2021-2022學(xué)年江蘇省泰州市海陵區(qū)中考四模數(shù)學(xué)試題含解析_第1頁
2021-2022學(xué)年江蘇省泰州市海陵區(qū)中考四模數(shù)學(xué)試題含解析_第2頁
2021-2022學(xué)年江蘇省泰州市海陵區(qū)中考四模數(shù)學(xué)試題含解析_第3頁
2021-2022學(xué)年江蘇省泰州市海陵區(qū)中考四模數(shù)學(xué)試題含解析_第4頁
2021-2022學(xué)年江蘇省泰州市海陵區(qū)中考四模數(shù)學(xué)試題含解析_第5頁
已閱讀5頁,還剩21頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2021-2022學(xué)年江蘇省泰州市海陵區(qū)中考四模數(shù)學(xué)試題注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題(共10小題,每小題3分,共30分)1.下列圖形中,是軸對稱圖形但不是中心對稱圖形的是()A. B. C. D.2.二次函數(shù)的圖像如圖所示,下列結(jié)論正確是()A. B. C. D.有兩個不相等的實數(shù)根3.若實數(shù)m滿足,則下列對m值的估計正確的是()A.﹣2<m<﹣1 B.﹣1<m<0 C.0<m<1 D.1<m<24.如圖,O為坐標(biāo)原點,四邊彤OACB是菱形,OB在x軸的正半軸上,sin∠AOB=45,反比例函數(shù)yA.10B.9C.8D.65.函數(shù)y=ax+b與y=bx+a的圖象在同一坐標(biāo)系內(nèi)的大致位置是()A. B.C. D.6.下列各數(shù)中,無理數(shù)是()A.0 B. C. D.π7.下列實數(shù)中是無理數(shù)的是()A. B.π C. D.8.點P(4,﹣3)關(guān)于原點對稱的點所在的象限是()A.第四象限 B.第三象限 C.第二象限 D.第一象限9.如圖,點P(x,y)(x>0)是反比例函數(shù)y=(k>0)的圖象上的一個動點,以點P為圓心,OP為半徑的圓與x軸的正半軸交于點A,若△OPA的面積為S,則當(dāng)x增大時,S的變化情況是()A.S的值增大 B.S的值減小C.S的值先增大,后減小 D.S的值不變10.實數(shù)a、b、c在數(shù)軸上的位置如圖所示,則代數(shù)式|c﹣a|﹣|a+b|的值等于()A.c+b B.b﹣c C.c﹣2a+b D.c﹣2a﹣b二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖,在平面直角坐標(biāo)系中,函數(shù)y=(x>0)的圖象經(jīng)過矩形OABC的邊AB、BC的中點E、F,則四邊形OEBF的面積為________.12.拋物線y=﹣x2+bx+c的部分圖象如圖所示,若y>0,則x的取值范圍是_____.13.如圖,AD是△ABC的角平分線,DE,DF分別是△ABD和△ACD的高,得到下面四個結(jié)論:①OA=OD;②AD⊥EF;③當(dāng)∠BAC=90°時,四邊形AEDF是正方形;④AE2+DF2=AF2+DE2.其中正確的是_________.(填序號)14.如圖,設(shè)△ABC的兩邊AC與BC之和為a,M是AB的中點,MC=MA=5,則a的取值范圍是_____.15.如圖,在每個小正方形的邊長為1的網(wǎng)格中,A,B為格點(Ⅰ)AB的長等于__(Ⅱ)請用無刻度的直尺,在如圖所示的網(wǎng)格中求作一點C,使得CA=CB且△ABC的面積等于,并簡要說明點C的位置是如何找到的__________________16.如圖,正方形內(nèi)的陰影部分是由四個直角邊長都是1和3的直角三角形組成的,假設(shè)可以在正方形內(nèi)部隨意取點,那么這個點取在陰影部分的概率為.三、解答題(共8題,共72分)17.(8分)如圖,AB是⊙O的直徑,∠BAC=90°,四邊形EBOC是平行四邊形,EB交⊙O于點D,連接CD并延長交AB的延長線于點F.(1)求證:CF是⊙O的切線;(2)若∠F=30°,EB=6,求圖中陰影部分的面積.(結(jié)果保留根號和π)18.(8分)某校對學(xué)生就“食品安全知識”進(jìn)行了抽樣調(diào)查(每人選填一類),繪制了如圖所示的兩幅統(tǒng)計圖(不完整)。請根據(jù)圖中信息,解答下列問題:(1)根據(jù)圖中數(shù)據(jù),求出扇形統(tǒng)計圖中的值,并補(bǔ)全條形統(tǒng)計圖。(2)該校共有學(xué)生900人,估計該校學(xué)生對“食品安全知識”非常了解的人數(shù).19.(8分)關(guān)于x的一元二次方程ax2+bx+1=1.當(dāng)b=a+2時,利用根的判別式判斷方程根的情況;若方程有兩個相等的實數(shù)根,寫出一組滿足條件的a,b的值,并求此時方程的根.20.(8分)已知一個矩形紙片OACB,將該紙片放置在平面直角坐標(biāo)系中,點A(11,0),點B(0,6),點P為BC邊上的動點(點P不與點B、C重合),經(jīng)過點O、P折疊該紙片,得點B′和折痕OP.設(shè)BP=t.(Ⅰ)如圖①,當(dāng)∠BOP=300時,求點P的坐標(biāo);(Ⅱ)如圖②,經(jīng)過點P再次折疊紙片,使點C落在直線PB′上,得點C′和折痕PQ,若AQ=m,試用含有t的式子表示m;(Ⅲ)在(Ⅱ)的條件下,當(dāng)點C′恰好落在邊OA上時,求點P的坐標(biāo)(直接寫出結(jié)果即可).21.(8分)如圖,四邊形ABCD中,AC平分∠DAB,AC2=AB?AD,∠ADC=90°,E為AB的中點.(1)求證:△ADC∽△ACB;(2)CE與AD有怎樣的位置關(guān)系?試說明理由;(3)若AD=4,AB=6,求的值.22.(10分)如圖1,四邊形ABCD,邊AD、BC的垂直平分線相交于點O.連接OA、OB、OC、OD.OE是邊CD的中線,且∠AOB+∠COD=180°(1)如圖2,當(dāng)△ABO是等邊三角形時,求證:OE=AB;(2)如圖3,當(dāng)△ABO是直角三角形時,且∠AOB=90°,求證:OE=AB;(3)如圖4,當(dāng)△ABO是任意三角形時,設(shè)∠OAD=α,∠OBC=β,①試探究α、β之間存在的數(shù)量關(guān)系?②結(jié)論“OE=AB”還成立嗎?若成立,請你證明;若不成立,請說明理由.23.(12分)如圖,AB是⊙O的直徑,弧CD⊥AB,垂足為H,P為弧AD上一點,連接PA、PB,PB交CD于E.(1)如圖(1)連接PC、CB,求證:∠BCP=∠PED;(2)如圖(2)過點P作⊙O的切線交CD的延長線于點E,過點A向PF引垂線,垂足為G,求證:∠APG=∠F;(3)如圖(3)在圖(2)的條件下,連接PH,若PH=PF,3PF=5PG,BE=2,求⊙O的直徑AB.24.已知二次函數(shù)的圖象如圖6所示,它與軸的一個交點坐標(biāo)為,與軸的交點坐標(biāo)為(0,3).求出此二次函數(shù)的解析式;根據(jù)圖象,寫出函數(shù)值為正數(shù)時,自變量的取值范圍.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、A【解析】A.是軸對稱圖形不是中心對稱圖形,正確;B.是軸對稱圖形也是中心對稱圖形,錯誤;C.是中心對稱圖形不是軸對稱圖形,錯誤;D.是軸對稱圖形也是中心對稱圖形,錯誤,故選A.【點睛】本題考查軸對稱圖形與中心對稱圖形,正確地識別是解題的關(guān)鍵.2、C【解析】【分析】觀察圖象:開口向下得到a<0;對稱軸在y軸的右側(cè)得到a、b異號,則b>0;拋物線與y軸的交點在x軸的上方得到c>0,所以abc<0;由對稱軸為x==1,可得2a+b=0;當(dāng)x=-1時圖象在x軸下方得到y(tǒng)=a-b+c<0,結(jié)合b=-2a可得3a+c<0;觀察圖象可知拋物線的頂點為(1,3),可得方程有兩個相等的實數(shù)根,據(jù)此對各選項進(jìn)行判斷即可.【詳解】觀察圖象:開口向下得到a<0;對稱軸在y軸的右側(cè)得到a、b異號,則b>0;拋物線與y軸的交點在x軸的上方得到c>0,所以abc<0,故A選項錯誤;∵對稱軸x==1,∴b=-2a,即2a+b=0,故B選項錯誤;當(dāng)x=-1時,y=a-b+c<0,又∵b=-2a,∴3a+c<0,故C選項正確;∵拋物線的頂點為(1,3),∴的解為x1=x2=1,即方程有兩個相等的實數(shù)根,故D選項錯誤,故選C.【點睛】本題考查了二次函數(shù)圖象與系數(shù)的關(guān)系:對于二次函數(shù)y=ax2+bx+c(a≠0)的圖象,當(dāng)a>0,開口向上,函數(shù)有最小值,a<0,開口向下,函數(shù)有最大值;對稱軸為直線x=,a與b同號,對稱軸在y軸的左側(cè),a與b異號,對稱軸在y軸的右側(cè);當(dāng)c>0,拋物線與y軸的交點在x軸的上方;當(dāng)△=b2-4ac>0,拋物線與x軸有兩個交點.3、A【解析】試題解析:∵,∴m2+2+=0,∴m2+2=-,∴方程的解可以看作是函數(shù)y=m2+2與函數(shù)y=-,作函數(shù)圖象如圖,在第二象限,函數(shù)y=m2+2的y值隨m的增大而減小,函數(shù)y=-的y值隨m的增大而增大,當(dāng)m=-2時y=m2+2=4+2=6,y=-=-=2,∵6>2,∴交點橫坐標(biāo)大于-2,當(dāng)m=-1時,y=m2+2=1+2=3,y=-=-=4,∵3<4,∴交點橫坐標(biāo)小于-1,∴-2<m<-1.故選A.考點:1.二次函數(shù)的圖象;2.反比例函數(shù)的圖象.4、A【解析】過點A作AM⊥x軸于點M,過點F作FN⊥x軸于點N,設(shè)OA=a,BF=b,通過解直角三角形分別找出點A、F的坐標(biāo),結(jié)合反比例函數(shù)圖象上點的坐標(biāo)特征即可求出a、b的值,通過分割圖形求面積,最終找出△AOF的面積等于梯形AMNF的面積,利用梯形的面積公式即可得出結(jié)論.解:過點A作AM⊥x軸于點M,過點F作FN⊥x軸于點N,如圖所示.設(shè)OA=a,BF=b,在Rt△OAM中,∠AMO=90°,OA=a,sin∠AOB=45∴AM=OA?sin∠AOB=45a,OM=OA2∴點A的坐標(biāo)為(35a,4∵點A在反比例函數(shù)y=12x∴35a×45a=1225解得:a=5,或a=﹣5(舍去).∴AM=8,OM=1.∵四邊形OACB是菱形,∴OA=OB=10,BC∥OA,∴∠FBN=∠AOB.在Rt△BNF中,BF=b,sin∠FBN=45∴FN=BF?sin∠FBN=45b,BN=BF2∴點F的坐標(biāo)為(10+35b,4∵點F在反比例函數(shù)y=12x∴(10+35b)×4S△AOF=S△AOM+S梯形AMNF﹣S△OFN=S梯形AMNF=10故選A.“點睛”本題主要考查了菱形的性質(zhì)、解直角三角形以及反比例函數(shù)圖象上點的坐標(biāo)特征,解題的關(guān)鍵是找出S△AOF=12S菱形OBCA5、B【解析】

根據(jù)a、b的符號進(jìn)行判斷,兩函數(shù)圖象能共存于同一坐標(biāo)系的即為正確答案.【詳解】分四種情況:①當(dāng)a>0,b>0時,y=ax+b的圖象經(jīng)過第一、二、三象限,y=bx+a的圖象經(jīng)過第一、二、三象限,無選項符合;②當(dāng)a>0,b<0時,y=ax+b的圖象經(jīng)過第一、三、四象限;y=bx+a的圖象經(jīng)過第一、二、四象限,B選項符合;③當(dāng)a<0,b>0時,y=ax+b的圖象經(jīng)過第一、二、四象限;y=bx+a的圖象經(jīng)過第一、三、四象限,B選項符合;④當(dāng)a<0,b<0時,y=ax+b的圖象經(jīng)過第二、三、四象限;y=bx+a的圖象經(jīng)過第二、三、四象限,無選項符合.故選B.【點睛】此題考查一次函數(shù)的圖象,關(guān)鍵是根據(jù)一次函數(shù)y=kx+b的圖象有四種情況:①當(dāng)k>0,b>0,函數(shù)y=kx+b的圖象經(jīng)過第一、二、三象限;②當(dāng)k>0,b<0,函數(shù)y=kx+b的圖象經(jīng)過第一、三、四象限;③當(dāng)k<0,b>0時,函數(shù)y=kx+b的圖象經(jīng)過第一、二、四象限;④當(dāng)k<0,b<0時,函數(shù)y=kx+b的圖象經(jīng)過第二、三、四象限.6、D【解析】

利用無理數(shù)定義判斷即可.【詳解】解:π是無理數(shù),故選:D.【點睛】此題考查了無理數(shù),弄清無理數(shù)的定義是解本題的關(guān)鍵.7、B【解析】

無理數(shù)就是無限不循環(huán)小數(shù).理解無理數(shù)的概念,一定要同時理解有理數(shù)的概念,有理數(shù)是整數(shù)與分?jǐn)?shù)的統(tǒng)稱.即有限小數(shù)和無限循環(huán)小數(shù)是有理數(shù),而無限不循環(huán)小數(shù)是無理數(shù).由此即可判定選擇項.【詳解】A、是分?jǐn)?shù),屬于有理數(shù);B、π是無理數(shù);C、=3,是整數(shù),屬于有理數(shù);D、-是分?jǐn)?shù),屬于有理數(shù);故選B.【點睛】此題主要考查了無理數(shù)的定義,其中初中范圍內(nèi)學(xué)習(xí)的無理數(shù)有:π,2π等;開方開不盡的數(shù);以及像0.1010010001…,等有這樣規(guī)律的數(shù).8、C【解析】

由題意得點P的坐標(biāo)為(﹣4,3),根據(jù)象限內(nèi)點的符號特點可得點P1的所在象限.【詳解】∵設(shè)P(4,﹣3)關(guān)于原點的對稱點是點P1,∴點P1的坐標(biāo)為(﹣4,3),∴點P1在第二象限.故選C【點睛】本題主要考查了兩點關(guān)于原點對稱,這兩點的橫縱坐標(biāo)均互為相反數(shù);符號為(﹣,+)的點在第二象限.9、D【解析】

作PB⊥OA于B,如圖,根據(jù)垂徑定理得到OB=AB,則S△POB=S△PAB,再根據(jù)反比例函數(shù)k的幾何意義得到S△POB=|k|,所以S=2k,為定值.【詳解】作PB⊥OA于B,如圖,則OB=AB,∴S△POB=S△PAB.∵S△POB=|k|,∴S=2k,∴S的值為定值.故選D.【點睛】本題考查了反比例函數(shù)系數(shù)k的幾何意義:在反比例函數(shù)y=圖象中任取一點,過這一個點向x軸和y軸分別作垂線,與坐標(biāo)軸圍成的矩形的面積是定值|k|.10、A【解析】

根據(jù)數(shù)軸得到b<a<0<c,根據(jù)有理數(shù)的加法法則,減法法則得到c-a>0,a+b<0,根據(jù)絕對值的性質(zhì)化簡計算.【詳解】由數(shù)軸可知,b<a<0<c,∴c-a>0,a+b<0,則|c-a|-|a+b|=c-a+a+b=c+b,故選A.【點睛】本題考查的是實數(shù)與數(shù)軸,絕對值的性質(zhì),能夠根據(jù)數(shù)軸比較實數(shù)的大小,掌握絕對值的性質(zhì)是解題的關(guān)鍵.二、填空題(本大題共6個小題,每小題3分,共18分)11、2【解析】設(shè)矩形OABC中點B的坐標(biāo)為,∵點E、F是AB、BC的中點,∴點E、F的坐標(biāo)分別為:、,∵點E、F都在反比例函數(shù)的圖象上,∴S△OCF==,S△OAE=,∴S矩形OABC=,∴S四邊形OEBF=S矩形OABC-S△OAE-S△OCF=.即四邊形OEBF的面積為2.點睛:反比例函數(shù)中“”的幾何意義為:若點P是反比例函數(shù)圖象上的一點,連接坐標(biāo)原點O和點P,過點P向坐標(biāo)軸作垂線段,垂足為點D,則S△OPD=.12、-3<x<1【解析】試題分析:根據(jù)拋物線的對稱軸為x=﹣1,一個交點為(1,0),可推出另一交點為(﹣3,0),結(jié)合圖象求出y>0時,x的范圍.解:根據(jù)拋物線的圖象可知:拋物線的對稱軸為x=﹣1,已知一個交點為(1,0),根據(jù)對稱性,則另一交點為(﹣3,0),所以y>0時,x的取值范圍是﹣3<x<1.故答案為﹣3<x<1.考點:二次函數(shù)的圖象.13、②③④【解析】試題解析:根據(jù)已知條件不能推出OA=OD,∴①錯誤;∵AD是△ABC的角平分線,DE,DF分別是△ABD和△ACD的高,∴DE=DF,∠AED=∠AFD=90°,在Rt△AED和Rt△AFD中,,∴Rt△AED≌Rt△AFD(HL),∴AE=AF,∵AD平分∠BAC,∴AD⊥EF,∴②正確;∵∠BAC=90°,∠AED=∠AFD=90°,∴四邊形AEDF是矩形,∵AE=AF,∴四邊形AEDF是正方形,∴③正確;∵AE=AF,DE=DF,∴AE2+DF2=AF2+DE2,∴④正確;∴②③④正確,14、10<a≤10.【解析】

根據(jù)題設(shè)知三角形ABC是直角三角形,由勾股定理求得AB的長度及由三角形的三邊關(guān)系求得a的取值范圍;然后根據(jù)題意列出二元二次方程組,通過方程組求得xy的值,再把該值依據(jù)根與系數(shù)的關(guān)系置于一元二次方程z2-az+=0中,最后由根的判別式求得a的取值范圍.【詳解】∵M(jìn)是AB的中點,MC=MA=5,∴△ABC為直角三角形,AB=10;∴a=AC+BC>AB=10;令A(yù)C=x、BC=y.∴,∴xy=,∴x、y是一元二次方程z2-az+=0的兩個實根,∴△=a2-4×≥0,即a≤10.綜上所述,a的取值范圍是10<a≤10.故答案為10<a≤10.【點睛】本題綜合考查了勾股定理、直角三角形斜邊上的中線及根的判別式.此題的綜合性比較強(qiáng),解題時,還利用了一元二次方程的根與系數(shù)的關(guān)系、根的判別式的知識點.15、取格點P、N(S△PAB=),作直線PN,再證=作線段AB的垂直平分線EF交PN于點C,點C即為所求.【解析】

(Ⅰ)利用勾股定理計算即可;(Ⅱ)取格點P、N(S△PAB=),作直線PN,再證=作線段AB的垂直平分線EF交PN于點C,點C即為所求.【詳解】解:(Ⅰ)AB==,故答案為.(Ⅱ)如圖取格點P、N(使得S△PAB=),作直線PN,再證=作線段AB的垂直平分線EF交PN于點C,點C即為所求.故答案為:取格點P、N(S△PAB=),作直線PN,再證=作線段AB的垂直平分線EF交PN于點C,點C即為所求.【點睛】本題考查作圖﹣應(yīng)用與設(shè)計,線段的垂直平分線的性質(zhì)、等高模型等知識,解題的關(guān)鍵是學(xué)會利用數(shù)形結(jié)合的思想思考問題,屬于中考??碱}型.16、.【解析】試題分析:此題是求陰影部分的面積占正方形面積的幾分之幾,即為所求概率.陰影部分的面積為:3×1÷2×4=6,因為正方形對角線形成4個等腰直角三角形,所以邊長是=,∴這個點取在陰影部分的概率為:6÷=6÷18=.考點:求隨機(jī)事件的概率.三、解答題(共8題,共72分)17、(1)證明見解析;(2)93﹣3π【解析】試題分析:(1)、連接OD,根據(jù)平行四邊形的性質(zhì)得出∠AOC=∠OBE,∠COD=∠ODB,結(jié)合OB=OD得出∠DOC=∠AOC,從而證明出△COD和△COA全等,從而的得出答案;(2)、首先根據(jù)題意得出△OBD為等邊三角形,根據(jù)等邊三角形的性質(zhì)得出EC=ED=BO=DB,根據(jù)Rt△AOC的勾股定理得出AC的長度,然后根據(jù)陰影部分的面積等于兩個△AOC的面積減去扇形OAD的面積得出答案.試題解析:(1)如圖連接OD.∵四邊形OBEC是平行四邊形,∴OC∥BE,∴∠AOC=∠OBE,∠COD=∠ODB,∵OB=OD,∴∠OBD=∠ODB,∴∠DOC=∠AOC,在△COD和△COA中,,∴△COD≌△COA,∴∠CDO=∠CAO=90°,∴CF⊥OD,∴CF是⊙O的切線.(2)∵∠F=30°,∠ODF=90°,∴∠DOF=∠AOC=∠COD=60°,∵OD=OB,∴△OBD是等邊三角形,∴∠4=60°,∵∠4=∠F+∠1,∴∠1=∠2=30°,∵EC∥OB,∴∠E=180°﹣∠4=120°,∴∠3=180°﹣∠E﹣∠2=30°,∴EC=ED=BO=DB,∵EB=6,∴OB=OD═OA=3,在Rt△AOC中,∵∠OAC=90°,OA=3,∠AOC=60°,∴AC=OA?tan60°=3,∴S陰=2?S△AOC﹣S扇形OAD=2××3×3﹣120Π×32360=9﹣3π.18、(1),補(bǔ)全條形統(tǒng)計圖見解析;(2)該校學(xué)生對“食品安全知識”非常了解的人數(shù)為135人?!窘馕觥吭囶}分析:(1)由統(tǒng)計圖中的信息可知,B組學(xué)生有32人,占總數(shù)的40%,由此可得被抽查學(xué)生總?cè)藬?shù)為:32÷40%=80(人),結(jié)合C組學(xué)生有28人可得:m%=28÷80×100%=35%,由此可得m=35;由80-32-28-8=12(人)可知A組由12人,由此即可補(bǔ)全條形統(tǒng)計圖了;(2)由(1)中計算可知,A組有12名學(xué)生,占總數(shù)的12÷80×100%=15%,結(jié)合全???cè)藬?shù)為900可得900×15%=135(人),即全?!胺浅A私狻薄笆称钒踩R”的有135人.試題解析:(1)由已知條件可得:被抽查學(xué)生總數(shù)為32÷40%=80(人),∴m%=28÷80×100%=35%,∴m=35,A組人數(shù)為:80-32-28-8=12(人),將圖形統(tǒng)計圖補(bǔ)充完整如下圖所示:(2)由題意可得:900×(12÷80×100%)=900×15%=135(人).答:全校學(xué)生對“食品安全知識”非常了解的人數(shù)為135人.19、(2)方程有兩個不相等的實數(shù)根;(2)b=-2,a=2時,x2=x2=﹣2.【解析】

分析:(2)求出根的判別式,判斷其范圍,即可判斷方程根的情況.(2)方程有兩個相等的實數(shù)根,則,寫出一組滿足條件的,的值即可.詳解:(2)解:由題意:.∵,∴原方程有兩個不相等的實數(shù)根.(2)答案不唯一,滿足()即可,例如:解:令,,則原方程為,解得:.點睛:考查一元二次方程根的判別式,當(dāng)時,方程有兩個不相等的實數(shù)根.當(dāng)時,方程有兩個相等的實數(shù)根.當(dāng)時,方程沒有實數(shù)根.20、(Ⅰ)點P的坐標(biāo)為(,1).(Ⅱ)(0<t<11).(Ⅲ)點P的坐標(biāo)為(,1)或(,1).【解析】

(Ⅰ)根據(jù)題意得,∠OBP=90°,OB=1,在Rt△OBP中,由∠BOP=30°,BP=t,得OP=2t,然后利用勾股定理,即可得方程,解此方程即可求得答案.(Ⅱ)由△OB′P、△QC′P分別是由△OBP、△QCP折疊得到的,可知△OB′P≌△OBP,△QC′P≌△QCP,易證得△OBP∽△PCQ,然后由相似三角形的對應(yīng)邊成比例,即可求得答案.(Ⅲ)首先過點P作PE⊥OA于E,易證得△PC′E∽△C′QA,由勾股定理可求得C′Q的長,然后利用相似三角形的對應(yīng)邊成比例與,即可求得t的值:【詳解】(Ⅰ)根據(jù)題意,∠OBP=90°,OB=1.在Rt△OBP中,由∠BOP=30°,BP=t,得OP=2t.∵OP2=OB2+BP2,即(2t)2=12+t2,解得:t1=,t2=-(舍去).∴點P的坐標(biāo)為(,1).(Ⅱ)∵△OB′P、△QC′P分別是由△OBP、△QCP折疊得到的,∴△OB′P≌△OBP,△QC′P≌△QCP.∴∠OPB′=∠OPB,∠QPC′=∠QPC.∵∠OPB′+∠OPB+∠QPC′+∠QPC=180°,∴∠OPB+∠QPC=90°.∵∠BOP+∠OPB=90°,∴∠BOP=∠CPQ.又∵∠OBP=∠C=90°,∴△OBP∽△PCQ.∴.由題意設(shè)BP=t,AQ=m,BC=11,AC=1,則PC=11-t,CQ=1-m.∴.∴(0<t<11).(Ⅲ)點P的坐標(biāo)為(,1)或(,1).過點P作PE⊥OA于E,∴∠PEA=∠QAC′=90°.∴∠PC′E+∠EPC′=90°.∵∠PC′E+∠QC′A=90°,∴∠EPC′=∠QC′A.∴△PC′E∽△C′QA.∴.∵PC′=PC=11-t,PE=OB=1,AQ=m,C′Q=CQ=1-m,∴.∴.∵,即,∴,即.將代入,并化簡,得.解得:.∴點P的坐標(biāo)為(,1)或(,1).21、(1)證明見解析;(2)CE∥AD,理由見解析;(3).【解析】

(1)根據(jù)角平分線的定義得到∠DAC=∠CAB,根據(jù)相似三角形的判定定理證明;(2)根據(jù)相似三角形的性質(zhì)得到∠ACB=∠ADC=90°,根據(jù)直角三角形的性質(zhì)得到CE=AE,根據(jù)等腰三角形的性質(zhì)、平行線的判定定理證明;(3)根據(jù)相似三角形的性質(zhì)列出比例式,計算即可.【詳解】解:(1)∵AC平分∠DAB,∴∠DAC=∠CAB,又∵AC2=AB?AD,∴AD:AC=AC:AB,∴△ADC∽△ACB;(2)CE∥AD,理由:∵△ADC∽△ACB,∴∠ACB=∠ADC=90°,又∵E為AB的中點,∴∠EAC=∠ECA,∵∠DAC=∠CAE,∴∠DAC=∠ECA,∴CE∥AD;(3)∵AD=4,AB=6,CE=AB=AE=3,∵CE∥AD,∴∠FCE=∠DAC,∠CEF=∠ADF,∴△CEF∽△ADF,∴==,∴=.22、(1)詳見解析;(2)詳見解析;(3)①α+β=90°;②成立,理由詳見解析.【解析】

(1)作OH⊥AB于H,根據(jù)線段垂直平分線的性質(zhì)得到OD=OA,OB=OC,證明△OCE≌△OBH,根據(jù)全等三角形的性質(zhì)證明;(2)證明△OCD≌△OBA,得到AB=CD,根據(jù)直角三角形的性質(zhì)得到OE=CD,證明即可;(3)①根據(jù)等腰三角形的性質(zhì)、三角形內(nèi)角和定理計算;②延長OE至F,是EF=OE,連接FD、FC,根據(jù)平行四邊形的判定和性質(zhì)、全等三角形的判定和性質(zhì)證明.【詳解】(1)作OH⊥AB于H,∵AD、BC的垂直平分線相交于點O,∴OD=OA,OB=OC,∵△ABO是等邊三角形,∴OD=OC,∠AOB=60°,∵∠AOB+∠COD=180°∴∠COD=120°,∵OE是邊CD的中線,∴OE⊥CD,∴∠OCE=30°,∵OA=OB,OH⊥AB,∴∠BOH=30°,BH=AB,在△OCE和△BOH中,,∴△OCE≌△OBH,∴OE=BH,∴OE=AB;(2)∵∠AOB=90°,∠AOB+∠COD=180°,∴∠COD=90°,在△OCD和△OBA中,,∴△OCD≌△OBA,∴AB=CD,∵∠COD=90°,OE是邊CD的中線,∴OE=CD,∴OE=AB;(3)①∵∠OAD=α,OA=OD,∴∠AOD=180°﹣2α,同理,∠BOC=180°﹣2β,∵∠AOB+∠COD=180°,∴∠AOD+∠COB=180°,∴180°﹣2α+180°﹣2β=180°,整理得,α+β=90°;②延長OE至F,使EF=OE,連接FD、FC,則四邊形FDOC是平行四邊形,∴∠OCF+∠COD=180°,,∴∠AOB=∠FCO,在△FCO和△AOB中,,∴△FCO≌△AOB,∴FO=AB,∴OE=FO=AB.【點睛】本題是四邊形的綜合題,考查了線段垂直平分線的性質(zhì)、全等三角形的判定和性質(zhì)以及直角三角形斜邊上的中線性質(zhì)、平行四邊形的判定與性質(zhì)等知識;熟練掌握平行四邊形的判定與性質(zhì),證明三角形全等是解題的關(guān)鍵.23、(1)見解析;(2)見解析;(3)AB=1【解析】

(1)由垂徑定理得出∠CPB=∠BCD,根據(jù)∠BCP=∠BCD+∠PCD=∠CPB+∠PCD=∠PED即可得證;(2)連接OP,知OP=OB,先證∠FPE=∠FEP得∠F+2∠FPE=180°,再由∠APG+∠FPE=90得2∠APG+2∠FPE=180°,據(jù)此可得2∠APG=∠F,據(jù)此即可得證;(3)連接AE,取AE中點N,連接HN、PN,過點E作EM⊥PF,先證∠PAE=∠F,由tan∠PAE=tan∠F得,再證∠GAP=∠MPE,由sin∠GAP=sin∠MPE得,從而得出,即MF=GP,由3PF=5PG即,可設(shè)PG=3k,得PF=5k、MF=PG=3k、PM=2k,由∠FPE=∠PEF知PF=EF=5k、EM=4k及PE=2

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論