版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2021-2022學(xué)年浙江省海曙區(qū)五校聯(lián)考中考三模數(shù)學(xué)試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時(shí)請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題(每小題只有一個(gè)正確答案,每小題3分,滿分30分)1.如圖,等腰直角三角板ABC的斜邊AB與量角器的直徑重合,點(diǎn)D是量角器上60°刻度線的外端點(diǎn),連接CD交AB于點(diǎn)E,則∠CEB的度數(shù)為()A.60° B.65° C.70° D.75°2.已知拋物線的圖像與軸交于、兩點(diǎn)(點(diǎn)在點(diǎn)的右側(cè)),與軸交于點(diǎn).給出下列結(jié)論:①當(dāng)?shù)臈l件下,無論取何值,點(diǎn)是一個(gè)定點(diǎn);②當(dāng)?shù)臈l件下,無論取何值,拋物線的對稱軸一定位于軸的左側(cè);③的最小值不大于;④若,則.其中正確的結(jié)論有()個(gè).A.1個(gè) B.2個(gè) C.3個(gè) D.4個(gè)3.如圖,田亮同學(xué)用剪刀沿直線將一片平整的樹葉剪掉一部分,發(fā)現(xiàn)剩下樹葉的周長比原樹葉的周長要小,能正確解釋這一現(xiàn)象的數(shù)學(xué)知識是()A.垂線段最短 B.經(jīng)過一點(diǎn)有無數(shù)條直線C.兩點(diǎn)之間,線段最短 D.經(jīng)過兩點(diǎn),有且僅有一條直線4.如圖,在菱形ABCD中,∠A=60°,E是AB邊上一動(dòng)點(diǎn)(不與A、B重合),且∠EDF=∠A,則下列結(jié)論錯(cuò)誤的是()A.AE=BF B.∠ADE=∠BEFC.△DEF是等邊三角形 D.△BEF是等腰三角形5.一個(gè)兩位數(shù),它的十位數(shù)字是3,個(gè)位數(shù)字是拋擲一枚質(zhì)地均勻的骰子(六個(gè)面分別標(biāo)有數(shù)字1﹣6)朝上一面的數(shù)字,任意拋擲這枚骰子一次,得到的兩位數(shù)是3的倍數(shù)的概率等于()A. B. C. D.6.由4個(gè)相同的小立方體搭成的幾何體如圖所示,則它的主視圖是()A.B.C.D.7.如圖,每個(gè)小正方形的邊長均為1,則下列圖形中的三角形(陰影部分)與相似的是()A. B.C. D.8.如圖所示的幾何體的主視圖是()A. B. C. D.9.的算術(shù)平方根是()A.9 B.±9 C.±3 D.310.-5的相反數(shù)是()A.5 B. C. D.二、填空題(共7小題,每小題3分,滿分21分)11.如圖,在矩形ABCD中,點(diǎn)E是邊CD的中點(diǎn),將△ADE沿AE折疊后得到△AFE,且點(diǎn)F在矩形ABCD內(nèi)部.將AF延長交邊BC于點(diǎn)G.若,則(用含k的代數(shù)式表示).12.如圖,在△ABC中,CA=CB,∠ACB=90°,AB=2,點(diǎn)D為AB的中點(diǎn),以點(diǎn)D為圓心作圓心角為90°的扇形DEF,點(diǎn)C恰在弧EF上,則圖中陰影部分的面積為__________.13.如圖,在正方形ABCD外取一點(diǎn)E,連接AE、BE、DE.過點(diǎn)A作AE的垂線交DE于點(diǎn)P.若AE=AP=1,PB=.下列結(jié)論:①△APD≌△AEB;②點(diǎn)B到直線AE的距離為;③EB⊥ED;④S△APD+S△APB=1+;⑤S正方形ABCD=4+.其中正確結(jié)論的序號是.14.計(jì)算2x3·x2的結(jié)果是_______.15.如圖,在菱形ABCD中,DE⊥AB于點(diǎn)E,cosA=,BE=4,則tan∠DBE的值是_____.16.如圖,將一塊含有30°角的直角三角板的兩個(gè)頂點(diǎn)疊放在長方形的兩條對邊上,如果∠1=27°,那么∠2=______°17.函數(shù)y=的自變量x的取值范圍為____________.三、解答題(共7小題,滿分69分)18.(10分)如圖,頂點(diǎn)為C的拋物線y=ax2+bx(a>0)經(jīng)過點(diǎn)A和x軸正半軸上的點(diǎn)B,連接OC、OA、AB,已知OA=OB=2,∠AOB=120°.(1)求這條拋物線的表達(dá)式;(2)過點(diǎn)C作CE⊥OB,垂足為E,點(diǎn)P為y軸上的動(dòng)點(diǎn),若以O(shè)、C、P為頂點(diǎn)的三角形與△AOE相似,求點(diǎn)P的坐標(biāo);(3)若將(2)的線段OE繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)得到OE′,旋轉(zhuǎn)角為α(0°<α<120°),連接E′A、E′B,求E′A+E′B的最小值.19.(5分)太陽能光伏建筑是現(xiàn)代綠色環(huán)保建筑之一,老張準(zhǔn)備把自家屋頂改建成光伏瓦面,改建前屋頂截面△ABC如圖2所示,BC=10米,∠ABC=∠ACB=36°,改建后頂點(diǎn)D在BA的延長線上,且∠BDC=90°,求改建后南屋面邊沿增加部分AD的長.(結(jié)果精確到0.1米)20.(8分)如圖,一次函數(shù)y=ax﹣1的圖象與反比例函數(shù)的圖象交于A,B兩點(diǎn),與x軸交于點(diǎn)C,與y軸交于點(diǎn)D,已知OA=,tan∠AOC=(1)求a,k的值及點(diǎn)B的坐標(biāo);(2)觀察圖象,請直接寫出不等式ax﹣1≥的解集;(3)在y軸上存在一點(diǎn)P,使得△PDC與△ODC相似,請你求出P點(diǎn)的坐標(biāo).21.(10分)在平面直角坐標(biāo)系xOy中,拋物線y=12x(1)求直線BC的解析式;(2)點(diǎn)D在拋物線上,且點(diǎn)D的橫坐標(biāo)為1.將拋物線在點(diǎn)A,D之間的部分(包含點(diǎn)A,D)記為圖象G,若圖象G向下平移t(t>0)個(gè)單位后與直線BC只有一個(gè)公共點(diǎn),求t的取值范圍.22.(10分)發(fā)現(xiàn)如圖1,在有一個(gè)“凹角∠A1A2A3”n邊形A1A2A3A4……An中(n為大于3的整數(shù)),∠A1A2A3=∠A1+∠A3+∠A4+∠A5+∠A6+……+∠An﹣(n﹣4)×180°.驗(yàn)證如圖2,在有一個(gè)“凹角∠ABC”的四邊形ABCD中,證明:∠ABC=∠A+∠C+∠D.證明3,在有一個(gè)“凹角∠ABC”的六邊形ABCDEF中,證明;∠ABC=∠A+∠C+∠D+∠E+∠F﹣360°.延伸如圖4,在有兩個(gè)連續(xù)“凹角A1A2A3和∠A2A3A4”的四邊形A1A2A3A4……An中(n為大于4的整數(shù)),∠A1A2A3+∠A2A3A4=∠A1+∠A4+∠A5+∠A6……+∠An﹣(n﹣)×180°.23.(12分)正方形ABCD中,點(diǎn)P為直線AB上一個(gè)動(dòng)點(diǎn)(不與點(diǎn)A,B重合),連接DP,將DP繞點(diǎn)P旋轉(zhuǎn)90°得到EP,連接DE,過點(diǎn)E作CD的垂線,交射線DC于M,交射線AB于N.問題出現(xiàn):(1)當(dāng)點(diǎn)P在線段AB上時(shí),如圖1,線段AD,AP,DM之間的數(shù)量關(guān)系為;題探究:(2)①當(dāng)點(diǎn)P在線段BA的延長線上時(shí),如圖2,線段AD,AP,DM之間的數(shù)量關(guān)系為;②當(dāng)點(diǎn)P在線段AB的延長線上時(shí),如圖3,請寫出線段AD,AP,DM之間的數(shù)量關(guān)系并證明;問題拓展:(3)在(1)(2)的條件下,若AP=,∠DEM=15°,則DM=.24.(14分)如圖,∠BCD=90°,且BC=DC,直線PQ經(jīng)過點(diǎn)D.設(shè)∠PDC=α(45°<α<135°),BA⊥PQ于點(diǎn)A,將射線CA繞點(diǎn)C按逆時(shí)針方向旋轉(zhuǎn)90°,與直線PQ交于點(diǎn)E.當(dāng)α=125°時(shí),∠ABC=°;求證:AC=CE;若△ABC的外心在其內(nèi)部,直接寫出α的取值范圍.
參考答案一、選擇題(每小題只有一個(gè)正確答案,每小題3分,滿分30分)1、D【解析】
解:連接OD∵∠AOD=60°,∴ACD=30°.∵∠CEB是△ACE的外角,∴△CEB=∠ACD+∠CAO=30°+45°=75°故選:D2、C【解析】
①利用拋物線兩點(diǎn)式方程進(jìn)行判斷;
②根據(jù)根的判別式來確定a的取值范圍,然后根據(jù)對稱軸方程進(jìn)行計(jì)算;
③利用頂點(diǎn)坐標(biāo)公式進(jìn)行解答;
④利用兩點(diǎn)間的距離公式進(jìn)行解答.【詳解】①y=ax1+(1-a)x-1=(x-1)(ax+1).則該拋物線恒過點(diǎn)A(1,0).故①正確;
②∵y=ax1+(1-a)x-1(a>0)的圖象與x軸有1個(gè)交點(diǎn),
∴△=(1-a)1+8a=(a+1)1>0,
∴a≠-1.
∴該拋物線的對稱軸為:x=,無法判定的正負(fù).
故②不一定正確;
③根據(jù)拋物線與y軸交于(0,-1)可知,y的最小值不大于-1,故③正確;
④∵A(1,0),B(-,0),C(0,-1),
∴當(dāng)AB=AC時(shí),,解得:a=,故④正確.
綜上所述,正確的結(jié)論有3個(gè).
故選C.【點(diǎn)睛】考查了二次函數(shù)與x軸的交點(diǎn)及其性質(zhì).(1).拋物線是軸對稱圖形.對稱軸為直線x=-,對稱軸與拋物線唯一的交點(diǎn)為拋物線的頂點(diǎn)P;特別地,當(dāng)b=0時(shí),拋物線的對稱軸是y軸(即直線x=0);(1).拋物線有一個(gè)頂點(diǎn)P,坐標(biāo)為P(-b/1a,(4ac-b1)/4a),當(dāng)-=0,〔即b=0〕時(shí),P在y軸上;當(dāng)Δ=b1-4ac=0時(shí),P在x軸上;(3).二次項(xiàng)系數(shù)a決定拋物線的開口方向和大??;當(dāng)a>0時(shí),拋物線開口向上;當(dāng)a<0時(shí),拋物線開口向下;|a|越大,則拋物線的開口越?。?).一次項(xiàng)系數(shù)b和二次項(xiàng)系數(shù)a共同決定對稱軸的位置;當(dāng)a與b同號時(shí)(即ab>0),對稱軸在y軸左;當(dāng)a與b異號時(shí)(即ab<0),對稱軸在y軸右;(5).常數(shù)項(xiàng)c決定拋物線與y軸交點(diǎn);拋物線與y軸交于(0,c);(6).拋物線與x軸交點(diǎn)個(gè)數(shù)Δ=b1-4ac>0時(shí),拋物線與x軸有1個(gè)交點(diǎn);Δ=b1-4ac=0時(shí),拋物線與x軸有1個(gè)交點(diǎn);Δ=b1-4ac<0時(shí),拋物線與x軸沒有交點(diǎn).X的取值是虛數(shù)(x=-b±√b1-4ac乘上虛數(shù)i,整個(gè)式子除以1a);當(dāng)a>0時(shí),函數(shù)在x=-b/1a處取得最小值f(-b/1a)=〔4ac-b1〕/4a;在{x|x<-b/1a}上是減函數(shù),在{x|x>-b/1a}上是增函數(shù);拋物線的開口向上;函數(shù)的值域是{y|y≥4ac-b1/4a}相反不變;當(dāng)b=0時(shí),拋物線的對稱軸是y軸,這時(shí),函數(shù)是偶函數(shù),解析式變形為y=ax1+c(a≠0).3、C【解析】
用剪刀沿直線將一片平整的樹葉剪掉一部分,發(fā)現(xiàn)剩下樹葉的周長比原樹葉的周長要小,∴線段AB的長小于點(diǎn)A繞點(diǎn)C到B的長度,∴能正確解釋這一現(xiàn)象的數(shù)學(xué)知識是兩點(diǎn)之間,線段最短,故選C.【點(diǎn)睛】根據(jù)“用剪刀沿直線將一片平整的樹葉剪掉一部分,發(fā)現(xiàn)剩下樹葉的周長比原樹葉的周長要小”得到線段AB的長小于點(diǎn)A繞點(diǎn)C到B的長度,從而確定答案.本題考查了線段的性質(zhì),能夠正確的理解題意是解答本題的關(guān)鍵,屬于基礎(chǔ)知識,比較簡單.4、D【解析】
連接BD,可得△ADE≌△BDF,然后可證得DE=DF,AE=BF,即可得△DEF是等邊三角形,然后可證得∠ADE=∠BEF.【詳解】連接BD,∵四邊形ABCD是菱形,
∴AD=AB,∠ADB=∠ADC,AB∥CD,
∵∠A=60°,
∴∠ADC=120°,∠ADB=60°,
同理:∠DBF=60°,
即∠A=∠DBF,
∴△ABD是等邊三角形,
∴AD=BD,
∵∠ADE+∠BDE=60°,∠BDE+∠BDF=∠EDF=60°,
∴∠ADE=∠BDF,
∵在△ADE和△BDF中,,
∴△ADE≌△BDF(ASA),
∴DE=DF,AE=BF,故A正確;
∵∠EDF=60°,
∴△EDF是等邊三角形,
∴C正確;
∴∠DEF=60°,
∴∠AED+∠BEF=120°,
∵∠AED+∠ADE=180°-∠A=120°,
∴∠ADE=∠BEF;
故B正確.
∵△ADE≌△BDF,
∴AE=BF,
同理:BE=CF,
但BE不一定等于BF.
故D錯(cuò)誤.
故選D.【點(diǎn)睛】本題考查了菱形的性質(zhì)、等邊三角形的判定與性質(zhì)以及全等三角形的判定與性質(zhì),解題的關(guān)鍵是正確尋找全等三角形解決問題.5、B【解析】
直接得出兩位數(shù)是3的倍數(shù)的個(gè)數(shù),再利用概率公式求出答案.【詳解】∵一枚質(zhì)地均勻的骰子,其六個(gè)面上分別標(biāo)有數(shù)字1,2,3,4,5,6,投擲一次,十位數(shù)為3,則兩位數(shù)是3的倍數(shù)的個(gè)數(shù)為2.∴得到的兩位數(shù)是3的倍數(shù)的概率為:=.故答案選:B.【點(diǎn)睛】本題考查了概率的知識點(diǎn),解題的關(guān)鍵是根據(jù)題意找出兩位數(shù)是3的倍數(shù)的個(gè)數(shù)再運(yùn)用概率公式解答即可.6、A【解析】試題分析:幾何體的主視圖有2列,每列小正方形數(shù)目分別為2,1.故選A.考點(diǎn):三視圖視頻7、B【解析】
根據(jù)相似三角形的判定方法一一判斷即可.【詳解】解:因?yàn)橹杏幸粋€(gè)角是135°,選項(xiàng)中,有135°角的三角形只有B,且滿足兩邊成比例夾角相等,故選:B.【點(diǎn)睛】本題考查相似三角形的性質(zhì),解題的關(guān)鍵是學(xué)會(huì)利用數(shù)形結(jié)合的思想解決問題,屬于中考??碱}型.8、C【解析】
主視圖就是從正面看,看列數(shù)和每一列的個(gè)數(shù).【詳解】解:由圖可知,主視圖如下故選C.【點(diǎn)睛】考核知識點(diǎn):組合體的三視圖.9、D【解析】
根據(jù)算術(shù)平方根的定義求解.【詳解】∵=9,
又∵(±1)2=9,
∴9的平方根是±1,
∴9的算術(shù)平方根是1.
即的算術(shù)平方根是1.
故選:D.【點(diǎn)睛】考核知識點(diǎn):算術(shù)平方根.理解定義是關(guān)鍵.10、A【解析】由相反數(shù)的定義:“只有符號不同的兩個(gè)數(shù)互為相反數(shù)”可知-5的相反數(shù)是5.故選A.二、填空題(共7小題,每小題3分,滿分21分)11、?!窘馕觥吭囶}分析:如圖,連接EG,∵,∴設(shè),則。∵點(diǎn)E是邊CD的中點(diǎn),∴?!摺鰽DE沿AE折疊后得到△AFE,∴。易證△EFG≌△ECG(HL),∴?!?。∴在Rt△ABG中,由勾股定理得:,即?!唷!啵ㄖ蝗≌担??!唷?2、.【解析】
連接CD,根據(jù)題意可得△DCE≌△BDF,陰影部分的面積等于扇形的面積減去△BCD的面積.【詳解】解:連接CD,
作DM⊥BC,DN⊥AC.
∵CA=CB,∠ACB=90°,點(diǎn)D為AB的中點(diǎn),
∴DC=AB=1,四邊形DMCN是正方形,DM=.
則扇形FDE的面積是:.
∵CA=CB,∠ACB=90°,點(diǎn)D為AB的中點(diǎn),
∴CD平分∠BCA,
又∵DM⊥BC,DN⊥AC,
∴DM=DN,
∵∠GDH=∠MDN=90°,
∴∠GDM=∠HDN,
則在△DMG和△DNH中,,
∴△DMG≌△DNH(AAS),
∴S四邊形DGCH=S四邊形DMCN=.
則陰影部分的面積是:.故答案為:.【點(diǎn)睛】本題考查了三角形的全等的判定與扇形的面積的計(jì)算的綜合題,正確證明△DMG≌△DNH,得到S四邊形DGCH=S四邊形DMCN是關(guān)鍵.13、①③⑤【解析】
①利用同角的余角相等,易得∠EAB=∠PAD,再結(jié)合已知條件利用SAS可證兩三角形全等;
②過B作BF⊥AE,交AE的延長線于F,利用③中的∠BEP=90°,利用勾股定理可求BE,結(jié)合△AEP是等腰直角三角形,可證△BEF是等腰直角三角形,再利用勾股定理可求EF、BF;
③利用①中的全等,可得∠APD=∠AEB,結(jié)合三角形的外角的性質(zhì),易得∠BEP=90°,即可證;
④連接BD,求出△ABD的面積,然后減去△BDP的面積即可;
⑤在Rt△ABF中,利用勾股定理可求AB2,即是正方形的面積.【詳解】①∵∠EAB+∠BAP=90°,∠PAD+∠BAP=90°,
∴∠EAB=∠PAD,
又∵AE=AP,AB=AD,
∵在△APD和△AEB中,
,
∴△APD≌△AEB(SAS);
故此選項(xiàng)成立;
③∵△APD≌△AEB,
∴∠APD=∠AEB,
∵∠AEB=∠AEP+∠BEP,∠APD=∠AEP+∠PAE,
∴∠BEP=∠PAE=90°,
∴EB⊥ED;
故此選項(xiàng)成立;
②過B作BF⊥AE,交AE的延長線于F,
∵AE=AP,∠EAP=90°,
∴∠AEP=∠APE=45°,
又∵③中EB⊥ED,BF⊥AF,
∴∠FEB=∠FBE=45°,
又∵BE=
=
=
,
∴BF=EF=
,
故此選項(xiàng)不正確;
④如圖,連接BD,在Rt△AEP中,
∵AE=AP=1,
∴EP=
,
又∵PB=
,
∴BE=
,
∵△APD≌△AEB,
∴PD=BE=
,
∴S
△ABP+S
△ADP=S
△ABD-S
△BDP=
S
正方形ABCD-
×DP×BE=
×(4+
)-
×
×
=
+
.
故此選項(xiàng)不正確.
⑤∵EF=BF=
,AE=1,
∴在Rt△ABF中,AB
2=(AE+EF)
2+BF
2=4+
,
∴S
正方形ABCD=AB
2=4+
,
故此選項(xiàng)正確.
故答案為①③⑤.【點(diǎn)睛】本題考查了全等三角形的判定和性質(zhì)的運(yùn)用、正方形的性質(zhì)的運(yùn)用、正方形和三角形的面積公式的運(yùn)用、勾股定理的運(yùn)用等知識.14、【解析】試題分析:根據(jù)單項(xiàng)式乘以單項(xiàng)式,結(jié)合同底數(shù)冪相乘,底數(shù)不變,指數(shù)相加,可知2x3·x2=2x3+2=2x5.故答案為:2x515、1.【解析】
求出AD=AB,設(shè)AD=AB=5x,AE=3x,則5x﹣3x=4,求出x,得出AD=10,AE=6,在Rt△ADE中,由勾股定理求出DE=8,在Rt△BDE中得出代入求出即可,【詳解】解:∵四邊形ABCD是菱形,∴AD=AB,∵cosA=,BE=4,DE⊥AB,∴設(shè)AD=AB=5x,AE=3x,則5x﹣3x=4,x=1,即AD=10,AE=6,在Rt△ADE中,由勾股定理得:在Rt△BDE中,故答案為:1.【點(diǎn)睛】本題考查了菱形的性質(zhì),勾股定理,解直角三角形的應(yīng)用,關(guān)鍵是求出DE的長.16、57°.【解析】
根據(jù)平行線的性質(zhì)和三角形外角的性質(zhì)即可求解.【詳解】由平行線性質(zhì)及外角定理,可得∠2=∠1+30°=27°+30°=57°.【點(diǎn)睛】本題考查平行線的性質(zhì)及三角形外角的性質(zhì).17、x≥-1【解析】試題分析:由題意得,x+1≥0,解得x≥﹣1.故答案為x≥﹣1.考點(diǎn):函數(shù)自變量的取值范圍.三、解答題(共7小題,滿分69分)18、(1)y=x2﹣x;(2)點(diǎn)P坐標(biāo)為(0,)或(0,);(3).【解析】
(1)根據(jù)AO=OB=2,∠AOB=120°,求出A點(diǎn)坐標(biāo),以及B點(diǎn)坐標(biāo),進(jìn)而利用待定系數(shù)法求二次函數(shù)解析式;(2)∠EOC=30°,由OA=2OE,OC=,推出當(dāng)OP=OC或OP′=2OC時(shí),△POC與△AOE相似;(3)如圖,取Q(,0).連接AQ,QE′.由△OE′Q∽△OBE′,推出,推出E′Q=BE′,推出AE′+BE′=AE′+QE′,由AE′+E′Q≥AQ,推出E′A+E′B的最小值就是線段AQ的長.【詳解】(1)過點(diǎn)A作AH⊥x軸于點(diǎn)H,∵AO=OB=2,∠AOB=120°,∴∠AOH=60°,∴OH=1,AH=,∴A點(diǎn)坐標(biāo)為:(-1,),B點(diǎn)坐標(biāo)為:(2,0),將兩點(diǎn)代入y=ax2+bx得:,解得:,∴拋物線的表達(dá)式為:y=x2-x;(2)如圖,∵C(1,-),∴tan∠EOC=,∴∠EOC=30°,∴∠POC=90°+30°=120°,∵∠AOE=120°,∴∠AOE=∠POC=120°,∵OA=2OE,OC=,∴當(dāng)OP=OC或OP′=2OC時(shí),△POC與△AOE相似,∴OP=,OP′=,∴點(diǎn)P坐標(biāo)為(0,)或(0,).(3)如圖,取Q(,0).連接AQ,QE′.∵,∠QOE′=∠BOE′,∴△OE′Q∽△OBE′,∴,∴E′Q=BE′,∴AE′+BE′=AE′+QE′,∵AE′+E′Q≥AQ,∴E′A+E′B的最小值就是線段AQ的長,最小值為.【點(diǎn)睛】本題考查二次函數(shù)綜合題、解直角三角形、相似三角形的判定和性質(zhì)、兩點(diǎn)之間線段最短等知識,解題的關(guān)鍵是學(xué)會(huì)由分類討論的思想思考問題,學(xué)會(huì)構(gòu)造相似三角形解決最短問題,屬于中考壓軸題.19、1.9米【解析】試題分析:在直角三角形BCD中,由BC與sinB的值,利用銳角三角函數(shù)定義求出CD的長,在直角三角形ACD中,由∠ACD度數(shù),以及CD的長,利用銳角三角函數(shù)定義求出AD的長即可.試題解析:∵∠BDC=90°,BC=10,sinB=,∴CD=BC?sinB=10×0.2=5.9,∵在Rt△BCD中,∠BCD=90°﹣∠B=90°﹣36°=54°,∴∠ACD=∠BCD﹣∠ACB=54°﹣36°=18°,∴在Rt△ACD中,tan∠ACD=,∴AD=CD?tan∠ACD=5.9×0.32=1.888≈1.9(米),則改建后南屋面邊沿增加部分AD的長約為1.9米.考點(diǎn):解直角三角形的應(yīng)用20、(1)a=,k=3,B(-,-2)(2)﹣≤x<0或x≥3;(3)(0,)或(0,0)【解析】
1)過A作AE⊥x軸,交x軸于點(diǎn)E,在Rt△AOE中,根據(jù)tan∠AOC的值,設(shè)AE=x,得到OE=3x,再由OA的長,利用勾股定理列出關(guān)于x的方程,求出方程的解得到x的值,確定出A坐標(biāo),將A坐標(biāo)代入一次函數(shù)解析式求出a的值,代入反比例解析式求出k的值,聯(lián)立一次函數(shù)與反比例函數(shù)解析式求出B的坐標(biāo);(2)由A與B交點(diǎn)橫坐標(biāo),根據(jù)函數(shù)圖象確定出所求不等式的解集即可;(3)顯然P與O重合時(shí),滿足△PDC與△ODC相似;當(dāng)PC⊥CD,即∠PCD=時(shí),滿足三角形PDC與三角形CDO相等,利用同角的余角相等得到一對角相等,再由一對直角相等得到三角形PCO與三角形CDO相似,由相似得比例,根據(jù)OD,OC的長求出OP的長,即可確定出P的坐標(biāo).【詳解】解:(1)過A作AE⊥x軸,交x軸于點(diǎn)E,在Rt△AOE中,OA=,tan∠AOC=,設(shè)AE=x,則OE=3x,根據(jù)勾股定理得:OA2=OE2+AE2,即10=9x2+x2,解得:x=1或x=﹣1(舍去),∴OE=3,AE=1,即A(3,1),將A坐標(biāo)代入一次函數(shù)y=ax﹣1中,得:1=3a﹣1,即a=,將A坐標(biāo)代入反比例解析式得:1=,即k=3,聯(lián)立一次函數(shù)與反比例解析式得:,消去y得:x﹣1=,解得:x=﹣或x=3,將x=﹣代入得:y=﹣1﹣1=﹣2,即B(﹣,﹣2);(2)由A(3,1),B(﹣,﹣2),根據(jù)圖象得:不等式x﹣1≥的解集為﹣≤x<0或x≥3;(3)顯然P與O重合時(shí),△PDC∽△ODC;當(dāng)PC⊥CD,即∠PCD=90°時(shí),∠PCO+∠DCO=90°,∵∠PCD=∠COD=90°,∠PCD=∠CDO,∴△PDC∽△CDO,∵∠PCO+∠CPO=90°,∴∠DCO=∠CPO,∵∠POC=∠COD=90°,∴△PCO∽△CDO,∴=,對于一次函數(shù)解析式y(tǒng)=x﹣1,令x=0,得到y(tǒng)=﹣1;令y=0,得到x=,∴C(,0),D(0,﹣1),即OC=,OD=1,∴=,即OP=,此時(shí)P坐標(biāo)為(0,),綜上,滿足題意P的坐標(biāo)為(0,)或(0,0).【點(diǎn)睛】此題屬于反比例函數(shù)綜合題,涉及的知識有:待定系數(shù)法確定函數(shù)解析式,一次函數(shù)與反比例函數(shù)的交點(diǎn)問題,坐標(biāo)與圖形性質(zhì),勾股定理,銳角三角函數(shù)定義,相似三角形的判定與性質(zhì),利用了數(shù)形結(jié)合的思想,熟練運(yùn)用數(shù)形結(jié)合思想是解題的關(guān)鍵.21、(1)y=12x+1【解析】試題分析:(1)首先根據(jù)拋物線y=12x2-x+2求出與y軸交于點(diǎn)A,頂點(diǎn)為點(diǎn)B的坐標(biāo),然后求出點(diǎn)A關(guān)于拋物線的對稱軸對稱點(diǎn)C的坐標(biāo),設(shè)設(shè)直線BC的解析式為y=kx+b.代入點(diǎn)B,點(diǎn)C的坐標(biāo),然后解方程組即可;(2)求出點(diǎn)D、E、F的坐標(biāo),設(shè)點(diǎn)A平移后的對應(yīng)點(diǎn)為點(diǎn)A',點(diǎn)D平移后的對應(yīng)點(diǎn)為點(diǎn)D'.當(dāng)圖象G向下平移至點(diǎn)A'與點(diǎn)E重合時(shí),點(diǎn)D'在直線BC上方,此時(shí)t=1;當(dāng)圖象G向下平移至點(diǎn)D'試題解析:解:(1)∵拋物線y=12x∴點(diǎn)A的坐標(biāo)為(0,2).1分∵y=1∴拋物線的對稱軸為直線x=1,頂點(diǎn)B的坐標(biāo)為(1,32又∵點(diǎn)C與點(diǎn)A關(guān)于拋物線的對稱軸對稱,∴點(diǎn)C的坐標(biāo)為(2,2),且點(diǎn)C在拋物線上.設(shè)直線BC的解析式為y=kx+b.∵直線BC經(jīng)過點(diǎn)B(1,32∴k+b=32∴直線BC的解析式為y=1(2)∵拋物線y=1當(dāng)x=4時(shí),y=6,∴點(diǎn)D的坐標(biāo)為(1,6).1分∵直線y=1當(dāng)x=0時(shí),y=1,當(dāng)x=4時(shí),y=3,∴如圖,點(diǎn)E的坐標(biāo)為(0,1),點(diǎn)F的坐標(biāo)為(1,2).設(shè)點(diǎn)A平移后的對應(yīng)點(diǎn)為點(diǎn)A',點(diǎn)D平移后的對應(yīng)點(diǎn)為點(diǎn)D'.當(dāng)圖象G向下平移至點(diǎn)A'與點(diǎn)E重合時(shí),點(diǎn)D'在直線BC上方,此時(shí)t=1;5分當(dāng)圖象G向下平移至點(diǎn)D'與點(diǎn)F重合時(shí),點(diǎn)A'在直線BC下方,此時(shí)t=2.6分結(jié)合圖象可知,符合題意的t的取值范圍是1<t≤考點(diǎn):1.二次函數(shù)的性質(zhì);2.待定系數(shù)法求解析式;2.平移.22、(1)見解析;(2)見解析;(3)1.【解析】
(1)如圖2,延長AB交CD于E,可知∠ABC=∠BEC+∠C,∠BEC=∠A+∠D,即可解答(2)如圖3,延長AB交CD于G,可知∠ABC=∠BGC+∠C,即可解答(3)如圖4,延長A2A3交A5A4于C,延長A3A2交A1An于B,可知∠A1A2A3+∠A2A3A4=∠A1+∠2+∠A4+∠4,再找出規(guī)律即可解答【詳解】(1)如圖2,延長AB交CD于E,則∠ABC=∠BEC+∠C,∠BEC=∠A+∠D,∴∠ABC=∠A+∠C+∠D;(2)如圖3,延長AB交CD于G,則∠ABC=∠BGC+∠C,∵∠BGC=180°﹣∠BGC,∠BGD=3×180°﹣(∠A+∠D+∠E+∠F),∴∠ABC=∠A+∠C+∠D+∠E+∠F﹣310°;(3)如圖4,延長A2A3交A5A4于C,延長A3A2交A1An于B,則∠A1A2A3+∠A2A3A4=∠A1+∠2+∠A4+∠4,∵∠1+∠3=(n﹣2﹣2)×180°﹣(∠A5+∠A1……+∠An),而∠2+∠4=310°﹣(∠1+∠3)=310°﹣[(n﹣2﹣2)×180°﹣(∠A5+∠A1……+∠An)],∴∠A1A2A3+∠A2A3A4=∠A1+∠A4+∠A5+∠A1……+∠An﹣(n﹣1)×180°.故答案為1.【點(diǎn)睛】此題考查多邊形的內(nèi)角和外角,,解題的關(guān)鍵是熟練掌握三角形的外角的性質(zhì),屬于中考??碱}型23、(1)DM=AD+AP;(2)①DM=AD﹣AP;②DM=AP﹣AD;(3)3﹣或﹣1.【解析】
(1)根據(jù)正方形的性質(zhì)和全等三角形的判定和性質(zhì)得出△ADP≌△PFN,進(jìn)而解答即可;(2)①根據(jù)正方形的性質(zhì)和全等三角形的判定和性質(zhì)得出△ADP≌△PFN,進(jìn)而解答即可;②根據(jù)正方形的性質(zhì)和全等三角形的判定和性質(zhì)得出△ADP≌△PFN,進(jìn)而解答即可;(3)分兩種情況利用勾股定理和三角函數(shù)解答即可.【詳解】(1)DM=AD+AP,理由如下:∵正方形ABCD,∴DC=AB,∠DAP=90°,∵將DP繞點(diǎn)P旋轉(zhuǎn)90°得到EP,連接DE,過點(diǎn)E作CD的垂線,交射線DC于M,交射線AB于N,∴DP=PE,∠
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- XX國家生物產(chǎn)業(yè)基地生物醫(yī)藥企業(yè)加速器可行性研究報(bào)告
- 2025年華東師大版九年級地理下冊階段測試試卷含答案
- 2025年外研版三年級起點(diǎn)高一地理下冊階段測試試卷含答案
- 2025年人教A新版選修4地理下冊階段測試試卷
- 2025年華東師大版必修1歷史上冊月考試卷含答案
- 遵義醫(yī)藥高等??茖W(xué)校《綜合法語(2)》2023-2024學(xué)年第一學(xué)期期末試卷
- 2025年度城鄉(xiāng)綠化苗木采購合同匯編4篇
- 2025版模板木材加工企業(yè)原材料采購合同范本4篇
- 二零二五年度出口代理責(zé)任與權(quán)益合同標(biāo)準(zhǔn)4篇
- 2025年度健康養(yǎng)生管理中心加盟管理合同4篇
- 廣東省佛山市2025屆高三高中教學(xué)質(zhì)量檢測 (一)化學(xué)試題(含答案)
- 人教版【初中數(shù)學(xué)】知識點(diǎn)總結(jié)-全面+九年級上冊數(shù)學(xué)全冊教案
- 2024-2025學(xué)年人教版七年級英語上冊各單元重點(diǎn)句子
- 2025新人教版英語七年級下單詞表
- 公司結(jié)算資金管理制度
- 2024年小學(xué)語文教師基本功測試卷(有答案)
- 未成年入職免責(zé)協(xié)議書
- 項(xiàng)目可行性研究報(bào)告評估咨詢管理服務(wù)方案1
- 5歲幼兒數(shù)學(xué)練習(xí)題
- 2024年全國體育單招英語考卷和答案
- 食品安全管理制度可打印【7】
評論
0/150
提交評論