版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
FinanceandEconomicsDiscussionSeries
FederalReserveBoard,Washington,D.C.
ISSN1936-2854(Print)
ISSN2767-3898(Online)
InterconnectednessintheCorporateBondMarket
CelsoBrunetti,MatthewCarl,JacobGerszten,ChiaraScotti,ChaeheeShin
2024-066
Pleasecitethispaperas:
Brunetti,Celso,MatthewCarl,JacobGerszten,ChiaraScotti,andChaeheeShin(2024).“InterconnectednessintheCorporateBondMarket,”FinanceandEconomicsDiscus-sionSeries2024-066.Washington:BoardofGovernorsoftheFederalReserveSystem,
/10.17016/FEDS.2024.066
.
NOTE:StafworkingpapersintheFinanceandEconomicsDiscussionSeries(FEDS)arepreliminarymaterialscirculatedtostimulatediscussionandcriticalcomment.TheanalysisandconclusionssetfortharethoseoftheauthorsanddonotindicateconcurrencebyothermembersoftheresearchstafortheBoardofGovernors.ReferencesinpublicationstotheFinanceandEconomicsDiscussionSeries(otherthanacknowledgement)shouldbeclearedwiththeauthor(s)toprotectthetentativecharacterofthesepapers.
InterconnectednessintheCorporateBondMarket
CELSOBRUNETTIMATTHEWCARLJACOBGERSZTENCHIARASCOTTICHAEHEESHIN*
April2024
ABSTRACT
Doesinterconnectednessimprovemarketquality?Yes.
Wedevelopanalternativenetworkstructure,theassetsnetwork:assetsareconnectediftheyareheldbythesameinvestors.Weuseseverallargedatasetstobuildtheassetsnetworkforthecorporatebondmarket.Throughcarefulidenti?cationstrategiesbasedontheCOVID-19shockand“fallenangels,”we?ndthatinterconnectednessimprovesmarketqualityespeciallyduringstressperiods.Our?ndingscontributetothedebateontheroleofinterconnectednessin?nancialmarketsandshowthathighlyintercon-nectedcorporatebondsallowforrisksharingandrequirealowercompensationforrisk.
Keywords:?nancialstability,interconnectedness,institutionalinvestors,bigdataJELClassi?cationCodes:C13,C55,C58,G1
*CelsoBrunettiandChaeheeShinarewiththeFederalReserveBoard.ChiaraScottiisattheBankofItaly.MatthewCarlisaPh.D.studentattheUniversityofWisconsin-Madison.JacobGersztenisattheUniversityofMichiganLawSchool.Theauthorscanbereachedviaemailat
celso.brunetti@,
mcarl@,
gersztenj@,
chiara.scotti@bancaditalia.it,
and
chaehee.shin@
.WethankNathanFoley-FisherandseminarandconferenceparticipantsattheFederalReserveBoard,QatarCenterforGlobalBankingandFinance,King’sCollegeLondon,UniversityofWisconsin,2022IAAEconference,2022EEA-ESEMconference,and2022InternationalRiskManagementConferenceforhelpfulcomments.TheviewsexpressedinthisarticlearethoseoftheauthorsandnotnecessarilyoftheFederalReserveSystem.WethankGeneKangforexcellentresearchassistance.
1
1.Introduction
Thenotionof“interconnectedness”becamepopularwiththeGreatFinancialCrisis(GFC).Linkagesbetweenmarketsandinstitutionsaswellastherami?cationsof?nancialdistresstotherealeconomyputinterconnectednessinthelimelight.Infact,interconnectednessisnowpartoftheregulatoryframework
.1
Interconnectednessisasophisticatedconcept:toolittleinterconnectedness(sparsenetwork)mayimpedemarketfunctioning,andtoomuchinterconnectedness(densenetwork)mayexacerbatetheefectsofashock.Thegoalofthispaperistostudythelinkagesbetweeninterconnectednessandmarketquality.
Wechoosethecorporatebondmarketasoursandbox.Thismarkethasgrownsubstan-tiallyinrecentyearsandrepresentsanimportantsourceoffundingforthecorporatesec-tor
.2
Itisdominatedbyinstitutionalinvestors,whichallowsustomaplinkagesamongthelargestmarketplayerssuchasinsurancecompaniesandmutualfunds.Comparedtoequitymarkets,itsliquidityandmarketfunctioninginthecorporatebondmarkethavebeenundermuchscrutiny,leadingtoarapiddevelopmentoftheliterature(see,
Boyarchenkoetal.,
2021;
Dick-NielsenandRossi,
2019;
TrebbiandXiao,
2019
).Finally,thecorporatebondmarketex-periencedsigni?cantdisruptionsinMarch2020becauseoftheCOVID-19pandemic(see,
HaddadandMuir,
2021
).Hence,studyinghowinterconnectednessrelatestomarketqualityinbothtranquiltimesaswellasintimesofdistressisparticularlyinformative.
Inthispaper,wedevelopanalternativeandcomplementarynetworkstructure—theas-setsnetwork—whichmirrorsthetraditionalnotionofaportfoliosimilaritynetwork.Thisnewnetworkconstructisderivedattheassetlevelandisbasedontheideathatassetsareinterconnectediftheyareheldbythesameinvestors.
Themoretraditionalportfoliosimilaritynetworkcapturesspilloverefectsduetoover-lappingportfolios:two?nancialinstitutionswithsimilarportfoliosarelinkedbecauseashocktoone?nancialinstitutionhasrepercussionsontheother?nancialinstitutionthrough
1InterconnectednessisoneofthecriteriausedbytheFinancialStabilityBoardtodesignateGlobalSystemi-callyImportantBanks(G-SIBs).IntheU.S.,interconnectednessisalsousedbytheFinancialStabilityOversightCouncil(FSOC)todesignatenonbankSystemicallyImportantFinancialInstitutions(SIFIs).
2Ithasreachedover$15trillionasofQ42023–seeFinancialAccountoftheU.S.
2
theircommonassetholdings(see,
Cacciolietal.,
2015
).Incontrast,ournetworkconstructcaptureslinkagesamongassetsgiventhattheseassetsareheldbyseveral?nancialinsti-tutions.Theemphasisofournetworkisontheassetsasopposedto?nancialinstitutions.Studyingthenetworkofassetsisfundamentallyimportantforseveralreasons.First,itallowsustoinvestigatehowinterconnectednessof?nancialassetsislinkedtoasset-speci?ccharac-teristicssuchasliquidityandvolatilityand,moregenerally,tomarketquality.Second,thereisagrowingliteratureoninstitutionalassetpricing;ournetworkstructureprovidesanotherlensthroughwhichtostudyhowassetsheldbyseveralinstitutions—ourassetsnetwork—impactthepricingprocess.Thisisparticularlyrelevantinourframeworkwhichanalyzescorporatebondholdingsbylargeinvestors.Third,assetsinterconnectednessprovidesanal-ternativeanduniqueperspectiveonhow?nancialassetsarelinkedincontrasttocorrelationanalysis.
DieboldandY?lmaz
(2014)and
Billioetal.
(2012)constructassetsnetworksbased
onthevariance-covariancematrixofreturns.Ournetworkbuildsedgesbasedonwhetherassetsareheldbycommoninvestors,andis,therefore,potentiallymoreaccuratebecauseitdoesnotrequireestimatinganymomentofthereturnsdistribution(see,
Adamicetal.,
2017
).Finally,thetraditionaloverlappingportfolionetworkputsemphasison?nancialinstitutionsandismoresuitedforanentity-basedsupervisoryapproach,whileourassetsnetworkmayprovideusefulforanactivity-basedapproachforregulation
.3
We?rstfocusontheinterconnectednessofthecorporatebondmarket,leveragingtherichinformationavailableintheThomsonReuterseMAXXdatabase,whichcontainsdataoncorporatebondholdingsattheinstitutionalinvestor-bond-year-quarterlevel.Webuildanetworkofcorporatebondsandmeasuretheirinterconnectednessusingcosinesimilarity.Asexpected,we?ndthatbondsissuedbylarge?rmsarepartoftheportfolioofmanyinvestorsandformthecoreofournetworks,whilesmallerbondissuerscomprisetheperiphery—implyingthatonlyafewinvestorsholdthesebonds.WealsomatchtheinterconnectednessmeasuresofcorporatebondswiththeTRACEdatabasethathassecurity-leveldataoncor-poratebondtradingvolume,liquidity,andvolatility.
Thenewinterconnectednessconstructandthecomplexityofourdataallowustousearichpanelregressionanalysistoinvestigatethelinkbetweeninterconnectednessandspread,
3See,
Borioetal.
(2022)
.
3
liquidity,andvolatilityofcorporatebonds.We?ndthatthehighertheinterconnectednessofanasset—meaningthattheassetiscommontomanyinvestors’portfolios—theloweritsspreadandthehigheritsliquidity.Thisresulthighlightsthat,asexpected,corporatebondsthatareheldacrossseveralportfoliosrequirealowercompensationforriskandaremoreliq-uid.Thisrelationis,however,afectedbymarketconditions.Weexploretheheterogeneousefectsofinterconnectednessthroughouttheconditionaldistributionoftheresponsevari-ables(spreads,liquidity,andvolatility),whilecontrollingforbondcharacteristics,throughapaneldataquantileregression.We?ndthattherelationwehavejusthighlightedisstrongerwhena?nancialassetisunderstress,i.e.thespreadandliquidityofanassetareintheuppertailoftheirconditionaldistributions.Altogether,higherinterconnectednessisassociatedwithlowerspreadsandvolatility,andhigherliquidityinnormalmarketconditions(meanefect)andtheseresultsarestrongerwhenmarketsaredistressed(asshownbyquantileregressions)
.4
Whiletheanalysisthusfardocumentslinkagesbetweeninterconnectednessandmarketqualitymeasures,weareinterestedindeterminingcausality.Thatis,weareinterestedinunderstandingwhetherhigherinterconnectednessreducesspreads,increasesliquidity,andtamesvolatility.Thisisafundamentalissue.Ontheonehand,
AllenandGale
(2000)develops
amodelinwhichcompletenetworks(highinterconnectedness)helpmitigatetheefectsofashockthroughrisksharingand,therefore,arebene?cialto?nancialstability.Ontheother,
Acemogluetal.
(2015)showsthatiftheshockistoolarge,highinterconnectedness
propagatestheshockleadingtoamorefragile?nancialsystem.TheCOVID-19outbreakrepresentsalargeexogenousshock.Following
Hassanetal.
(2023),weseparatebondsissued
by?rmsafectedbytheshockfrombondsissuedby?rmsnotafectedbythepandemic.We?ndthattheefectsoftheshockaremitigatedwhenbondsissuedby?rmsexposedtothepandemicarehighlyinterconnectedtobondsissuedby?rmsnotexposedtotheshock—spreaddecreasesandliquidityincreases.Ourresultsindicatethatinterconnectednessenablesrisksharingand,onnet,isbene?cialtothecorporatebondmarket.
4Ourresultsarerobusttodiferentmodelspeci?cationsandtoseveralcontrolsthatareknowntoafectcorporatebondpricingdynamics,suchasinvestorconcentrationandthenumberofuniqueinvestors.
4
Tocorroboratetheseresultswealsolookat“fallenangels:”bondsdowngradedfrominvestmentgradetohighyield.WeselectbondswithsimilarcharacteristicsandacreditratingofBBB-(thelowestcreditratingintheinvestmentgradecategory).Onlysomeofthesebondsaredowngradedinthenextperiod.Sincethebondsweconsiderinthisexercisehavesimilarcharacteristics,thebifurcationbetweenfallenangelsandnon-fallenangelsisplausiblyexogenouswithintheshorttimewindowweareconsidering—theanalysisonlyconsiderstwoperiods,beforeandafterthedowngrade
.5
Ourresultsshowthataonestandarddeviationincreaseininterconnectednessofafallenangelsubstantiallydecreasesspreadsandincreasesliquidity.
Overall,our?ndingsestablishthathigherlevelsofinterconnectednessarepositivelylinkedtomarketquality.Moreover,thelinkbetweeninterconnectednessandmarketqual-itychangesovertimewhenmarketconditionsalsochange.Importantly,thislinkisstrongerduringperiodsofmarketdistress.Finally,interconnectednessisparticularlyimportantwhenlargenegativeshockshit?nancialmarkets(COVID-19)andwhenmajorcorporateeventsoccur(fallenangels).Inthesecrisissituations,interconnectedness,throughrisksharing,promotesmarketfunctioning.
Ourpapercontributestoseveralstrandsoftheliterature.First,wecontributetothein-terconnectednessliterature.Networksin?nancehavebeenmappedusingthreemaintech-niques:(i)correlationnetworks,inwhichedgesbetween?nancialinstitutionsarebasedonestimatesofthevariance-covariancematrixofpubliclyavailabledata,suchasassetreturns(see,
Billioetal.,
2012;
DieboldandY?lmaz,
2014
);(ii)physicalnetworks,inwhichedgescapturecontractualagreementsamongcounterparties,suchasinterbanktransactions(see,
Brunettietal.,
2019
);and(iii)commonholdingsnetworks,inwhichinvestorsareconnectediftheyholdsimilarportfolios(see,
Cacciolietal.,
2015;
Greenwoodetal.,
2015;
Cetorelli
etal.,
2023
).Inthispaper,weproposeanewapproachofmapping?nancialnetworkswhichmirrorsthenotionofoverlappingportfolios,andwhichwecalltheassetsnetworkorin-vestorsimilaritynetwork.Similartoourapproach,
AntónandPolk
(2014)connectstocks
commonlyheldbymutualfunds.Theirgoalistostudyhowcommonownershipafectsthe
5K?nzig
(2021
)proposesanidenti?cationstrategybasedonpreciselyselectingthetimeframeofspeci?cevents,whichforusisthedowngrade.
5
cross-sectionalcorrelationintherateofreturns.Ourfocusisinsteadonthenetworkstruc-tureanditsproperties.Weareinterestedinfullyunderstandingtheinterconnectednessofthenewnetworkandhowitevolvesbothovertimeandindiferentmarketconditions.Infact,ourgoalistoprovideanewandalternativemappingfor?nancialnetworks.
Second,weconnecttotheemergingliteratureoninstitutionaldemand-basedassetpric-ing.Onestrandofthisliteraturestudiestheroleofintermediariesinassetpricing,suchasin
HaddadandMuir
(2021)and
Heetal.
(2017)
.Anotherstrandoftheliteratureexaminesthe
roleofinstitutionalholdersinassetpricingand,inparticular,thecompositionofinstitutionalinvestorsasapotentialstatevariableinthecorporatebondmarket.Forinstance,
Ben-David
etal.
(2021)showhowtherisingconcentrationofholdingsbyinstitutionalinvestorsafects
stockvolatilityandpriceine般ciency,
LiandYu
(2022)?ndthatinvestorconcentrationis
relatedtobondliquidity,and
LiandYu
(2021)and
Bretscheretal.
(2022)analyzehowthe
compositionofinstitutionalinvestorsrelatestocorporatebondmarketqualities.
Corelletal.
(2023)alsolookatEuropeancorporatebondsto?ndhowconvenienceyieldscouldvaryby
diferingdemandsfromvariousinstitutionalinvestors.Overall,thisliteraturetracksbacktothedemand-basedassetpricingapproachof
KoijenandYogo
(2019)
.Wecontributetothisemergingareabyshowingthattheinterconnectednessofanassetplaysanimportantroleincorporatebondmarkets.
Finally,werelatetotherecent?nancialstabilityliteraturethattriestodeterminewhetherhighinterconnectednessisavulnerabilityoravirtueofthe?nancialsystem.Con且ictingviewsexistintheliterature,from
AllenandGale
(2000),who?ndinterconnectednesstobe
avirtue,tomorerecentempiricalworks?ndingevidencefor?nanciallinkagesandoverlap-pingholdingsofassetstobeacontagionor?resalesmechanism(
Allenetal.,
2012;
Duarte
andEisenbach,
2021;
Falatoetal.,
2021;
Greenwoodetal.,
2015
,amongothers).Somewhereinbetweenthesetwocon且ictingviews,manyrecentworksstudythenon-monotonictradeofbetweencontagionandrisksharing,socialoptimalityofinterconnectedness,andconditionsforwhichonetypeofnetworkisbetterthananother(
Acemogluetal.,
2015;
Cabralesetal.,
2017;
Elliottetal.,
2014,
2021;
Gofman,
2017
,amongothers).Ourresultsprovideevidenceofacausalefect:interconnectednessimprovesmarketquality.
6
Thepaperisorganizedasfollows.Section
2
describesournovelnetworkapproach,illus-tratingthebuildingblocksoftheasset-basednetworkofinvestorsimilarity.Section
3
sum-marizesthewealthofdatathatweuseintheempiricalinvestigation.Section
4
describestheresultingmeasuresthatweuseintheanalysis.Section
5
explainstheregressionframeworkanditsresults,includingthoseforthequantileregressions.Section
6
examinesthecausallinkagesbetweeninterconnectednessandmarketmarketquality.Section
7
concludes.
2.NetworkApproach
Thereareseveralwaystoconstructnetworksin?nance.Thethreemainapproachescanbebrie且ydescribedas:(i)correlationnetworks,whicharebasedonestimatesofthevariance-covariancematrixofpubliclyavailabledatasuchasassetreturns(see,
Billioetal.,
2012;
DieboldandY?lmaz,
2014
);
6
(ii)physicalnetworks,whichre且ectcontractualagree-mentsbetweencounterpartiesandcaptureimportantaspectsofrisksuchasconterpartyrisk(see,
Brunettietal.,
2019
);and(iii)overlappingportfoliosnetworks,whichconnectinvestorsthroughtheircommonholdings(see,
Cacciolietal.,
2015;
Greenwoodetal.,
2015
).Inthispaper,weproposeanewapproachofmapping?nancialnetworkswhichparallelsthenotionofoverlappingportfolios,butthatdrawsedgesbetweenassetsratherthaninstitutions.
Thestartingpointisabipartitenetworkwithtwosetsofnodes:?nancialinstitutionsorinvestors(?s)and?nancialassets(?s).AsshowninFigure
1a,
ifa?nancialinstitutionholdsanassetinitsportfolio,thereisanedgebetweenthatassetandthat?nancialinstitution.Forexample,becauseinvestor?1holdsasset?1,thereisanedgebetween?1and?1.Thetraditionalnetworkofoverlappingportfolios,orcommonassetholdings,impliesthatsince?1isheldalsoby?2and?3,allthreeinvestorsareinterconnectedthroughtheircommonholdingsof?1.Similarly,because?2isheldby?2and?3,thereisalinkbetweenthesetwoinvestors(see
Baruccaetal.,
2021
).
Wederiveanalternativenovelnetworkstructureattheassetlevel,basedontheideathattwoassets,?1and?2,areinterconnectediftheyareheldbythesameinvestor.InFigure
1b,
6Arelatedapproachadoptsquantileregressionanalyses,see
Andoetal.
(2021
)and
H?rdleetal.
(2016)
.
7
?1and?3areinterconnectedbecausebothassetsareheldintheportfolioofinvestor?3.Similarly,?1and?2arealsointerconnectedsincetheyareheldbyinvestors?2and?3.Infact,?1and?2areinterconnectedtoahigherextentthan?1and?3becausetheseassetssharetwooverlappinginvestors.
Thisasset-basednetworkallowsustoexamineimportantefectsofinterconnectedness
across?nancialassets.InFigure
1b,
interconnectednessbetween?1and?3capturesand
quanti?esthefollowingmechanism.Supposeashockhits?1(e.g.,downgradetojunk)andreducesitsmarketvalue.Thisshockwillthennegativelyimpacttheperformanceoftheportfoliosofallinvestors,?1,?2,and?3sincetheyallhold?1.Investorswillbeforcedtore-balancetheirportfoliostoraisemorecapitalorliquidity(e.g.,inthecaseofmutualfunds,tomeetredemptions)andthere-balancingwilltriggerachangeinholdingsofboth?2and?3becausethere-balancinginvestorsalsohold?2(?2and?3)and?3(?1).
InFigure
1b,
ourmeasureofinterconnectednessbetween?1and?2isstrongerthanthatbetween?1and?3becausetwoinvestors(?2and?3)holdtheseassetsasopposedtojustoneinvestorfor?1and?3.Thisnetworkfeatureimpliesthatthesameinitialshockon?1(and/or?2and/or?3)willlikelyspilloverto?2toagreaterextentthanitwillto?3,sinceboth?2and?3willre-balancetheirportfoliosasopposedtojustoneinvestor(?3)re-balancinginthecaseof?1and?3.
Noticethatthenotionofoverlappinginvestorsforabondis,however,diferentthanthesheernumberofinvestorsholdingthebond.InFigure
1b,
?1isheldbythehighestnumberofinvestors(?1,?2,and?3),followedby?2,whichisheldbytwoinvestors(?2and?3).However,?1hasthesamenumberofoverlappinginvestors—anddegreeofinterconnectedness—as?2.Thisarisesbecauseoutofthethreeinvestorsholding?1,oneinvestor(?1)doesnotinvestinanyotherassets,therebyeliminatingitspropensityto“overlap”withotherinvestors.Ingeneral,aswehaveillustratedinthisexample,itispossiblethatassetswithfewerinvestorsaremoreinterconnected(havemoreoverlappinginvestors)thanotherassetswithmorein-vestors.
Inwhatfollows,wedescribeournotionoftheasset-basednetworkinmoredetailandhighlightthenetworkmeasureusedintheanalysis.
8
2.1.NetworkofFinancialAssetsandInstitutions
Westartbydenotingthenetworkof?nancialassetsand?nancialinstitutionsas?=(?,?,E),where?=?1,?2,...,??isthesetofnodescorrespondingto?nancialassets(corpo-ratebondsonly,inourcase),?=?1,?2,...,??representsthesetof?nancialinstitutions,andEisa?×?matrixrepresentingtheamount,??,?,heldby??in??:
?1
?2
···
??
?1
?11
?12
···
?1?
1
??
(1)
??
??1
??2
···
???
?
??
1
??
2
??
···
??
?
Summingacrosscolumnsgivesthetotalamountofsecurity?heldbythesystem(in-vestorsinourdata),???,knownasthestrengthofthenetwork:
???=??,?,(2)
andsummingacrossrowsproducesthetotalamountinvestedbyinvestor?inallassets,?.
Dependingonthescopeoftheanalysis,??,?couldbenormalizedbythetotalissuedamountofasset?outstandingorby???.
O
Wede?neasEthecorrespondingadjacencymatrix
9
?1
?2
···
??
?1
O
?11
O
?12
···
O
?1?
??
1
(3)
??
??1
??2
···
???
??
?
??
1
??
2
···
??
?
O
wherethegenericelement??,?=1if??,?>?andzerootherwise.Theparameter?denotesathresholdandintraditionalnetworkanalysis?=0
.7
Similartobefore,thesumacrosscolumnsgivesthetotalnumberof?nancialinstitutions
holdingsecurity?,?,knownasnetworkdegree,
???,(4)
andthesumacrossrowsgeneratesthetotalnumberofassetsinvestor?hasinvestedin,?.
2.2.Asset-basedNetworkofInvestorSimilarity
Thenetworkwefocusoninthispaperisderivedfromthenetworkof?nancialassetsand?nancialinstitutions?describedintheprevioussectionandcapturesinterconnectednessamongassetsbasedonwhethertheassetsbelongtothesameportfolios.
Wede?nethenetworkof?nancialassetsas??=(?,P?),where?={?1,?2,...,??}representsthesetofassets,andP?isthematrixmeasuringsimilaritiesofassetsintermsofinvestors.Severaldistancemeasuresexisttoquantifysimilarities(see,
Newman,
2010;
Delpinietal.,
2013;
Baruccaetal.,
2021;
Brunettietal.,
2023)
.Inthispaper,weusethenotion
7Giventherichnessofourdata,wecouldalsoadopt?>0toselectthestrongestlinksamongnodes.
10
ofcosinesimilarity(ordistance)tomeasureinterconnectednessbetweenanypairofassets?
and?∈{1,...,?}:
?OO
Ⅱ??ⅡⅡ??Ⅱ
?(5)
O
whereⅡ??Ⅱisthenormofthevectorofinvestorsholdingasset?(see,Getmanskyetal.,2016;
Baruccaetal.,
2021
)and?,thecosinesimilarity,capturesthedistancebetweentwonon-
zerovectorsofaninner-productspace
.8
Finally,foreachasset?,weaggregateitspair-wiseinterconnectednesswithallotherassets?in?where?≠?and?,?∈{1,...,?}toproduceanasset-levelmeasureofintercon-nectednessinthisnetwork:
Wenormalizeasset-levelinterconnectednessby(?一1)*?,where?isthetotalnumberofassetsand?isthetotalnumberofinvestors,toaccountforthefactthatthenumberof?nancialassetsandinstitutionschangeovertimeinourdata.
8Therecanbealternativede?nitionsofsimilarity.Oneoptionistousesimplecountsofthenumberof
OO
portfoliostwoassetsarepartofandhenceusethefollowingde?nitionfor??:??=?(?)T.Anotheroptionistocomputethesemeasuresusingtheparamountsheldbyinvestors?asafractionoftheamountoutstandingofassets?,therebycapturinganintensivemarginmeasureofinvestorsimilarity.Inthiscase,wedivideeachelement??,?from(
3
)by???????????????????????,andusethisnewadjacencymatrixdirectlytocomputesimilaritymeasures??.Wetestedtheaforementionedtwoalternativemeasuresandfoundthattheresultsweresimilartothoseusingcosinesimilarityontheextensivemarginofinvestors’holdings.Yetanothermeasure
ofsimilaritycanbederivedfromthenotionofEuclideandistance,namely,???一?,?
However,wedidnotusethismeasureinouranalysisduetothesparsityofthenetworkinoursample.
11
2.3.AnExample:HowShocksPropagateThroughanAssetsNetwork
Anexamplemayhelptoexplaintheseconcepts.Considerthenetworkbelowconsistingofonlythreeassetsandthreeinvestors,wheretheentriesintheleftmatrixrepresentthe
dollaramountofeachassetheldbyeachinvestor.Thisnetworkcanberepresentedbythe。
adjacencymatrixE???????ontheright:
?3001?3001
。
Thetop-leftcellofthematrixE???????isequalto1becauseinvestor?1hasasset?1inherportfolio,while0in????(2,1)indicatesthatinvestor?1hasnotinvestedinasset?2.Usingequation(
5
),wecanthencomputethecosinesimilaritymetricforanytwopairsofassets:
?30.580.71-
Accordingly,followingequation(
6
),thevectorofinterconnectednessmeasurescorrespond-
ingtoPis:
Themagnitudesofasset-levelinterconnectednessshownin??indicatethat?2,
hasthehighestlevelofinterconnectednessinthenetwork,followedby?1and?3,whichhasthelowestinterconnectedness.Wehighlightthatthattheinterconnectednessmeasurecapturesanon-linearaspectofthenetworkbeyondthesimplenumberof?rmsinvestingin
12
eachasset,i.e.,theassets’degreeinthebipartitegraph.Forexample,although?1isheldbyallinvestorsand?2isonlyheldbytwoinvestors,?2isthemostcentralnodeinthisnetwork.?2’scentralitygivesrisetoahigherasset-levelinterconnectednessrelativeto?1.
Whichassetexperiencestheinitialshockplaysafundamentalrole
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度購車環(huán)保補(bǔ)貼申請合同3篇
- 二零二五版電子商務(wù)支付平臺(tái)跨境支付合規(guī)審查合同3篇
- 二零二五年貨車駕駛員駕駛技能考核及評價(jià)合同3篇
- 二零二五版房產(chǎn)抵押合同變更及合同履行監(jiān)督協(xié)議6篇
- 二零二五版酒店物業(yè)管理安保保潔服務(wù)全面承包合同3篇
- 二零二五版高空作業(yè)安全協(xié)議書-高空雨棚安全檢測與維護(hù)合同3篇
- 二零二五年度空壓機(jī)租賃與能源管理優(yōu)化合同3篇
- 二零二五版人工智能企業(yè)股權(quán)整合與行業(yè)應(yīng)用開發(fā)合同3篇
- 二零二五年度會(huì)議禮品定制及贈(zèng)送服務(wù)合同范本3篇
- 二零二五年度特種防盜門制造與銷售承攬合同范本3篇
- 2020小升初復(fù)習(xí)-小升初英語總復(fù)習(xí)題型專題訓(xùn)練-完形填空15篇
- 2023年浙江省公務(wù)員考試面試真題解析
- GB/T 5796.3-2022梯形螺紋第3部分:基本尺寸
- GB/T 16407-2006聲學(xué)醫(yī)用體外壓力脈沖碎石機(jī)的聲場特性和測量
- 簡潔藍(lán)色科技商業(yè)PPT模板
- 錢素云先進(jìn)事跡學(xué)習(xí)心得體會(huì)
- 道路客運(yùn)車輛安全檢查表
- 宋曉峰辣目洋子小品《來啦老妹兒》劇本臺(tái)詞手稿
- 附錄C(資料性)消防安全評估記錄表示例
- 噪音檢測記錄表
- 推薦系統(tǒng)之協(xié)同過濾算法
評論
0/150
提交評論