版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
用放縮法處理數(shù)列和不等問(wèn)題(教師版)一.先求和后放縮(主要是先裂項(xiàng)求和,再放縮處理)例1.正數(shù)數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)的和SKIPIF1<0,滿足SKIPIF1<0,試求:(1)數(shù)列SKIPIF1<0的通項(xiàng)公式;(2)設(shè)SKIPIF1<0,數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)的和為SKIPIF1<0,求證:SKIPIF1<0解:(1)由已知得SKIPIF1<0,SKIPIF1<0時(shí),SKIPIF1<0,作差得:SKIPIF1<0,所以SKIPIF1<0,又因?yàn)镾KIPIF1<0為正數(shù)數(shù)列,所以SKIPIF1<0,即SKIPIF1<0是公差為2的等差數(shù)列,由SKIPIF1<0,得SKIPIF1<0,所以SKIPIF1<0(2)SKIPIF1<0,所以SKIPIF1<0SKIPIF1<0真題演練1:(06全國(guó)1卷理科22題)設(shè)數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)的和,SKIPIF1<0,SKIPIF1<0(Ⅰ)求首項(xiàng)SKIPIF1<0與通項(xiàng)SKIPIF1<0;(Ⅱ)設(shè)SKIPIF1<0,SKIPIF1<0,證明:SKIPIF1<0.解:(Ⅰ)由Sn=eq\f(4,3)an-eq\f(1,3)×2n+1+eq\f(2,3),n=1,2,3,…,①得a1=S1=eq\f(4,3)a1-eq\f(1,3)×4+eq\f(2,3)所以a1=2再由①有Sn-1=eq\f(4,3)an-1-eq\f(1,3)×2n+eq\f(2,3),n=2,3,4,…將①和②相減得:an=Sn-Sn-1=eq\f(4,3)(an-an-1)-eq\f(1,3)×(2n+1-2n),n=2,3,…整理得:an+2n=4(an-1+2n-1),n=2,3,…,因而數(shù)列{an+2n}是首項(xiàng)為a1+2=4,公比為4的等比數(shù)列,即:an+2n=4×4n-1=4n,n=1,2,3,…,因而an=4n-2n,n=1,2,3,…,(Ⅱ)將an=4n-2n代入①得Sn=eq\f(4,3)×(4n-2n)-eq\f(1,3)×2n+1+eq\f(2,3)=eq\f(1,3)×(2n+1-1)(2n+1-2)=eq\f(2,3)×(2n+1-1)(2n-1)Tn=eq\f(2n,Sn)=eq\f(3,2)×eq\f(2n,(2n+1-1)(2n-1))=eq\f(3,2)×(eq\f(1,2n-1)-eq\f(1,2n+1-1))所以,SKIPIF1<0=eq\f(3,2)SKIPIF1<0eq\f(1,2i-1)-eq\f(1,2i+1-1))=eq\f(3,2)×(eq\f(1,21-1)-SKIPIF1<0)<eq\f(3,2)二.先放縮再求和1.放縮后成等比數(shù)列,再求和例2.等比數(shù)列SKIPIF1<0中,SKIPIF1<0,前n項(xiàng)的和為SKIPIF1<0,且SKIPIF1<0成等差數(shù)列.設(shè)SKIPIF1<0,數(shù)列SKIPIF1<0前SKIPIF1<0項(xiàng)的和為SKIPIF1<0,證明:SKIPIF1<0.解:∵SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,∴公比SKIPIF1<0.∴SKIPIF1<0.SKIPIF1<0.(利用等比數(shù)列前n項(xiàng)和的模擬公式SKIPIF1<0猜想)∴SKIPIF1<0SKIPIF1<0.真題演練2:(06福建卷理科22題)已知數(shù)列SKIPIF1<0滿足SKIPIF1<0 (I)求數(shù)列SKIPIF1<0的通項(xiàng)公式;(II)若數(shù)列SKIPIF1<0滿足SKIPIF1<0,證明:數(shù)列SKIPIF1<0是等差數(shù)列;(Ⅲ)證明:SKIPIF1<0. (I)解:SKIPIF1<0 SKIPIF1<0SKIPIF1<0是以SKIPIF1<0為首項(xiàng),2為公比的等比數(shù)列 SKIPIF1<0即SKIPIF1<0 (II)證法一:SKIPIF1<0 SKIPIF1<0 SKIPIF1<0① SKIPIF1<0② ②-①,得SKIPIF1<0 即SKIPIF1<0SKIPIF1<0 ③-④,得SKIPIF1<0 即SKIPIF1<0SKIPIF1<0SKIPIF1<0是等差數(shù)列 (III)證明:SKIPIF1<0SKIPIF1<0 SKIPIF1<0 SKIPIF1<0 SKIPIF1<0 SKIPIF1<02.放縮后為“差比”數(shù)列,再求和例3.已知數(shù)列SKIPIF1<0滿足:SKIPIF1<0,SKIPIF1<0.求證:SKIPIF1<0證明:因?yàn)镾KIPIF1<0,所以SKIPIF1<0與SKIPIF1<0同號(hào),又因?yàn)镾KIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,即SKIPIF1<0.所以數(shù)列SKIPIF1<0為遞增數(shù)列,所以SKIPIF1<0,即SKIPIF1<0,累加得:SKIPIF1<0.令SKIPIF1<0,所以SKIPIF1<0,兩式相減得:SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,故得SKIPIF1<0.3.放縮后成等差數(shù)列,再求和例4.已知各項(xiàng)均為正數(shù)的數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和為SKIPIF1<0,且SKIPIF1<0.(1)求證:SKIPIF1<0;(2)求證:SKIPIF1<0解:(1)在條件中,令SKIPIF1<0,得SKIPIF1<0,SKIPIF1<0,又由條件SKIPIF1<0有SKIPIF1<0,上述兩式相減,注意到SKIPIF1<0得SKIPIF1<0SKIPIF1<0∴SKIPIF1<0所以,SKIPIF1<0,SKIPIF1<0所以SKIPIF1<0(2)因?yàn)镾KIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0SKIPIF1<0SKIPIF1<0;SKIPIF1<0練習(xí):1.(08南京一模22題)設(shè)函數(shù)SKIPIF1<0,已知不論SKIPIF1<0為何實(shí)數(shù),恒有SKIPIF1<0且SKIPIF1<0.對(duì)于正數(shù)列SKIPIF1<0,其前n項(xiàng)和SKIPIF1<0,SKIPIF1<0.(Ⅰ)求實(shí)數(shù)b的值;(II)求數(shù)列SKIPIF1<0的通項(xiàng)公式;(Ⅲ)若SKIPIF1<0,且數(shù)列SKIPIF1<0的前n項(xiàng)和為SKIPIF1<0,試比較SKIPIF1<0和SKIPIF1<0的大小并證明之.解:(Ⅰ)SKIPIF1<0(利用函數(shù)值域夾逼性);(II)SKIPIF1<0;(Ⅲ)∵SKIPIF1<0,∴SKIPIF1<02.(04全國(guó))已知數(shù)列SKIPIF1<0的前項(xiàng)和SKIPIF1<0滿足:SKIPIF1<0,SKIPIF1<0(1)寫出數(shù)列SKIPIF1<0的前三項(xiàng)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0;(2)求數(shù)列SKIPIF1<0的通項(xiàng)公式;(3)證明:對(duì)任意的整數(shù)SKIPIF1<0,有SKIPIF1<0分析:⑴由遞推公式易求:a1=1,a2=0,a3=2;⑵由已知得:SKIPIF1<0(n>1)化簡(jiǎn)得:SKIPIF1<0SKIPIF1<0,SKIPIF1<0故數(shù)列{SKIPIF1<0}是以SKIPIF1<0為首項(xiàng),公比為SKIPIF1<0的等比數(shù)列.故SKIPIF1<0∴SKIPIF1<0∴數(shù)列{SKIPIF1<0}的通項(xiàng)公式為:SKIPIF1<0.⑶觀察要證的不等式,左邊很復(fù)雜,先要設(shè)法對(duì)左邊的項(xiàng)進(jìn)行適當(dāng)?shù)姆趴s,使之能夠求和。而左邊=SKIPIF1<0,如果我們把上式中的分母中的SKIPIF1<0去掉,就可利用等比數(shù)列的前n項(xiàng)公式求和,由于-1與1交錯(cuò)出現(xiàn),容易想到將式中兩項(xiàng)兩項(xiàng)地合并起來(lái)一起進(jìn)行放縮,嘗試知:SKIPIF1<0,SKIPIF1<0,因此,可將SKIPIF1<0保留,再將后面的項(xiàng)兩兩組合后放縮,即可求和。這里需要對(duì)SKIPIF1<0進(jìn)行分類討論,(1)當(dāng)SKIPIF1<0為偶數(shù)SKIPIF1<0時(shí),SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0(2)當(dāng)SKIPIF1<0是奇數(shù)SKIPIF1<0時(shí),SKIPIF1<0為偶數(shù),SKIPIF1<0所以對(duì)任意整數(shù)SKIPIF1<0,有SKIPIF1<0SKIPIF1<0。本題的關(guān)鍵是并項(xiàng)后進(jìn)行適當(dāng)?shù)姆趴s。3.(07武漢市模擬)定義數(shù)列如下:SKIPIF1<0求證:(1)對(duì)于SKIPIF1<0恒有SKIPIF1<0成立;(2)當(dāng)SKIPIF1<0,有SKIPIF1<0成立;(3)SKIPIF1<0分析:(1)用數(shù)學(xué)歸納法易證。(2)由SKIPIF1<0得:SKIPIF1<0SKIPIF1<0……SKIPIF1<0以上各式兩邊分別相乘得:SKIPIF1<0,又SKIPIF1<0SKIPIF1<0(3)要證不等式SKIPIF1<0,可先設(shè)法求和:SKIPIF1<0,再進(jìn)行適當(dāng)?shù)姆趴s。SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0又SKIPIF1<0SKIPIF1<0SKIPIF1<0原不等式得證。本題的關(guān)鍵是根據(jù)題設(shè)條件裂項(xiàng)求和。用放縮法處理數(shù)列和不等問(wèn)題(學(xué)生版)一.先求和后放縮(主要是先裂項(xiàng)求和,再放縮處理)例1.正數(shù)數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)的和SKIPIF1<0,滿足SKIPIF1<0,試求:(1)數(shù)列SKIPIF1<0的通項(xiàng)公式;(2)設(shè)SKIPIF1<0,數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)的和為SKIPIF1<0,求證:SKIPIF1<0真題演練1:(06全國(guó)1卷理科22題)設(shè)數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)的和,SKIPIF1<0,SKIPIF1<0(Ⅰ)求首項(xiàng)SKIPIF1<0與通項(xiàng)SKIPIF1<0;(Ⅱ)設(shè)SKIPIF1<0,SKIPIF1<0,證明:SKIPIF1<0.二.先放縮再求和1.放縮后成等比數(shù)列,再求和例2.等比數(shù)列SKIPIF1<0中,SKIPIF1<0,前n項(xiàng)的和為SKIPIF1<0,且SKIPIF1<0成等差數(shù)列.設(shè)SKIPIF1<0,數(shù)列SKIPIF1<0前SKIPIF1<0項(xiàng)的和為SKIPIF1<0,證明:SKIPIF1<0.真題演練2:(06福建卷理科22題)已知數(shù)列SKIPIF1<0滿足SKIPIF1<0 (I)求數(shù)列SKIPIF1<0的通項(xiàng)公式;(II)若數(shù)列SKIPIF1<0滿足SKIPIF1<0,證明:數(shù)列SKIPIF1<0是等差數(shù)列;(Ⅲ)證明:SKIPIF1<0. 2.放縮后為“差比”數(shù)列,再求和例3.已知數(shù)列SKIPIF1<0滿足:SKIPIF1<0,SKIPIF1<0.求證:SKIPIF1<03.放縮后成等差數(shù)列,再求和例4.已知各項(xiàng)均為正數(shù)的數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和為SKIPIF1<0,且SKIPIF1<0.(1)求證:SKIPI
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 沈陽(yáng)理工大學(xué)《辦公空間設(shè)計(jì)》2022-2023學(xué)年第一學(xué)期期末試卷
- 大班數(shù)學(xué)課件《9的分解與組成》
- 2024工程勞務(wù)用工合同范本
- 2024的榨菜種植產(chǎn)銷合同
- 2024工程分包合同范本
- 2024居間服務(wù)合同個(gè)人貼息
- 2024新版房產(chǎn)抵押合同協(xié)議書(shū)
- 2024關(guān)于經(jīng)營(yíng)房屋租賃合同范本
- 2024委托繳費(fèi)授權(quán)合同樣書(shū)
- 深圳大學(xué)《瑜伽俱樂(lè)部》2022-2023學(xué)年第一學(xué)期期末試卷
- 混凝土監(jiān)理旁站記錄
- 臨床醫(yī)學(xué)老年性癡呆-課件
- 小學(xué)經(jīng)典誦讀社團(tuán)活動(dòng)計(jì)劃、安排、記錄匯編
- 咯血(課件幻燈)
- 《管理統(tǒng)計(jì)學(xué)》課程教學(xué)大綱
- C++語(yǔ)言基礎(chǔ)知識(shí)
- 全國(guó)人工智能應(yīng)用技術(shù)技能大賽理論考試題庫(kù)大全-上(單選題匯總)
- 機(jī)關(guān)檔案管理工作培訓(xùn)課件
- 工程施工階段全過(guò)程造價(jià)控制與管理工作方案 精品
- 移動(dòng)室內(nèi)信號(hào)覆蓋系統(tǒng)介紹演示文稿
- DB15T 389-2021內(nèi)蒙古自治區(qū)造林技術(shù)規(guī)程
評(píng)論
0/150
提交評(píng)論