版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2021-2022學(xué)年浙江省杭州地區(qū)達(dá)標(biāo)名校初中數(shù)學(xué)畢業(yè)考試模擬沖刺卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(共10小題,每小題3分,共30分)1.為了紀(jì)念物理學(xué)家費米,物理學(xué)界以費米(飛米)作為長度單位.已知1飛米等于0.000000000000001米,把0.000000000000001這個數(shù)用科學(xué)記數(shù)法表示為()A.1×10﹣15 B.0.1×10﹣14 C.0.01×10﹣13 D.0.01×10﹣122.如圖1、2、3分別表示甲、乙、丙三人由A地到B地的路線圖,已知甲的路線為:A→C→B;乙的路線為:A→D→E→F→B,其中E為AB的中點;丙的路線為:A→I→J→K→B,其中J在AB上,且AJ>JB.若符號[→]表示[直線前進(jìn)],則根據(jù)圖1、圖2、圖3的數(shù)據(jù),判斷三人行進(jìn)路線長度的大小關(guān)系為()A.甲=乙=丙 B.甲<乙<丙 C.乙<丙<甲 D.丙<乙<甲3.如圖,在中,,以邊的中點為圓心,作半圓與相切,點分別是邊和半圓上的動點,連接,則長的最大值與最小值的和是()A. B. C. D.4.如圖,AB為⊙O直徑,已知為∠DCB=20°,則∠DBA為()A.50° B.20° C.60° D.70°5.如圖,下列四個圖形是由已知的四個立體圖形展開得到的,則對應(yīng)的標(biāo)號是A. B. C. D.6.在平面直角坐標(biāo)系中,點(2,3)所在的象限是(
)A.第一象限
B.第二象限
C.第三象限
D.第四象限7.在如圖所示的正方形網(wǎng)格中,網(wǎng)格線的交點稱為格點,已知A、B是兩格點,如果C也是圖中的格點,且使得△ABC為等腰直角三角形,則這樣的點C有()A.6個 B.7個 C.8個 D.9個8.將一把直尺與一塊直角三角板如圖放置,如果,那么的度數(shù)為().A. B. C. D.9.如圖,半徑為的中,弦,所對的圓心角分別是,,若,,則弦的長等于()A. B. C. D.10.如圖,把一張矩形紙片ABCD沿EF折疊后,點A落在CD邊上的點A′處,點B落在點B′處,若∠2=40°,則圖中∠1的度數(shù)為()A.115° B.120° C.130° D.140°二、填空題(本大題共6個小題,每小題3分,共18分)11.在△ABC中,AB=13cm,AC=10cm,BC邊上的高為11cm,則△ABC的面積為______cm1.12.如圖,已知點A是一次函數(shù)y=x(x≥0)圖象上一點,過點A作x軸的垂線l,B是l上一點(B在A上方),在AB的右側(cè)以AB為斜邊作等腰直角三角形ABC,反比例函數(shù)y=(x>0)的圖象過點B,C,若△OAB的面積為5,則△ABC的面積是________.13.如圖,△ABC中,D、E分別在AB、AC上,DE∥BC,AD:AB=1:3,則△ADE與△ABC的面積之比為______.14.如圖,邊長一定的正方形ABCD,Q是CD上一動點,AQ交BD于點M,過M作MN⊥AQ交BC于N點,作NP⊥BD于點P,連接NQ,下列結(jié)論:①AM=MN;②MP=BD;③BN+DQ=NQ;④為定值。其中一定成立的是_______.15.如圖,一艘海輪位于燈塔P的北偏東方向60°,距離燈塔為4海里的點A處,如果海輪沿正南方向航行到燈塔的正東位置,海輪航行的距離AB長_____海里.16.若點A(3,﹣4)、B(﹣2,m)在同一個反比例函數(shù)的圖象上,則m的值為.三、解答題(共8題,共72分)17.(8分)解方程組:18.(8分)如圖,在直角坐標(biāo)系xOy中,直線與雙曲線相交于A(-1,a)、B兩點,BC⊥x軸,垂足為C,△AOC的面積是1.求m、n的值;求直線AC的解析式.19.(8分)如圖,AM是△ABC的中線,D是線段AM上一點(不與點A重合).DE∥AB交AC于點F,CE∥AM,連結(jié)AE.(1)如圖1,當(dāng)點D與M重合時,求證:四邊形ABDE是平行四邊形;(2)如圖2,當(dāng)點D不與M重合時,(1)中的結(jié)論還成立嗎?請說明理由.(3)如圖3,延長BD交AC于點H,若BH⊥AC,且BH=AM.①求∠CAM的度數(shù);②當(dāng)FH=,DM=4時,求DH的長.20.(8分)拋物線與x軸交于A,B兩點(點A在點B的左邊),與y軸正半軸交于點C.(1)如圖1,若A(-1,0),B(3,0),①求拋物線的解析式;②P為拋物線上一點,連接AC,PC,若∠PCO=3∠ACO,求點P的橫坐標(biāo);(2)如圖2,D為x軸下方拋物線上一點,連DA,DB,若∠BDA+2∠BAD=90°,求點D的縱坐標(biāo).21.(8分)當(dāng)x取哪些整數(shù)值時,不等式與4﹣7x<﹣3都成立?22.(10分)(1)計算:|﹣3|+(+π)0﹣(﹣)﹣2﹣2cos60°;(2)先化簡,再求值:()+,其中a=﹣2+.23.(12分)徐州至北京的高鐵里程約為700km,甲、乙兩人從徐州出發(fā),分別乘坐“徐州號”高鐵A與“復(fù)興號”高鐵B前往北京.已知A車的平均速度比B車的平均速度慢80km/h,A車的行駛時間比B車的行駛時間多40%,兩車的行駛時間分別為多少?24.如圖,AD是等腰△ABC底邊BC上的高,點O是AC中點,延長DO到E,使AE∥BC,連接AE.求證:四邊形ADCE是矩形;①若AB=17,BC=16,則四邊形ADCE的面積=.②若AB=10,則BC=時,四邊形ADCE是正方形.
參考答案一、選擇題(共10小題,每小題3分,共30分)1、A【解析】
根據(jù)科學(xué)記數(shù)法的表示方法解答.【詳解】解:把這個數(shù)用科學(xué)記數(shù)法表示為.故選:.【點睛】此題重點考查學(xué)生對科學(xué)記數(shù)法的應(yīng)用,熟練掌握小于0的數(shù)用科學(xué)記數(shù)法表示法是解題的關(guān)鍵.2、A【解析】分析:由角的度數(shù)可以知道2、3中的兩個三角形的對應(yīng)邊都是平行的,所以圖2,圖3中的三角形都和圖1中的三角形相似.而且圖2三角形全等,圖3三角形相似.詳解:根據(jù)以上分析:所以圖2可得AE=BE,AD=EF,DE=BE.∵AE=BE=AB,∴AD=EF=AC,DE=BE=BC,∴甲=乙.圖3與圖1中,三個三角形相似,所以====.∵AJ+BJ=AB,∴AI+JK=AC,IJ+BK=BC,∴甲=丙.∴甲=乙=丙.故選A.點睛:本題考查了的知識點是平行四邊形的性質(zhì),解答本題的關(guān)鍵是利用相似三角形的平移,求得線段的關(guān)系.3、C【解析】
如圖,設(shè)⊙O與AC相切于點E,連接OE,作OP1⊥BC垂足為P1交⊙O于Q1,此時垂線段OP1最短,P1Q1最小值為OP1-OQ1,求出OP1,如圖當(dāng)Q2在AB邊上時,P2與B重合時,P2Q2最大值=5+3=8,由此不難解決問題.【詳解】解:如圖,設(shè)⊙O與AC相切于點E,連接OE,作OP1⊥BC垂足為P1交⊙O于Q1,此時垂線段OP1最短,P1Q1最小值為OP1-OQ1,∵AB=10,AC=8,BC=6,∴AB2=AC2+BC2,∴∠C=10°,∵∠OP1B=10°,∴OP1∥AC∵AO=OB,\∴P1C=P1B,∴OP1=AC=4,∴P1Q1最小值為OP1-OQ1=1,如圖,當(dāng)Q2在AB邊上時,P2與B重合時,P2Q2經(jīng)過圓心,經(jīng)過圓心的弦最長,P2Q2最大值=5+3=8,∴PQ長的最大值與最小值的和是1.故選:C.【點睛】本題考查切線的性質(zhì)、三角形中位線定理等知識,解題的關(guān)鍵是正確找到點PQ取得最大值、最小值時的位置,屬于中考??碱}型.4、D【解析】題解析:∵AB為⊙O直徑,∴∠ACB=90°,∴∠ACD=90°-∠DCB=90°-20°=70°,∴∠DBA=∠ACD=70°.故選D.【點睛】本題考查了圓周角定理:在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半.推論:半圓(或直徑)所對的圓周角是直角,90°的圓周角所對的弦是直徑.5、B【解析】
根據(jù)常見幾何體的展開圖即可得.【詳解】由展開圖可知第一個圖形是②正方體的展開圖,第2個圖形是①圓柱體的展開圖,第3個圖形是③三棱柱的展開圖,第4個圖形是④四棱錐的展開圖,故選B【點睛】本題考查的是幾何體,熟練掌握幾何體的展開面是解題的關(guān)鍵.6、A【解析】
根據(jù)點所在象限的點的橫縱坐標(biāo)的符號特點,就可得出已知點所在的象限.【詳解】解:點(2,3)所在的象限是第一象限.故答案為:A【點睛】考核知識點:點的坐標(biāo)與象限的關(guān)系.7、A【解析】
根據(jù)題意,結(jié)合圖形,分兩種情況討論:①AB為等腰△ABC底邊;②AB為等腰△ABC其中的一條腰.【詳解】如圖:分情況討論:①AB為等腰直角△ABC底邊時,符合條件的C點有2個;②AB為等腰直角△ABC其中的一條腰時,符合條件的C點有4個.故選:C.【點睛】本題考查了等腰三角形的判定;解答本題關(guān)鍵是根據(jù)題意,畫出符合實際條件的圖形,再利用數(shù)學(xué)知識來求解.?dāng)?shù)形結(jié)合的思想是數(shù)學(xué)解題中很重要的解題思想.8、D【解析】
根據(jù)三角形的一個外角等于與它不相鄰的兩個內(nèi)角的和求出∠1,再根據(jù)兩直線平行,同位角相等可得∠2=∠1.【詳解】如圖,由三角形的外角性質(zhì)得:∠1=90°+∠1=90°+58°=148°.∵直尺的兩邊互相平行,∴∠2=∠1=148°.故選D.【點睛】本題考查了平行線的性質(zhì),三角形的一個外角等于與它不相鄰的兩個內(nèi)角的和的性質(zhì),熟記性質(zhì)是解題的關(guān)鍵.9、A【解析】作AH⊥BC于H,作直徑CF,連結(jié)BF,先利用等角的補角相等得到∠DAE=∠BAF,然后再根據(jù)同圓中,相等的圓心角所對的弦相等得到DE=BF=6,由AH⊥BC,根據(jù)垂徑定理得CH=BH,易得AH為△CBF的中位線,然后根據(jù)三角形中位線性質(zhì)得到AH=BF=1,從而求解.解:作AH⊥BC于H,作直徑CF,連結(jié)BF,如圖,∵∠BAC+∠EAD=120°,而∠BAC+∠BAF=120°,∴∠DAE=∠BAF,∴弧DE=弧BF,∴DE=BF=6,∵AH⊥BC,∴CH=BH,∵CA=AF,∴AH為△CBF的中位線,∴AH=BF=1.∴,∴BC=2BH=2.故選A.“點睛”本題考查了圓周角定理:在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半.也考查了垂徑定理和三角形中位線性質(zhì).10、A【解析】解:∵把一張矩形紙片ABCD沿EF折疊后,點A落在CD邊上的點A′處,點B落在點B′處,∴∠BFE=∠EFB',∠B'=∠B=90°.∵∠2=40°,∴∠CFB'=50°,∴∠1+∠EFB'﹣∠CFB'=180°,即∠1+∠1﹣50°=180°,解得:∠1=115°,故選A.二、填空題(本大題共6個小題,每小題3分,共18分)11、2或2.【解析】試題分析:分兩種情況討論:銳角三角形和鈍角三角形,根據(jù)勾股定理求得BD=16,CD=5,再由圖形求出BC,在銳角三角形中,BC=BD+CD=2,在鈍角三角形中,BC=CD-BD=2.故答案為2或2.考點:勾股定理12、【解析】
如圖,過C作CD⊥y軸于D,交AB于E.設(shè)AB=2a,則BE=AE=CE=a,再設(shè)A(x,x),則B(x,x+2a)、C(x+a,x+a),再由B、C在反比例函數(shù)的圖象上可得x(x+2a)=(x+a)(x+a),解得x=3a,由△OAB的面積為5求得ax=5,即可得a2=,根據(jù)S△ABC=AB?CE即可求解.【詳解】如圖,過C作CD⊥y軸于D,交AB于E.∵AB⊥x軸,∴CD⊥AB,∵△ABC是等腰直角三角形,∴BE=AE=CE,設(shè)AB=2a,則BE=AE=CE=a,設(shè)A(x,x),則B(x,x+2a),C(x+a,x+a),∵B、C在反比例函數(shù)的圖象上,∴x(x+2a)=(x+a)(x+a),解得x=3a,∵S△OAB=AB?DE=?2a?x=5,∴ax=5,∴3a2=5,∴a2=,∴S△ABC=AB?CE=?2a?a=a2=.故答案為:.【點睛】本題考查了反比例函數(shù)圖象上點的坐標(biāo)特征、等腰直角三角形的性質(zhì)、三角形面積,熟練掌握反比例函數(shù)上的點符合反比例函數(shù)的關(guān)系式是關(guān)鍵.13、1:1.【解析】試題分析:由DE∥BC,可得△ADE∽△ABC,根據(jù)相似三角形的面積之比等于相似比的平方可得S△ADE:S△ABC=(AD:AB)2=1:1.考點:相似三角形的性質(zhì).14、①②③④【解析】①如圖1,作AU⊥NQ于U,交BD于H,連接AN,AC,∵∠AMN=∠ABC=90°,∴A,B,N,M四點共圓,∴∠NAM=∠DBC=45°,∠ANM=∠ABD=45°,∴∠ANM=∠NAM=45°,∴AM=MN;②由同角的余角相等知,∠HAM=∠PMN,∴Rt△AHM≌Rt△MPN,∴MP=AH=AC=BD;③∵∠BAN+∠QAD=∠NAQ=45°,∴在∠NAM作AU=AB=AD,且使∠BAN=∠NAU,∠DAQ=∠QAU,∴△ABN≌△UAN,△DAQ≌△UAQ,有∠UAN=∠UAQ,BN=NU,DQ=UQ,∴點U在NQ上,有BN+DQ=QU+UN=NQ;④如圖2,作MS⊥AB,垂足為S,作MW⊥BC,垂足為W,點M是對角線BD上的點,∴四邊形SMWB是正方形,有MS=MW=BS=BW,∴△AMS≌△NMW∴AS=NW,∴AB+BN=SB+BW=2BW,∵BW:BM=1:,∴.故答案為:①②③④點睛:本題考查了正方形的性質(zhì),四點共圓的判定,圓周角定理,等腰直角三角形的性質(zhì),全等三角形的判定和性質(zhì);熟練掌握正方形的性質(zhì),正確作出輔助線并運用有關(guān)知識理清圖形中西安段間的關(guān)系,證明三角形全等是解決問題的關(guān)鍵.15、1【解析】分析:首先由方向角的定義及已知條件得出∠NPA=60°,AP=4海里,∠ABP=90°,再由AB∥NP,根據(jù)平行線的性質(zhì)得出∠A=∠NPA=60°.然后解Rt△ABP,得出AB=AP?cos∠A=1海里.詳解:如圖,由題意可知∠NPA=60°,AP=4海里,∠ABP=90°.∵AB∥NP,∴∠A=∠NPA=60°.在Rt△ABP中,∵∠ABP=90°,∠A=60°,AP=4海里,∴AB=AP?cos∠A=4×cos60°=4×=1海里.故答案為1.點睛:本題考查了解直角三角形的應(yīng)用-方向角問題,平行線的性質(zhì),三角函數(shù)的定義,正確理解方向角的定義是解題的關(guān)鍵.16、1【解析】
設(shè)反比例函數(shù)解析式為y=,根據(jù)反比例函數(shù)圖象上點的坐標(biāo)特征得到k=3×(﹣4)=﹣2m,然后解關(guān)于m的方程即可.【詳解】解:設(shè)反比例函數(shù)解析式為y=,根據(jù)題意得k=3×(﹣4)=﹣2m,解得m=1.故答案為1.考點:反比例函數(shù)圖象上點的坐標(biāo)特征.三、解答題(共8題,共72分)17、【解析】
設(shè)=a,=b,則原方程組化為,求出方程組的解,再求出原方程組的解即可.【詳解】設(shè)=a,=b,則原方程組化為:,①+②得:4a=4,解得:a=1,把a=1代入①得:1+b=3,解得:b=2,即,解得:,經(jīng)檢驗是原方程組的解,所以原方程組的解是.【點睛】此題考查利用換元法解方程組,注意要根據(jù)方程組的特點靈活選用合適的方法.解數(shù)學(xué)題時,把某個式子看成一個整體,用一個變量去代替它,從而使問題得到簡化,這叫換元法.換元的實質(zhì)是轉(zhuǎn)化,關(guān)鍵是構(gòu)造元和設(shè)元,理論依據(jù)是等量代換,目的是變換研究對象,將問題移至新對象的知識背景中去研究,從而使非標(biāo)準(zhǔn)型問題標(biāo)準(zhǔn)化、復(fù)雜問題簡單化,變得容易處理.18、(1)m=-1,n=-1;(2)y=-x+【解析】
(1)由直線與雙曲線相交于A(-1,a)、B兩點可得B點橫坐標(biāo)為1,點C的坐標(biāo)為(1,0),再根據(jù)△AOC的面積為1可求得點A的坐標(biāo),從而求得結(jié)果;(2)設(shè)直線AC的解析式為y=kx+b,由圖象過點A(-1,1)、C(1,0)根據(jù)待定系數(shù)法即可求的結(jié)果.【詳解】(1)∵直線與雙曲線相交于A(-1,a)、B兩點,∴B點橫坐標(biāo)為1,即C(1,0)∵△AOC的面積為1,∴A(-1,1)將A(-1,1)代入,可得m=-1,n=-1;(2)設(shè)直線AC的解析式為y=kx+b∵y=kx+b經(jīng)過點A(-1,1)、C(1,0)∴解得k=-,b=.∴直線AC的解析式為y=-x+.【點睛】本題考查了一次函數(shù)與反比例函數(shù)圖象的交點問題,此類問題是初中數(shù)學(xué)的重點,在中考中極為常見,熟練掌握待定系數(shù)法是解題關(guān)鍵.19、(1)證明見解析;(2)結(jié)論:成立.理由見解析;(3)①30°,②1+.【解析】
(1)只要證明AB=ED,AB∥ED即可解決問題;(2)成立.如圖2中,過點M作MG∥DE交CE于G.由四邊形DMGE是平行四邊形,推出ED=GM,且ED∥GM,由(1)可知AB=GM,AB∥GM,可知AB∥DE,AB=DE,即可推出四邊形ABDE是平行四邊形;
(3)①如圖3中,取線段HC的中點I,連接MI,只要證明MI=AM,MI⊥AC,即可解決問題;②設(shè)DH=x,則AH=x,AD=2x,推出AM=4+2x,BH=4+2x,由四邊形ABDE是平行四邊形,推出DF∥AB,推出,可得,解方程即可;【詳解】(1)證明:如圖1中,∵DE∥AB,∴∠EDC=∠ABM,∵CE∥AM,∴∠ECD=∠ADB,∵AM是△ABC的中線,且D與M重合,∴BD=DC,∴△ABD≌△EDC,∴AB=ED,∵AB∥ED,∴四邊形ABDE是平行四邊形.(2)結(jié)論:成立.理由如下:如圖2中,過點M作MG∥DE交CE于G.∵CE∥AM,∴四邊形DMGE是平行四邊形,∴ED=GM,且ED∥GM,由(1)可知AB=GM,AB∥GM,∴AB∥DE,AB=DE,∴四邊形ABDE是平行四邊形.(3)①如圖3中,取線段HC的中點I,連接MI,∵BM=MC,∴MI是△BHC的中位線,∴MI∥BH,MI=BH,∵BH⊥AC,且BH=AM.∴MI=AM,MI⊥AC,∴∠CAM=30°.②設(shè)DH=x,則AH=x,AD=2x,∴AM=4+2x,∴BH=4+2x,∵四邊形ABDE是平行四邊形,∴DF∥AB,∴,∴,解得x=1+或1﹣(舍棄),∴DH=1+.【點睛】本題考查了四邊形綜合題、平行四邊形的判定和性質(zhì)、直角三角形30度角的判定、平行線分線成比例定理、三角形的中位線定理等知識,解題的關(guān)鍵能正確添加輔助線,構(gòu)造特殊四邊形解決問題.20、(1)①y=-x2+2x+3②(2)-1【解析】分析:(1)①把A、B的坐標(biāo)代入解析式,解方程組即可得到結(jié)論;②延長CP交x軸于點E,在x軸上取點D使CD=CA,作EN⊥CD交CD的延長線于N.由CD=CA,OC⊥AD,得到∠DCO=∠ACO.由∠PCO=3∠ACO,得到∠ACD=∠ECD,從而有tan∠ACD=tan∠ECD,,即可得出AI、CI的長,進(jìn)而得到.設(shè)EN=3x,則CN=4x,由tan∠CDO=tan∠EDN,得到,故設(shè)DN=x,則CD=CN-DN=3x=,解方程即可得出E的坐標(biāo),進(jìn)而求出CE的直線解析式,聯(lián)立解方程組即可得到結(jié)論;(2)作DI⊥x軸,垂足為I.可以證明△EBD∽△DBC,由相似三角形對應(yīng)邊成比例得到,即,整理得.令y=0,得:.故,從而得到.由,得到,解方程即可得到結(jié)論.詳解:(1)①把A(-1,0),B(3,0)代入得:,解得:,∴②延長CP交x軸于點E,在x軸上取點D使CD=CA,作EN⊥CD交CD的延長線于N.∵CD=CA,OC⊥AD,∴∠DCO=∠ACO.∵∠PCO=3∠ACO,∴∠ACD=∠ECD,∴tan∠ACD=tan∠ECD,∴,AI=,∴CI=,∴.設(shè)EN=3x,則CN=4x.∵tan∠CDO=tan∠EDN,∴,∴DN=x,∴CD=CN-DN=3x=,∴,∴DE=,E(,0).CE的直線解析式為:,,解得:.點P的橫坐標(biāo).(2)作DI⊥x軸,垂足為I.∵∠BDA+2∠BAD=90°,∴∠DBI+∠BAD=90°.∵∠BDI+∠DBI=90°,∴∠BAD=∠BDI.∵∠BID=∠DIA,∴△EBD∽△DBC,∴,∴,∴.令y=0,得:.∴,∴.∵,∴,解得:yD=0或-1.∵D為x軸下方一點,∴,∴D的縱坐標(biāo)-1.點睛:本題是二次函數(shù)的綜合題.考查了二次函數(shù)解析式、性質(zhì),相似三角形的判定與性質(zhì),根與系數(shù)的關(guān)系.綜合性比較強,難度較大.21、2,1【解析】
根據(jù)題意得出不等式組,解不等式組求得其解集即可.【詳解】根據(jù)題意得,解不等式①,得:x≤1,解不等式②,得:x>1,則不等式組的解集為1<x≤1,∴x可取的整數(shù)值是2,1.【點睛】本題考查了解不等式組的能力,根據(jù)題意得出不等式組是解題的關(guān)鍵.22、(1)-1;(
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度科技創(chuàng)新創(chuàng)業(yè)項目合伙人股權(quán)分配及保密協(xié)議范本3篇
- 2024年特定區(qū)域獨家產(chǎn)品銷售代理協(xié)議版B版
- 分布式光伏發(fā)電項目發(fā)用電合同(三方)V1.0
- 2025年度智能穿戴設(shè)備銷售與服務(wù)合同范本3篇
- 中醫(yī)內(nèi)科學(xué)筆記(實踐部分)
- 2025年度特色火鍋店股權(quán)收購與經(jīng)營管理合同3篇
- 2024鐵路貨運貨物門到門配送服務(wù)合同范本3篇
- 2025年加油站便利店收銀系統(tǒng)升級裝修合同3篇
- 2025年度大型數(shù)據(jù)中心搭建及運營管理合同書3篇
- 2024金融交易平臺搭建與居間服務(wù)的合同
- 廣東大灣區(qū)2024-2025學(xué)年度高一上學(xué)期期末統(tǒng)一測試英語試題(無答案)
- 2024-2025學(xué)年遼寧省沈陽市高一上學(xué)期1月期末質(zhì)量監(jiān)測數(shù)學(xué)試題(含解析)
- 物理(四川)-【八省聯(lián)考】河南、山西、陜西、內(nèi)蒙古、四川、云南、寧夏、青海八省2025年高考綜合改革適應(yīng)性演練聯(lián)考試題和答案
- 《少兒主持人》課件
- 北京市朝陽區(qū)2024-2025學(xué)年高二上學(xué)期期末考試生物試卷(含答案)
- 2025年西藏拉薩市柳梧新區(qū)城市投資建設(shè)發(fā)展集團(tuán)有限公司招聘筆試參考題庫附帶答案詳解
- DB51T 1069-2010 四川泡菜生產(chǎn)規(guī)范
- 斷絕關(guān)系協(xié)議書
- 2023-建筑施工技02課件講解
- 2025年部編版一年級語文上冊期末復(fù)習(xí)計劃
- 2024高考物理一輪復(fù)習(xí):觀察電容器的充、放電現(xiàn)象(練習(xí))(學(xué)生版+解析)
評論
0/150
提交評論