新高考數(shù)學(xué)二輪復(fù)習(xí)強(qiáng)化練習(xí)專題12 數(shù)列的基本運(yùn)算(講)(解析版)_第1頁
新高考數(shù)學(xué)二輪復(fù)習(xí)強(qiáng)化練習(xí)專題12 數(shù)列的基本運(yùn)算(講)(解析版)_第2頁
新高考數(shù)學(xué)二輪復(fù)習(xí)強(qiáng)化練習(xí)專題12 數(shù)列的基本運(yùn)算(講)(解析版)_第3頁
新高考數(shù)學(xué)二輪復(fù)習(xí)強(qiáng)化練習(xí)專題12 數(shù)列的基本運(yùn)算(講)(解析版)_第4頁
新高考數(shù)學(xué)二輪復(fù)習(xí)強(qiáng)化練習(xí)專題12 數(shù)列的基本運(yùn)算(講)(解析版)_第5頁
已閱讀5頁,還剩9頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

第一篇熱點(diǎn)、難點(diǎn)突破篇專題12數(shù)列的基本運(yùn)算(講)真題體驗(yàn)感悟高考1.(2022·全國·統(tǒng)考高考真題)圖1是中國古代建筑中的舉架結(jié)構(gòu),SKIPIF1<0是桁,相鄰桁的水平距離稱為步,垂直距離稱為舉,圖2是某古代建筑屋頂截面的示意圖.其中SKIPIF1<0是舉,SKIPIF1<0是相等的步,相鄰桁的舉步之比分別為SKIPIF1<0.已知SKIPIF1<0成公差為0.1的等差數(shù)列,且直線SKIPIF1<0的斜率為0.725,則SKIPIF1<0(

)A.0.75 B.0.8 C.0.85 D.0.9【答案】D【分析】設(shè)SKIPIF1<0,則可得關(guān)于SKIPIF1<0的方程,求出其解后可得正確的選項(xiàng).【詳解】設(shè)SKIPIF1<0,則SKIPIF1<0,依題意,有SKIPIF1<0,且SKIPIF1<0,所以SKIPIF1<0,故SKIPIF1<0,故選:D2.(2022·全國·統(tǒng)考高考真題)已知等比數(shù)列SKIPIF1<0的前3項(xiàng)和為168,SKIPIF1<0,則SKIPIF1<0(

)A.14 B.12 C.6 D.3【答案】D【分析】設(shè)等比數(shù)列SKIPIF1<0的公比為SKIPIF1<0,易得SKIPIF1<0,根據(jù)題意求出首項(xiàng)與公比,再根據(jù)等比數(shù)列的通項(xiàng)即可得解.【詳解】解:設(shè)等比數(shù)列SKIPIF1<0的公比為SKIPIF1<0,若SKIPIF1<0,則SKIPIF1<0,與題意矛盾,所以SKIPIF1<0,則SKIPIF1<0,解得SKIPIF1<0,所以SKIPIF1<0.故選:D.3.(2022·全國·統(tǒng)考高考真題)記SKIPIF1<0為數(shù)列SKIPIF1<0的前n項(xiàng)和.已知SKIPIF1<0.(1)證明:SKIPIF1<0是等差數(shù)列;(2)若SKIPIF1<0成等比數(shù)列,求SKIPIF1<0的最小值.【答案】(1)證明見解析;(2)SKIPIF1<0.【分析】(1)依題意可得SKIPIF1<0,根據(jù)SKIPIF1<0,作差即可得到SKIPIF1<0,從而得證;(2)法一:由(1)及等比中項(xiàng)的性質(zhì)求出SKIPIF1<0,即可得到SKIPIF1<0的通項(xiàng)公式與前SKIPIF1<0項(xiàng)和,再根據(jù)二次函數(shù)的性質(zhì)計(jì)算可得.【詳解】(1)因?yàn)镾KIPIF1<0,即SKIPIF1<0①,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0②,①SKIPIF1<0②得,SKIPIF1<0,即SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0且SKIPIF1<0,所以SKIPIF1<0是以SKIPIF1<0為公差的等差數(shù)列.(2)[方法一]:二次函數(shù)的性質(zhì)由(1)可得SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,又SKIPIF1<0,SKIPIF1<0,SKIPIF1<0成等比數(shù)列,所以SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,所以,當(dāng)SKIPIF1<0或SKIPIF1<0時(shí),SKIPIF1<0.[方法二]:【最優(yōu)解】鄰項(xiàng)變號法由(1)可得SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,又SKIPIF1<0,SKIPIF1<0,SKIPIF1<0成等比數(shù)列,所以SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0,所以SKIPIF1<0,即有SKIPIF1<0.則當(dāng)SKIPIF1<0或SKIPIF1<0時(shí),SKIPIF1<0.【整體點(diǎn)評】(2)法一:根據(jù)二次函數(shù)的性質(zhì)求出SKIPIF1<0的最小值,適用于可以求出SKIPIF1<0的表達(dá)式;法二:根據(jù)鄰項(xiàng)變號法求最值,計(jì)算量小,是該題的最優(yōu)解.總結(jié)規(guī)律預(yù)測考向(一)規(guī)律與預(yù)測1.等差(等比)數(shù)列的定義、通項(xiàng)公式及求和公式是高考的基礎(chǔ)考點(diǎn)與高頻考點(diǎn).以小題居多,屬于容易題.

2.數(shù)列求和方法中的公式法、錯(cuò)位相減法、裂項(xiàng)相消法及分組求和法是高考的高頻考點(diǎn),以小題或解答題形式出現(xiàn),難易程度有些起伏,從趨勢看,與不等式等相結(jié)合,其難度有所增大,總體屬于中檔題.涉及數(shù)列的通項(xiàng)、遞推與不等式相結(jié)合的客觀題有所增加.

(二)本專題考向展示考點(diǎn)突破典例分析考向一等差數(shù)列、等比數(shù)列的基本運(yùn)算【核心知識】等差數(shù)列、等比數(shù)列的基本公式(n∈N*)(1)等差數(shù)列的通項(xiàng)公式:an=a1+(n-1)d;(2)等比數(shù)列的通項(xiàng)公式:an=a1·qn-1.(3)等差數(shù)列的求和公式:SKIPIF1<0;(4)等比數(shù)列的求和公式:SKIPIF1<0【典例分析】典例1.(2021·北京·統(tǒng)考高考真題)已知SKIPIF1<0是各項(xiàng)均為整數(shù)的遞增數(shù)列,且SKIPIF1<0,若SKIPIF1<0,則SKIPIF1<0的最大值為(

)A.9 B.10 C.11 D.12【答案】C【分析】使數(shù)列首項(xiàng)、遞增幅度均最小,結(jié)合等差數(shù)列的通項(xiàng)及求和公式求得SKIPIF1<0可能的最大值,然后構(gòu)造數(shù)列滿足條件,即得到SKIPIF1<0的最大值.【詳解】若要使n盡可能的大,則,遞增幅度要盡可能小,不妨設(shè)數(shù)列是首項(xiàng)為3,公差為1的等差數(shù)列,其前n項(xiàng)和為,則,,所以SKIPIF1<0.對于,,取數(shù)列各項(xiàng)為(SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,所以n的最大值為11.故選:C.典例2.(2020·全國·統(tǒng)考高考真題)記Sn為等比數(shù)列{an}的前n項(xiàng)和.若a5–a3=12,a6–a4=24,則SKIPIF1<0=(

)A.2n–1 B.2–21–n C.2–2n–1 D.21–n–1【答案】B【分析】根據(jù)等比數(shù)列的通項(xiàng)公式,可以得到方程組,解方程組求出首項(xiàng)和公比,最后利用等比數(shù)列的通項(xiàng)公式和前SKIPIF1<0項(xiàng)和公式進(jìn)行求解即可.【詳解】設(shè)等比數(shù)列的公比為SKIPIF1<0,由SKIPIF1<0可得:SKIPIF1<0,所以SKIPIF1<0,因此SKIPIF1<0.故選:B.典例3.(2022春·湖南長沙·高三長郡中學(xué)??茧A段練習(xí))已知等差數(shù)列SKIPIF1<0滿足SKIPIF1<0,前4項(xiàng)和SKIPIF1<0.(1)求SKIPIF1<0的通項(xiàng)公式;(2)設(shè)等比數(shù)列SKIPIF1<0滿足SKIPIF1<0,求SKIPIF1<0的前SKIPIF1<0項(xiàng)和SKIPIF1<0.【答案】(1)SKIPIF1<0(2)SKIPIF1<0【分析】(1)由題干條件分別求出公差d和首項(xiàng)SKIPIF1<0,再代入公式即可;(2)由(1)求得的數(shù)列SKIPIF1<0的通項(xiàng)公式計(jì)算SKIPIF1<0和SKIPIF1<0,進(jìn)而得到數(shù)列SKIPIF1<0的首項(xiàng)SKIPIF1<0和公比SKIPIF1<0,最后代入等比數(shù)列前n項(xiàng)和公式即可.【詳解】(1)設(shè)等差數(shù)列SKIPIF1<0的通項(xiàng)公式為SKIPIF1<0,由題可知,SKIPIF1<0,所以SKIPIF1<0.又SKIPIF1<0,所以SKIPIF1<0.故SKIPIF1<0的通項(xiàng)公式為SKIPIF1<0.(2)由(1)知,SKIPIF1<0,SKIPIF1<0于是等比數(shù)列SKIPIF1<0的公比為SKIPIF1<0,則等比數(shù)列SKIPIF1<0的通項(xiàng)公式為SKIPIF1<0,SKIPIF1<0的前SKIPIF1<0項(xiàng)和為SKIPIF1<0.【規(guī)律方法】等差數(shù)列、等比數(shù)列問題的求解策略(1)抓住基本量,首項(xiàng)SKIPIF1<0、公差d或公比q.(2)熟悉一些結(jié)構(gòu)特征,如前n項(xiàng)和為SKIPIF1<0(a,b是常數(shù))的形式的數(shù)列為等差數(shù)列,通項(xiàng)公式為SKIPIF1<0的形式的數(shù)列為等比數(shù)列.(3)由于等比數(shù)列的通項(xiàng)公式、前n項(xiàng)和公式中變量n在指數(shù)位置,所以常用兩式相除(即比值的方式)進(jìn)行相關(guān)計(jì)算.考向二等差(等比)數(shù)列的性質(zhì)【核心知識】1.通項(xiàng)性質(zhì):若m+n=p+q=2k(m,n,p,q,k∈N*),則對于等差數(shù)列,有am+an=ap+aq=2ak,對于等比數(shù)列有SKIPIF1<0.2.前n項(xiàng)和的性質(zhì):(1)對于等差數(shù)列有Sm,S2m-Sm,S3m-S2m,…成等差數(shù)列;對于等比數(shù)列有Sm,S2m-Sm,S3m-S2m,…成等比數(shù)列(q=-1且m為偶數(shù)情況除外).(2)對于等差數(shù)列,有S2n-1=(2n-1)an.【典例分析】典例4.(2020·浙江·統(tǒng)考高考真題)已知等差數(shù)列{an}的前n項(xiàng)和Sn,公差d≠0,SKIPIF1<0.記b1=S2,bn+1=S2n+2–S2n,SKIPIF1<0,下列等式不可能成立的是(

)A.2a4=a2+a6 B.2b4=b2+b6 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【分析】根據(jù)題意可得,SKIPIF1<0,而SKIPIF1<0,即可表示出題中SKIPIF1<0,再結(jié)合等差數(shù)列的性質(zhì)即可判斷各等式是否成立.【詳解】對于A,因?yàn)閿?shù)列SKIPIF1<0為等差數(shù)列,所以根據(jù)等差數(shù)列的下標(biāo)和性質(zhì),由SKIPIF1<0可得,SKIPIF1<0,A正確;對于B,由題意可知,SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.∴SKIPIF1<0,SKIPIF1<0.根據(jù)等差數(shù)列的下標(biāo)和性質(zhì),由SKIPIF1<0可得SKIPIF1<0,B正確;對于C,SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,C正確;對于D,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,∴SKIPIF1<0即SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,∴SKIPIF1<0即SKIPIF1<0,所以SKIPIF1<0,D不正確.故選:D.典例5.(2022春·云南昆明·高三云南師大附中??茧A段練習(xí))已知SKIPIF1<0為正項(xiàng)遞增等比數(shù)列SKIPIF1<0的前n項(xiàng)和,若SKIPIF1<0,則SKIPIF1<0___________.【答案】SKIPIF1<0【分析】根據(jù)等比數(shù)列的概念可得SKIPIF1<0和SKIPIF1<0的值,直接根據(jù)等比數(shù)列前SKIPIF1<0項(xiàng)和以及通項(xiàng)公式即可得結(jié)果.【詳解】由SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0(舍),易知SKIPIF1<0,所以SKIPIF1<0,故SKIPIF1<0.故答案為:SKIPIF1<0.典例6.(天津市河?xùn)|區(qū)2022-2023學(xué)年高二上學(xué)期期末數(shù)學(xué)試題)已知數(shù)列SKIPIF1<0滿足SKIPIF1<0,則SKIPIF1<0等于____.【答案】7【分析】由SKIPIF1<0,變形SKIPIF1<0得出數(shù)列SKIPIF1<0為等差數(shù)列,再結(jié)合等差數(shù)列的性質(zhì)求解即可.【詳解】因?yàn)镾KIPIF1<0,所以SKIPIF1<0,所以數(shù)列SKIPIF1<0為等差數(shù)列,由SKIPIF1<0所以SKIPIF1<0,即SKIPIF1<0,由等差數(shù)列的性質(zhì)有:SKIPIF1<0,所以SKIPIF1<0.故答案為:7.【總結(jié)提升】等差、等比數(shù)列的性質(zhì)問題的求解策略(1)抓關(guān)系,抓住項(xiàng)與項(xiàng)之間的關(guān)系及項(xiàng)的序號之間的關(guān)系,從這些特點(diǎn)入手,選擇恰當(dāng)?shù)男再|(zhì)進(jìn)行求解.(2)用性質(zhì),數(shù)列是一種特殊的函數(shù),具有函數(shù)的一些性質(zhì),如單調(diào)性、周期性等,可利用函數(shù)的性質(zhì)解題.考向三等差(等比)數(shù)列的探索與證明【核心知識】等差數(shù)列等比數(shù)列定義法an+1-an=deq\f(an+1,an)=q(q≠0)通項(xiàng)法an=a1+(n-1)dan=a1·qn-1中項(xiàng)法2an=an-1+an+1(n≥2)aeq\o\al(2,n)=an-1an+1(n≥2,an≠0)前n項(xiàng)和法Sn=an2+bn(a,b為常數(shù))Sn=kqn-k(k≠0,q≠0,1)證明數(shù)列為等差(比)數(shù)列一般使用定義法.特別提醒:aeq\o\al(2,n)=an-1an+1(n≥2,n∈N*)是{an}為等比數(shù)列的必要不充分條件,也就是判斷一個(gè)數(shù)列是等比數(shù)列時(shí),要注意各項(xiàng)不為0.【典例分析】典例7.(2022·全國·高三專題練習(xí))已知數(shù)列SKIPIF1<0滿足SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0______.【答案】SKIPIF1<0【分析】由遞推公式找到對應(yīng)的不動(dòng)點(diǎn)方程,巧用“不動(dòng)點(diǎn)法”求數(shù)列的通項(xiàng)公式.【詳解】求不動(dòng)點(diǎn),設(shè)SKIPIF1<0,令SKIPIF1<0得:SKIPIF1<0,解得:SKIPIF1<0或SKIPIF1<0;因?yàn)镾KIPIF1<0,所以SKIPIF1<0,化簡得:SKIPIF1<0①,SKIPIF1<0,化簡得:SKIPIF1<0②,用式①除以式②可得:SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0是首項(xiàng)為SKIPIF1<0,公比為SKIPIF1<0的等比數(shù)列,故SKIPIF1<0,從而SKIPIF1<0.故答案為:SKIPIF1<0典例8.(2023·全國·高三專題練習(xí))數(shù)學(xué)中有許多美麗的錯(cuò)誤,法國數(shù)學(xué)家費(fèi)馬通過觀察計(jì)算曾提出猜想:形如SKIPIF1<0(SKIPIF1<0,1,2,…)的數(shù)都是質(zhì)數(shù),這就是費(fèi)馬素?cái)?shù)猜想.半個(gè)世紀(jì)后善于發(fā)現(xiàn)的歐拉算出第5個(gè)費(fèi)馬數(shù)不是質(zhì)數(shù),從而否定了這一種猜想.現(xiàn)設(shè):SKIPIF1<0(SKIPIF1<01,2,3,…),SKIPIF1<0為常數(shù),SKIPIF1<0表示數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和,若SKIPIF1<0,則SKIPIF1<0______.【答案】SKIPIF1<0【分析】根據(jù)對數(shù)定義可得SKIPIF1<0,再結(jié)合等差數(shù)列的前SKIPIF1<0項(xiàng)和公式求SKIPIF1<0,進(jìn)而求SKIPIF1<0.【詳解】∵SKIPIF1<0,則SKIPIF1<0,顯然SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0∴數(shù)列SKIPIF1<0以首項(xiàng)為SKIPIF1<0,公差為1的等差數(shù)列又∵SKIPIF1<0,即SKIPIF1<0則SKIPIF1<0∴SKIPIF1<0故答案為:SKIPIF1<0.典例9.(2021·全國·高考真題)記SKIPIF1<0為數(shù)列SKIPIF1<0的前n項(xiàng)和,已知SKIPIF1<0,且數(shù)列SKIPIF1<0是等差數(shù)列,證明:SKIPIF1<0是等差數(shù)列.【答案】證明見解析.【分析】先根據(jù)SKIPIF1<0求出數(shù)列SKIPIF1<0的公差SKIPIF1<0,進(jìn)一步寫出SKIPIF1<0的通項(xiàng),從而求出SKIPIF1<0的通項(xiàng)公式,最終得證.【詳解】∵數(shù)列SKIPIF1<0是等差數(shù)列,設(shè)公差為SKIPIF1<0SKIPIF1<0∴SKIPIF1<0,SKIPIF1<0∴SKIPIF1<0,SKIPIF1<0∴當(dāng)SKIPIF1<0時(shí),SKIPIF1<0當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,滿足SKIPIF1<0,∴SKIPIF1<0的通項(xiàng)公式為SKIPIF1<0,SKIPIF1<0∴SKIPIF1<0∴SKIPIF1<0是等差數(shù)列.【點(diǎn)睛】在利用SKIPIF1<0求通項(xiàng)公式時(shí)一定要討論SKIPIF1<0的特殊情況.典例10.(2019年高考全國II卷理)已知數(shù)列{an}和{bn}滿足a1=1,b1=0,SKIPIF1<0,SKIPIF1<0.(I)證明:{an+bn}是等比數(shù)列,{an–bn}是等差數(shù)列;(II)求{an}和{bn}的通項(xiàng)公式.【答案】(I)見解析;(2)SKIPIF1<0,SKIPIF1<0.【解析】(1)由題設(shè)得SKIPIF1<0,即SKIPIF1<0.又因?yàn)閍1+b1=l,所以SKIPIF1<0是首項(xiàng)為1,公比為SKIPIF1<0的等比數(shù)列.由題設(shè)得SKIPIF1<0,即SKIPIF1<0.又因?yàn)閍1–b1=l,所以SKIPIF1<0是首項(xiàng)為1,公差為2的等差數(shù)列.(2)由(1)知,SKIPIF1<0,SKIPIF1<0.所以SKIPIF1<0,SKIPIF1<0.典例11.(2022春·內(nèi)蒙古呼和浩特·高三呼市二中)已知數(shù)列SKIPIF1<0滿足SKIPIF1<0,SKIPIF1<0,SKIPIF1<0是公差為1的等差數(shù)列.(1)證明:SKIPIF1<0是等比數(shù)列;(2)求SKIPIF1<0的前SKIPIF1<0項(xiàng)和SKIPIF1<0.【答案】(1)證明見解析;(2)SKIPIF1<0.【分析】(1)根據(jù)等差數(shù)列的定義求出數(shù)列SKIPIF1<0的通項(xiàng)公式,可得SKIPIF1<0,等式兩邊同時(shí)加n,則SKIPIF1<0,結(jié)合等比數(shù)列的定義即可證明;(2)由(1)和等比數(shù)列的通項(xiàng)公式可得SKIPIF1<0,利用分組求和法即可求解.【詳解】(1)因?yàn)镾KIPIF1<0是公差為1的等差數(shù)列,SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,等式兩邊同時(shí)加n,得SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0是以2為首項(xiàng),2為公比的等比數(shù)列;(2)由(1)知,SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0典例12.(2022·重慶沙坪壩·重慶八中??寄M預(yù)測)已知數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和為SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.(1)證明:SKIPIF1<0是等差數(shù)列;(2)求SKIPIF1<0.【答案】(1)證明見解析(2)250【分析】(1)令SKIPIF1<0、SKIPIF1<0、SKIPIF1<0、SKIPIF1<0、SKIPIF1<0代入SKIPIF1<0求出SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,判斷可得答案;(2)由(1)判斷出數(shù)列SKIPIF1<0的偶數(shù)項(xiàng)是公差為SKIPIF1<0首項(xiàng)為SKIPIF1<0的等差數(shù)列,奇數(shù)項(xiàng)是公差為SKIPIF1<0首項(xiàng)為SKIPIF1<0的等差數(shù)列,分別求SKIPIF1<0

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論