+J2>2m
2
?.?二次函數(shù)“,—(j-+為常數(shù))的對(duì)稱軸為直線Nm
一點(diǎn)/離對(duì)稱軸的距離小于點(diǎn)B離對(duì)稱軸的距離
,,j-i<八,且“二I-II
:.Vi>Vt
故結(jié)論③錯(cuò)誤;
④當(dāng)1?[時(shí),y隨x的增大而增大,且“:II
二”,的取值范圍為"I」!
故結(jié)論④正確.
故選:('.
根據(jù)函數(shù)解析式,結(jié)合函數(shù)圖象的頂點(diǎn)坐標(biāo)、對(duì)稱軸以及增減性依次對(duì)4個(gè)結(jié)論作出判斷即可.
本題主要考查了二次函數(shù)圖象與二次函數(shù)的系數(shù)的關(guān)系,是一道綜合性比較強(qiáng)的題目,需要利用數(shù)形結(jié)合
思想解決本題.
5.【答案】C
【解析】解:連接BC,
ABliCl),--------A
:./.ABO+£CBO4zero+COCD=iso,fi
C
'D
第10頁,共26頁
而J/1(2?一”().一。二】zi,
Z0?Z.ABO+Z.DCO=60°+<1.
故選:,.
連接3C,由「,,一口可以推出I/”.iw,而
Z.CBO+Z.BCO+ZO■18T,由此可以證明NOZ.4BO-Z.IX'0
本題用到的知識(shí)點(diǎn)為:三角形的內(nèi)角和是15以及平行線的性質(zhì):兩直線平行,同旁內(nèi)角互補(bǔ).
6.【答案】D
【解析】【分析】
根據(jù)所給圖象進(jìn)行分析,確定答案即可.
【解答】
解:觀察圖象可知,海拔越高,大氣壓越低,/選項(xiàng)不符合題意;
圖象經(jīng)過點(diǎn)位、小和Uhl,兩點(diǎn)的橫、縱坐標(biāo)之積不同,說明圖中曲線不是反比例函數(shù)的圖象,3選項(xiàng)
不符合題意;
海拔為4千米時(shí),由圖象可知大氣壓應(yīng)該是60千帕左右,C選項(xiàng)不符合題意;
圖中曲線表達(dá)的是大氣壓和海拔兩個(gè)量之間的變化關(guān)系,D選項(xiàng)符合題意.
故選:D.
【點(diǎn)評(píng)】
本題考查讀圖,分析圖中的數(shù)據(jù),關(guān)鍵要讀懂題意,會(huì)分析圖中數(shù)據(jù).
7.【答案】B
【解析】【分析】
設(shè)小敏通過路段時(shí)的速度是x米/秒,則小敏通過8c路段時(shí)的速度是12r米/秒,利用時(shí)間=路程:速度,
結(jié)合小敏共用22秒通過/C路段,即可得出關(guān)于x的分式方程,解之經(jīng)檢驗(yàn)后即可得出結(jié)論.
本題考查了分式方程的應(yīng)用,找準(zhǔn)等量關(guān)系,正確列出分式方程是解題的關(guān)鍵.
【解答】
解:設(shè)小敏通過路段時(shí)的速度是x米/秒,則小敏通過8C路段時(shí)的速度是12r米/秒,
依題意得:'-''
r1.2/
解得:/=I,
經(jīng)檢驗(yàn),r-1是原分式方程的解,且符合題意,
第H頁,共26頁
小敏通過路段時(shí)的速度是1米/秒.
故選:1}
8.【答案】C
【解析】解:由題意可得:3t,HQ2f,
則的面積S—一-片"白——八-;”,
故.的面積S隨出發(fā)時(shí)間[的函數(shù)關(guān)系圖象大致是二次函數(shù)圖象,開口向下.
故選:(二
根據(jù)題意表示出/'"Q的面積S與7的關(guān)系式,進(jìn)而得出答案.
此題主要考查了動(dòng)點(diǎn)問題的函數(shù)圖象,正確得出函數(shù)關(guān)系式是解題關(guān)鍵.
9.【答案】C
【解析】解:/、三角形的內(nèi)心是三個(gè)內(nèi)角平分線的交點(diǎn),內(nèi)心到三角形三邊的距離相等,錯(cuò)誤;
8、三角形的內(nèi)心是三個(gè)內(nèi)角平分線的交點(diǎn),三角形的內(nèi)心一定在三角形的內(nèi)部,錯(cuò)誤;
C、等邊三角形的內(nèi)心,外心重合,正確;
。、經(jīng)過圓上的三點(diǎn)作圓的切線,三條切線相交,即可得到圓的一個(gè)外切三角形,所以一個(gè)圓有無數(shù)個(gè)外切
三角形,錯(cuò)誤;
故選:廠.
根據(jù)三角形內(nèi)心的定義和圓的外切三角形的定義判斷即可.
本題主要考查命題的真假判斷,正確的命題叫真命題,錯(cuò)誤的命題叫做假命題.判斷命題的真假關(guān)鍵是要
熟悉課本中的定義與定理.
10.【答案】BD
【解析】解:由圖形知,甲五次成績?yōu)椋?0、60、70、70、80,
乙五次成績?yōu)?0、70、80、80、90,
甲的平均成績?yōu)?-1油分I,
O
十ijjx,士、r,2I,、lI?!M)八
乙平均成績?yōu)橐?7"分」,
5
1
.J-tin八、12-70—>11GS-■M;,
▼51
Si=1x|2x(TO-78y+2x(80-78)J+(90-78)號(hào)=M,
5
故選:ill).
第12頁,共26頁
由圖形得出甲、乙五次的成績,再根據(jù)平均數(shù)和方差的定義分別求解即可.
本題主要考查方差,解題的關(guān)鍵是掌握平均數(shù)和方差的定義.
11.【答案】ABC
【解析】解:/、原命題的逆命題為:同位角相等,兩直線平行,是真命題,符合題意;
8、原命題的逆命題為:對(duì)角線互相平分的四邊形是平行四邊形,是真命題,符合題意;
C、原命題的逆命題為:四條邊相等的四邊形是菱形,是真命題,符合題意;
。、原命題的逆命題為:四個(gè)角都是直角的四邊形是正方形,由于四個(gè)角都是直角的四邊形也可能是矩形,
故是假命題,不符合題意;
故選:ABC.
先寫出對(duì)應(yīng)選項(xiàng)中的命題的逆命題,然后判斷真假即可.
本題主要考查了判斷命題真假,寫出原命題的逆命題,平行線的判定,平行四邊形,菱形,正方形的判定
等等,靈活運(yùn)用所學(xué)知識(shí)是解題的關(guān)鍵.
12.【答案】AD
【解析】【分析】
根據(jù)數(shù)軸上a,b的對(duì)應(yīng)點(diǎn)與原點(diǎn)O的位置可以判斷出數(shù)a,6的正負(fù)及絕對(duì)值的大小,再進(jìn)行判斷即可.
【解答】
解:由圖可知?<”,八「,ii,
.%
1,u",”?IL///??lb
u
\,。符合題意.
故選:AD.
【點(diǎn)評(píng)】
本題考查數(shù)軸,絕對(duì)值等知識(shí),熟練掌握相關(guān)概念和性質(zhì)是解題關(guān)鍵.
13.【答案】{;:
【解析】【分析】
本題考查了解二元一次方程組,利用了消元的思想,消元的方法有:代入消元法與加減消元法,屬于基礎(chǔ)
題.
利用加減消元法求出方程組的解即可.
【解答】
第13頁,共26頁
3x+也=19(1
解:
工7=4②
①+②7得:7/:r>,
解得:/-%,
把.5代入②得:,,=1,
則方程組的解為|,
故答案為:{::
14.【答案】20厘米
【解析】解:一"〃,,
.IUI-.HIM-.HM'.1、”<M),
同理可得:./:〃(,'一.〃("一II(;-!?>,
四邊形EFG”為矩形,
IP-AH-HD-HM-'IF-HF,///\/:〃?+£尸.,12?+MP>2lH
-ID=2。厘米.
故答案為:20厘米.
利用三個(gè)角是直角的四邊形是矩形易證四邊形EFGH為矩形,那么由折疊可得HF的長即為邊AD的長.
此題主要考查了翻折變換的性質(zhì)以及勾股定理等知識(shí),得出四邊形跖G”為矩形是解題關(guān)鍵.
15.【答案】10
【解析】【分析】
此題考查垂徑定理的應(yīng)用,關(guān)鍵是根據(jù)垂徑定理和勾股定理解答.
根據(jù)垂徑定理得到.1。1”!,由勾股定理得到,小「7\1)與“,求得0/12",根據(jù)
弧田面積—丁弦?矢+矢-)即可得到結(jié)論.
【解答】
解:弦AB=8/n,半徑()(,[_弦48,半徑.1,
,AH=\>n>
on-、oI'i/)-'-a”,,
二"矢”=OC-OD-2m,
第14頁,共26頁
弧田面積;弦■,矢+矢■,I、?->,?IHI'I,
故答案為:川
16.【答案】I1,111
【解析】解:由圖象可知,1「,:,
將點(diǎn)工向左平移6個(gè)單位、再向上平移6個(gè)單位,可得Al1.7i,
將點(diǎn)A向左平移7個(gè)單位,再向下平移7個(gè)單位,可得.卜-N.山,
將點(diǎn)大向右平移8個(gè)單位,再向下平移8個(gè)單位,可得.L".
將點(diǎn)I,向右平移9個(gè)單位,再向上平移9個(gè)單位,可得,
將點(diǎn)4,向左平移平移10個(gè)單位,再向上平移10個(gè)單位,可得“萬llh,
故答案為:I111
根據(jù)題目規(guī)律,依次求出L、1,……I「的坐標(biāo)即可.
本題主要考查了坐標(biāo)與圖形變化-平移,規(guī)律型問題,解題的關(guān)鍵是學(xué)會(huì)探究規(guī)律,屬于中考常考題型.
17.【答案】解:1原式_I-2-5:1;2-5二;1;
m+1+1、+1)m-2
11原式二I---------)XhX———
+1(m+2)(PI—2)m+1
m+2ni(m+1)in—2
,x—x—
m+l(m+2)(m-2)nt>1
【解析】1根據(jù)乘方,負(fù)整數(shù)指數(shù)幕,零指數(shù)基,結(jié)合有理數(shù)的混合運(yùn)算法則進(jìn)行計(jì)算即可;
⑶先通分計(jì)算括號(hào)里的,將乘法轉(zhuǎn)換為除法,再進(jìn)行約分即可.
本題考查了乘方,負(fù)整數(shù)指數(shù)幕,零指數(shù)幕,分式的混合運(yùn)算,熟練掌握相關(guān)運(yùn)算法則是解本題的關(guān)鍵.
18.【答案】解:口選擇/C直角邊為直徑所在的邊,
如圖,以點(diǎn)B為圓心,8C長為半徑畫弧,交AB于點(diǎn)、D;連接CD,分別以C、。為圓心,大于:「/)的長
為半徑畫弧,連接兩個(gè)交點(diǎn),交/C于點(diǎn)。,點(diǎn)。即為圓心.
第15頁,共26頁
x\(">\bi*.H
由作圖可知,.。與BC、45相切于點(diǎn)C、D,
.ODH-.。。1叫,///>31H
AI).1〃1“)30.UI2U,
.OlfA.//(1。,,1I,
\(7;,
OPAD
?衣=充’
OD_20
?,IT=疝,
()D1;,
..r-13,
這個(gè)半圓的弧長為:;,l,“,
IMl
圓錐底面圓的周長等于側(cè)面展開圖的扇形的弧長,
一圓錐底面圓的周長為
底面圓的半徑為「',
在中’,小,(〃1:<\「,,人「
記半圓與03交于點(diǎn)E,剩下部分切出底面圓.(/,分別與AB、2C相切于點(diǎn)尸、G,設(shè).(下的半徑為/,
(H'(門()(;「',
(YCli"1"加,
■.*”*:
OGB(y
?記=前’
e_D(y
Hi-許*
ii<>\",
UOHO'-(>1+OLV5r'--1515、與
i15(3-15
?r-:f
22
.不能實(shí)現(xiàn);
第16頁,共26頁
選擇5c直角邊為直徑所在的邊,設(shè)半圓的半徑為八
如圖,?。與AB、4c相切于點(diǎn)。、C,
?d)Ii一一呵,M=M=
Alt—,”,
r.o-io-io,
山〃,,,〃,
OPBD
AC=13C9
OD_10
"F=疝’
.ODl
如
/.r,
3
這個(gè)半圓的弧長為:""I1
IM)3
.圓錐底面圓的周長等于側(cè)面展開圖的扇形的弧長,
-圓錐底面圓的周長為
■底面圓的半徑為:',
記半圓與03交于點(diǎn)E,剩下部分切出底面圓.(下,分別與N3、8c相切于點(diǎn)足G,設(shè).。'的半徑為/,
(,E=C/F=C/G=r',。
(A;I(小I",,
第17頁,共26頁
4GSzoxc
,-.△,4(.7/^',b>1,
【解析】本題考查作圖-應(yīng)用與設(shè)計(jì)作圖,考查了尺規(guī)作圖,切線的性質(zhì),切線長定理,相似三角形的判定
和性質(zhì),勾股定理等知識(shí)點(diǎn),運(yùn)用了分類討論的思想.掌握切線的性質(zhì)、相似三角形的判定和性質(zhì)是解題
的關(guān)鍵.
I如圖,以點(diǎn)2為圓心,3c長為半徑畫弧,交AB于點(diǎn)、D;連接CD,分別以C、。為圓心,大于的
長為半徑畫弧,連接兩個(gè)交點(diǎn),交NC于點(diǎn)。,點(diǎn)。即為圓心.
2分兩種情況:選擇/C直角邊為直徑所在的邊,連接。D‘利用求出?。的半徑長,
繼而求得底面圓的半徑長,在剩下的紙板上再剪出一個(gè)最大的圓,利用相似三角形的相關(guān)性質(zhì),可以求出
該圓的半徑,若該半徑大于底面圓的半徑長,則可以實(shí)現(xiàn),反之,則不能;按同樣的方法說明選擇8C直角
邊為直徑所在的邊的情況.
19.【答案】解:1)4;5;80;
2:rji?i?(,小”張:,,
in
答:估計(jì)需要準(zhǔn)備630張獎(jiǎng)狀;
,七年級(jí)2名學(xué)生記為/、B,八年級(jí)2名學(xué)生記為C、D,
畫樹狀圖如下:
共有12種等可能的結(jié)果,其中選中的兩名學(xué)生恰好在同一年級(jí)的結(jié)果有T」八,:3I,,C1)
第18頁,共26頁
共4種,
選中的兩名學(xué)生恰好在同一年級(jí)的概率為'
123
【解析】【分析】
本題考查的是用樹狀圖法求概率、中位數(shù)、平均數(shù)以及頻數(shù)分布表等知識(shí).樹狀圖法可以不重復(fù)不遺漏的
列出所有可能的結(jié)果,適合兩步或兩步以上完成的事件,用到的知識(shí)點(diǎn)為:概率=所求情況數(shù)與總情況數(shù)之
比.
Il由八年級(jí)學(xué)生的分?jǐn)?shù)得出。、6的值,再由中位數(shù)數(shù)的定義得出c的值即可;
⑵該校七八年級(jí)參加此次測試的學(xué)生人數(shù)乘以兩個(gè)年級(jí)競賽成績?cè)赬川分I及以上的學(xué)生的人數(shù)所占的比
例即可;
內(nèi)畫樹狀圖,共有12種等可能的結(jié)果,其中選中的兩名學(xué)生恰好在同一年級(jí)的結(jié)果有4種,再由概率公
式求解即可.
【解答】
解:;1「由八年級(jí)學(xué)生的分?jǐn)?shù)得:7'i,5的學(xué)生有4名,XI」HI”的學(xué)生有5名,
將八年級(jí)學(xué)生的成績按照從小到大的順序排列為:55,60,60,65,70,75,75,75,80,80,80,85,
85,85,85,90,90,95,100,100,成績?cè)诘?0和第11位的都為80分,
故答案為4;5;80:
(2)見答案;
見答案.
20.【答案】12()!IO1ZI〃
【解析】解:;1I如圖1,I<D,一一60,
所以ACD是等邊三角形.
(11-(1,一"O-一8(2-th,
所以,/「〃是等邊三角形.
\<'1)(',=.!,",上BCD二二INI,
X-..A(n-"廣,
Z.ACE=£BCD,
1(-IX,(7.",
第19頁,共26頁
..A.U'A
ZE4C=£BDC.
.」/〃是\m的外角.
Z.AFB=AADF+£FAD=£AD('+Z.CDB+ZF.4D=N.4DC+Z.EAC+£FAD
h/.ADC+£DAC=120n.
如圖2,.Arcn,.UI_.1)(U90,EC=CB,
:^ACE^^DCB.
,Zl£C-ADUC,
X/£FDECDB>Z.DCB川,
,£EFD=90=.
?Z.AFB?W.
如圖3,-..ACD.HCE,
£ACD+ZDCE=乙BCE+Z.DCE.
Z4CE=£DCB.
ZCAE=£CDU.
£DFA=£ACD.
Z.AFB?180°-ZDF4a180°-Z.ACD■iStT-a.
2.Aliiixi,>;
證明:-/£ACD?ZBC£=o>貝U.」('D+/ZX'E-一,
即I,:i”K
在「和"中,
'AC?DC
.<.ACE=/IX'li,
[CE=CB
AXCE^DCB(SAS).
則NC8DCEA>由三角形內(nèi)角和知NEFB£ECBo.
Z.AFB-1800-ZEFB>1800-a.
(1)如圖1,首先證明'BCDq△ECA,得出NEW.HDC,再根據(jù)「1,〃是的外角求出其
度數(shù).如圖2,首先證明4C數(shù)出\DCB,得出",DBC,又有,F(xiàn)DE?,CDB,進(jìn)而得出
,1/!:“I.如圖3,由.XI,./U得到.1(//*,再由三角形的內(nèi)角和定理得
第20頁,共26頁
(\1〃,從而得出1-V,“,得到結(jié)論.」/31、”,,
2)由\CD=BCE得到/\CEDCB,通過證明*7得.(’廣A,由三角
形內(nèi)角和定理得到結(jié)論.」/3I、。o
本題考查了全等三角形的判定及其性質(zhì)、三角形內(nèi)角和定理等知識(shí),本題還綜合了旋轉(zhuǎn)的知識(shí)點(diǎn),是一道
綜合性比較強(qiáng)的題,要熟練掌握等邊三角形的性質(zhì)和全等三角形的判定和性質(zhì)定理.
21.【答案】解:1?由圖2可知:<、I小,AiHUH,
設(shè)CE:I;il?'?1,1"I,
將(“1小,MUh代入得:("二",’',解得|k.,,
I……I-L
一線段CE的函數(shù)表達(dá)式為“I-?力、」UN.
->
I?當(dāng)“?時(shí),u1'1-2I--Ji?,
99
由題意得r?+2/+20-'I'-20,
2
解得」II舍去,,,一「
P的橫坐標(biāo)為22.5
,22,5<32,
」.成績未達(dá)標(biāo).
:①猜想。與,,成反比例函數(shù)關(guān)系.
、
設(shè)“?TN1'I,
盧
將(100.0255代入得().25,解得…25,
100
25
,"=一?
V*5
將代入“-驗(yàn)證:--II167f
標(biāo)150
.1''能相當(dāng)精確地反映。與廣的關(guān)系,即為所求的函數(shù)表達(dá)式.
?‘■
②由K在線段-L-20上,得AH2.h,代入得"nr-1.Jr*20,得〃一
261
25
由〃-得廣31JiI?
V*
又二「,I),
第21頁,共26頁
:當(dāng)r二二[、,'.、時(shí),運(yùn)動(dòng)員的成績恰能達(dá)標(biāo).
【解析】本題屬于函數(shù)綜合應(yīng)用,涉及待定系數(shù)法求函數(shù)解析式,反比例函數(shù)的應(yīng)用及二次函數(shù)綜合應(yīng)用,
一次函數(shù)和二次函數(shù)圖象上點(diǎn)的坐標(biāo)特征,熟知待定系數(shù)法求函數(shù)解析式是解題關(guān)鍵.
!由圖2可知:,、巾,,/,HJ-,利用待定系數(shù)法可得出結(jié)論;
2當(dāng)“?時(shí),,,,一?【「」,,聯(lián)立-+I-力),可得出點(diǎn)尸的橫坐標(biāo),比較即可
99!12
得出結(jié)論;
⑶①猜想。與M成反比例函數(shù)關(guān)系.將1,…mu代入表達(dá)式,求出用的值即可.將代入
..進(jìn)行驗(yàn)證即可得出結(jié)論;
②由K在線段“」」-2。上,得KH25,代入得”“「?,,如,得“;,由“如得廣工,“,
264V*
開根號(hào)運(yùn)算即可.
圖I
I■。為圓心,0(1.M\于點(diǎn)C,W.V-l.Mn,
,MC1A/V,
IH—,
(>M'Al!
o
在Rr;(八",中,,",\"/\J
「21〃與半圓的切點(diǎn)為E,
(.'I(;〃,
M\(;H,
于點(diǎn)。,
.l.V,l/一:",,OX“,,
第22頁,共26頁
..OD--O,V--,
22
操作后水面高度下降高度為:--7--rm;
22
E于點(diǎn)D,.L\A/3(r,
:.Z.DOB=6O
半圓的中點(diǎn)為。,
,R誦
上QCH=川,
.Pi,
£7tan^QOE-OE~;
R的長為川:£藥■孚-,
71MI(?
255/32550\/3-25#25(2>/3-)r)
r-.....>1>,
3666
:.EF>R.
【解析】h連接?!?,利用垂徑定理得出“>七/、一?島,,,由勾股定理計(jì)算即可得出答案;
」由切線的性質(zhì)證明〈,/■」;〃,進(jìn)而得到,,/,」/、,利用銳角三角函數(shù)的定義求出。>,再與II,中。c
相減即可得出答案;
,由半圓的中點(diǎn)為0得到…U,“,得到,J";「,分別求出線段E尸與夜的長度,再相減比
較即可.
本題是圓的綜合題,考查了垂徑定理,直角三角形的性質(zhì),圓的切線的性質(zhì),弧長公式和解直角三角形的
知識(shí),熟練掌握?qǐng)A的有關(guān)性質(zhì)定理是解題的關(guān)鍵.
r_3
23.【答案】解:111將.1LW,「[,代入“,,-」,+3得[“,解得:|,
(1(x1+I。+J=U.4
、=4
拋物線的表達(dá)式為I/—..1,
84
把/I小代入得:,,,=6,
?.點(diǎn)E的坐標(biāo)為(-4.-6).
12)①設(shè)直線四的表達(dá)式為l",將〃,1.4,/1,小代入得:/,
第23頁,共26頁
解得:
b
」.直線8。的表達(dá)式為"-:r.1
把.II代入,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2.1 立在地球邊上放號(hào) 課件(共37張)
- 2024年全國愛耳日活動(dòng)方案(34篇)
- 2025年展望系列之七:2025利率大風(fēng)大浪大魚
- 影視后期制作行業(yè)市場全景評(píng)估及發(fā)展趨勢研究預(yù)測報(bào)告
- 2024-2030年中國無糖口香糖行業(yè)發(fā)展監(jiān)測及投資戰(zhàn)略規(guī)劃報(bào)告
- 2024年企業(yè)管理咨詢服務(wù)3篇
- 音響項(xiàng)目評(píng)估報(bào)告范文參考
- 番茄醬項(xiàng)目可行性分析報(bào)告
- 編制噴燈項(xiàng)目可行性研究報(bào)告編制說明
- 2020-2025年中國醫(yī)用高壓氧艙行業(yè)市場深度分析及投資戰(zhàn)略研究報(bào)告
- 變曲率雙向可調(diào)收縫式翻升模板施工工法
- 教你炒紅爐火版00纏論大概
- 消防管道施工合同
- 大學(xué)生計(jì)算與信息化素養(yǎng)-北京林業(yè)大學(xué)中國大學(xué)mooc課后章節(jié)答案期末考試題庫2023年
- 2023年中國社會(huì)科學(xué)院外國文學(xué)研究所專業(yè)技術(shù)人員招聘3人(共500題含答案解析)筆試歷年難、易錯(cuò)考點(diǎn)試題含答案附詳解
- 2023年廣東石油化工學(xué)院公開招聘部分新機(jī)制合同工20名高頻考點(diǎn)題庫(共500題含答案解析)模擬練習(xí)試卷
- 2023年國開大學(xué)期末考復(fù)習(xí)題-3987《Web開發(fā)基礎(chǔ)》
- 《駱駝祥子》1-24章每章練習(xí)題及答案
- 《伊利乳業(yè)集團(tuán)盈利能力研究》文獻(xiàn)綜述3000字
- 貨車安全隱患排查表
- 《戰(zhàn)略三環(huán) 規(guī)劃 解碼 執(zhí)行》讀書筆記思維導(dǎo)圖PPT模板下載
評(píng)論
0/150
提交評(píng)論