2024-2025學年陜西省西安市鐵一中4月高三調研測試數(shù)學試題含解析_第1頁
2024-2025學年陜西省西安市鐵一中4月高三調研測試數(shù)學試題含解析_第2頁
2024-2025學年陜西省西安市鐵一中4月高三調研測試數(shù)學試題含解析_第3頁
2024-2025學年陜西省西安市鐵一中4月高三調研測試數(shù)學試題含解析_第4頁
2024-2025學年陜西省西安市鐵一中4月高三調研測試數(shù)學試題含解析_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2024-2025學年陜西省西安市鐵一中4月高三調研測試數(shù)學試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設為等差數(shù)列的前項和,若,則A. B.C. D.2.命題:存在實數(shù),對任意實數(shù),使得恒成立;:,為奇函數(shù),則下列命題是真命題的是()A. B. C. D.3.某校團委對“學生性別與中學生追星是否有關”作了一次調查,利用列聯(lián)表,由計算得,參照下表:0.010.050.0250.0100.0050.0012.7063.8415.0246.6357.87910.828得到正確結論是()A.有99%以上的把握認為“學生性別與中學生追星無關”B.有99%以上的把握認為“學生性別與中學生追星有關”C.在犯錯誤的概率不超過0.5%的前提下,認為“學生性別與中學生追星無關”D.在犯錯誤的概率不超過0.5%的前提下,認為“學生性別與中學生追星有關”4.在中,,,,點滿足,則等于()A.10 B.9 C.8 D.75.函數(shù)(其中,,)的圖象如圖,則此函數(shù)表達式為()A. B.C. D.6.將函數(shù)的圖象沿軸向左平移個單位長度后,得到函數(shù)的圖象,則“”是“是偶函數(shù)”的()A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分也不必要條件7.已知函數(shù),,若對任意的,存在實數(shù)滿足,使得,則的最大值是()A.3 B.2 C.4 D.58.若平面向量,滿足,則的最大值為()A. B. C. D.9.已知為虛數(shù)單位,若復數(shù)滿足,則()A. B. C. D.10.如圖所示,矩形的對角線相交于點,為的中點,若,則等于().A. B. C. D.11.已知命題,,則是()A., B.,.C., D.,.12.若為純虛數(shù),則z=()A. B.6i C. D.20二、填空題:本題共4小題,每小題5分,共20分。13.已知函數(shù)是定義在上的奇函數(shù),其圖象關于直線對稱,當時,(其中是自然對數(shù)的底數(shù),若,則實數(shù)的值為_____.14.已知點是拋物線的準線上一點,F(xiàn)為拋物線的焦點,P為拋物線上的點,且,若雙曲線C中心在原點,F(xiàn)是它的一個焦點,且過P點,當m取最小值時,雙曲線C的離心率為______.15.已知函數(shù),若函數(shù)恰有4個零點,則實數(shù)的取值范圍是________.16.若為假,則實數(shù)的取值范圍為__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,四棱錐的底面中,為等邊三角形,是等腰三角形,且頂角,,平面平面,為中點.(1)求證:平面;(2)若,求二面角的余弦值大小.18.(12分)電視傳媒公司為了解某地區(qū)觀眾對某體育節(jié)目的收視情況,隨機抽取了100名觀眾進行調查,其中女性有55名,下面是根據(jù)調查結果繪制的觀眾日均收看該體育節(jié)目時間的頻率分布直方圖:將日均收看該體育節(jié)目時間不低于40分鐘的觀眾稱為“體育迷”.(1)根據(jù)已知條件完成下面的列聯(lián)表,并據(jù)此資料你是否認為“體育迷”與性別有關?非體育迷體育迷合計男女1055合計(2)將上述調查所得到的頻率視為概率.現(xiàn)在從該地區(qū)大量電視觀眾中,采用隨機抽樣方法每次抽取1名觀眾,抽取3次,記被抽取的3名觀眾中的“體育迷”人數(shù)為X.若每次抽取的結果是相互獨立的,求X的分布列,期望E(X)和方差D(X).附:.P(K2≥k)0.050.01k3.8416.63519.(12分)已知a,b∈R,設函數(shù)f(x)=(I)若b=0,求f(x)的單調區(qū)間:(II)當x∈[0,+∞)時,f(x)的最小值為0,求a+5b的最大值.注:20.(12分)某工廠生產某種電子產品,每件產品不合格的概率均為,現(xiàn)工廠為提高產品聲譽,要求在交付用戶前每件產品都通過合格檢驗,已知該工廠的檢驗儀器一次最多可檢驗件該產品,且每件產品檢驗合格與否相互獨立.若每件產品均檢驗一次,所需檢驗費用較多,該工廠提出以下檢驗方案:將產品每個一組進行分組檢驗,如果某一組產品檢驗合格,則說明該組內產品均合格,若檢驗不合格,則說明該組內有不合格產品,再對該組內每一件產品單獨進行檢驗,如此,每一組產品只需檢驗次或次.設該工廠生產件該產品,記每件產品的平均檢驗次數(shù)為.(1)求的分布列及其期望;(2)(i)試說明,當越小時,該方案越合理,即所需平均檢驗次數(shù)越少;(ii)當時,求使該方案最合理時的值及件該產品的平均檢驗次數(shù).21.(12分)如圖,在四棱錐中,平面,,為的中點.(1)求證:平面;(2)求二面角的余弦值.22.(10分)已知向量,函數(shù).(1)求函數(shù)的最小正周期及單調遞增區(qū)間;(2)在中,三內角的對邊分別為,已知函數(shù)的圖像經過點,成等差數(shù)列,且,求a的值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.C【解析】

根據(jù)等差數(shù)列的性質可得,即,所以,故選C.2.A【解析】

分別判斷命題和的真假性,然后根據(jù)含有邏輯聯(lián)結詞命題的真假性判斷出正確選項.【詳解】對于命題,由于,所以命題為真命題.對于命題,由于,由解得,且,所以是奇函數(shù),故為真命題.所以為真命題.、、都是假命題.故選:A本小題主要考查誘導公式,考查函數(shù)的奇偶性,考查含有邏輯聯(lián)結詞命題真假性的判斷,屬于基礎題.3.B【解析】

通過與表中的數(shù)據(jù)6.635的比較,可以得出正確的選項.【詳解】解:,可得有99%以上的把握認為“學生性別與中學生追星有關”,故選B.本題考查了獨立性檢驗的應用問題,屬于基礎題.4.D【解析】

利用已知條件,表示出向量,然后求解向量的數(shù)量積.【詳解】在中,,,,點滿足,可得則==本題考查了向量的數(shù)量積運算,關鍵是利用基向量表示所求向量.5.B【解析】

由圖象的頂點坐標求出,由周期求出,通過圖象經過點,求出,從而得出函數(shù)解析式.【詳解】解:由圖象知,,則,圖中的點應對應正弦曲線中的點,所以,解得,故函數(shù)表達式為.故選:B.本題主要考查三角函數(shù)圖象及性質,三角函數(shù)的解析式等基礎知識;考查考生的化歸與轉化思想,數(shù)形結合思想,屬于基礎題.6.A【解析】

求出函數(shù)的解析式,由函數(shù)為偶函數(shù)得出的表達式,然后利用充分條件和必要條件的定義判斷即可.【詳解】將函數(shù)的圖象沿軸向左平移個單位長度,得到的圖象對應函數(shù)的解析式為,若函數(shù)為偶函數(shù),則,解得,當時,.因此,“”是“是偶函數(shù)”的充分不必要條件.故選:A.本題考查充分不必要條件的判斷,同時也考查了利用圖象變換求三角函數(shù)解析式以及利用三角函數(shù)的奇偶性求參數(shù),考查運算求解能力與推理能力,屬于中等題.7.A【解析】

根據(jù)條件將問題轉化為,對于恒成立,然后構造函數(shù),然后求出的范圍,進一步得到的最大值.【詳解】,,對任意的,存在實數(shù)滿足,使得,易得,即恒成立,,對于恒成立,設,則,令,在恒成立,,故存在,使得,即,當時,,單調遞減;當時,,單調遞增.,將代入得:,,且,故選:A本題考查了利用導數(shù)研究函數(shù)的單調性,零點存在定理和不等式恒成立問題,考查了轉化思想,屬于難題.8.C【解析】

可根據(jù)題意把要求的向量重新組合成已知向量的表達,利用向量數(shù)量積的性質,化簡為三角函數(shù)最值.【詳解】由題意可得:,,,故選:C本題主要考查根據(jù)已知向量的模求未知向量的模的方法技巧,把要求的向量重新組合成已知向量的表達是本題的關鍵點.本題屬中檔題.9.A【解析】分析:題設中復數(shù)滿足的等式可以化為,利用復數(shù)的四則運算可以求出.詳解:由題設有,故,故選A.點睛:本題考查復數(shù)的四則運算和復數(shù)概念中的共軛復數(shù),屬于基礎題.10.A【解析】

由平面向量基本定理,化簡得,所以,即可求解,得到答案.【詳解】由平面向量基本定理,化簡,所以,即,故選A.本題主要考查了平面向量基本定理的應用,其中解答熟記平面向量的基本定理,化簡得到是解答的關鍵,著重考查了運算與求解能力,數(shù)基礎題.11.B【解析】

根據(jù)全稱命題的否定為特稱命題,得到結果.【詳解】根據(jù)全稱命題的否定為特稱命題,可得,本題正確選項:本題考查含量詞的命題的否定,屬于基礎題.12.C【解析】

根據(jù)復數(shù)的乘法運算以及純虛數(shù)的概念,可得結果.【詳解】∵為純虛數(shù),∴且得,此時故選:C.本題考查復數(shù)的概念與運算,屬基礎題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】

先推導出函數(shù)的周期為,可得出,代值計算,即可求出實數(shù)的值.【詳解】由于函數(shù)是定義在上的奇函數(shù),則,又該函數(shù)的圖象關于直線對稱,則,所以,,則,所以,函數(shù)是周期為的周期函數(shù),所以,解得.故答案為:.本題考查利用函數(shù)的對稱性計算函數(shù)值,解題的關鍵就是結合函數(shù)的奇偶性與對稱軸推導出函數(shù)的周期,考查推理能力與計算能力,屬于中等題.14.【解析】

由點坐標可確定拋物線方程,由此得到坐標和準線方程;過作準線的垂線,垂足為,根據(jù)拋物線定義可得,可知當直線與拋物線相切時,取得最小值;利用拋物線切線的求解方法可求得點坐標,根據(jù)雙曲線定義得到實軸長,結合焦距可求得所求的離心率.【詳解】是拋物線準線上的一點拋物線方程為,準線方程為過作準線的垂線,垂足為,則設直線的傾斜角為,則當取得最小值時,最小,此時直線與拋物線相切設直線的方程為,代入得:,解得:或雙曲線的實軸長為,焦距為雙曲線的離心率故答案為:本題考查雙曲線離心率的求解問題,涉及到拋物線定義和標準方程的應用、雙曲線定義的應用;關鍵是能夠確定當取得最小值時,直線與拋物線相切,進而根據(jù)拋物線切線方程的求解方法求得點坐標.15.【解析】

函數(shù)恰有4個零點,等價于函數(shù)與函數(shù)的圖象有四個不同的交點,畫出函數(shù)圖象,利用數(shù)形結合思想進行求解即可.【詳解】函數(shù)恰有4個零點,等價于函數(shù)與函數(shù)的圖象有四個不同的交點,畫出函數(shù)圖象如下圖所示:由圖象可知:實數(shù)的取值范圍是.故答案為:本題考查了已知函數(shù)零點個數(shù)求參數(shù)取值范圍問題,考查了數(shù)形結合思想和轉化思想.16.【解析】

由為假,可知為真,所以對任意實數(shù)恒成立,求出的最小值,令即可.【詳解】因為為假,則其否定為真,即為真,所以對任意實數(shù)恒成立,所以.又,當且僅當,即時,等號成立,所以.故答案為:.本題考查全稱命題與特稱命題間的關系的應用,利用參變分離是解決本題的關鍵,屬于中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1)見解析;(2)【解析】

(1)設中點為,連接、,首先通過條件得出,加,可得,進而可得平面,再加上平面,可得平面平面,則平面;(2)設中點為,連接、,可得平面,加上平面,則可如圖建立直角坐標系,求出平面的法向量和平面的法向量,利用向量法可得二面角的余弦值.【詳解】(1)證明:設中點為,連接、,為等邊三角形,,,,,,即,,,平面,平面,平面,為的中位線,,平面,平面,平面,、為平面內二相交直線,平面平面,平面DMN,平面;(2)設中點為,連接、為等邊三角形,是等腰三角形,且頂角,,、、共線,,,,,平面平面.平面平面平面,交線為,平面平面.設,則在中,由余弦定理,得:又,,,,,為中點,,建立直角坐標系(如圖),則,,,.,,設平面的法向量為,則,,取,則,,平面的法向量為,,二面角為銳角,二面角的余弦值大小為.本題考查面面平行證明線面平行,考查向量法求二面角的大小,考查學生計算能力和空間想象能力,是中檔題.18.(1)無關;(2),.【解析】

(1)由頻率分布直方圖可知,在抽取的100人中,“體育迷”有25人,從而可得列聯(lián)表如下:非體育迷體育迷合計男301545女451055合計7525100將22列聯(lián)表中的數(shù)據(jù)代入公式計算,得.因為3.030<3.841,所以我們沒有充分理由認為“體育迷”與性別有關.(2)由頻率分布直方圖知抽到“體育迷”的頻率為0.25,將頻率視為概率,即從觀眾中抽取一名“體育迷”的概率.由題意知X~B(3,),從而X的分布列為X0123PE(X)=np==.D(X)=np(1-p)=19.(I)詳見解析;(II)2【解析】

(I)求導得到f'(x)=ex-a,討論a≤0(II)f12=e-12a-5【詳解】(I)f(x)=ex-ax當a≤0時,f'(x)=e當a>0時,f'(x)=ex-a=0,x=lna當x∈lna,+∞時,綜上所述:a≤0時,fx在R上單調遞增;a>0時,fx在-∞,ln(II)f(x)=ex-ax-bf12=現(xiàn)在證明存在a,b,a+5b=2e取a=3e4,b=f'(x)=ex-a-故當x∈0,+∞上時,x2+1f'x在x∈0,+∞上單調遞增,故fx在0,12上單調遞減,在1綜上所述:a+5b的最大值為本題考查了函數(shù)單調性,函數(shù)的最值問題,意在考查學生的計算能力和綜合應用能力.20.(1)見解析,(2)(i)見解析(ii)時平均檢驗次數(shù)最少,約為594次.【解析】

(1)由題意可得,的可能取值為和,分別求出其概率即可求出分布列,進而可求出期望.(2)(i)由記,根據(jù)函數(shù)的單調性即可證出;記,當且取最小值時,該方案最合理,對進行賦值即可求解.【詳解】(1)由題,的可能取值為和,故的分布列為由記,因為,所以在上單調遞增,故越小,越小,即所需平均檢驗次數(shù)越少,該方案越合理記當且

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論