云南省紅河州綠春一中2021-2022學年高考數(shù)學二模試卷含解析_第1頁
云南省紅河州綠春一中2021-2022學年高考數(shù)學二模試卷含解析_第2頁
云南省紅河州綠春一中2021-2022學年高考數(shù)學二模試卷含解析_第3頁
云南省紅河州綠春一中2021-2022學年高考數(shù)學二模試卷含解析_第4頁
云南省紅河州綠春一中2021-2022學年高考數(shù)學二模試卷含解析_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2021-2022高考數(shù)學模擬試卷注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.函數(shù)的部分圖象如圖所示,已知,函數(shù)的圖象可由圖象向右平移個單位長度而得到,則函數(shù)的解析式為()A. B.C. D.2.執(zhí)行如圖所示的程序框圖,輸出的結(jié)果為()A. B. C. D.3.的內(nèi)角的對邊分別為,若,則內(nèi)角()A. B. C. D.4.已知等差數(shù)列中,則()A.10 B.16 C.20 D.245.《九章算術(shù)》是我國古代內(nèi)容極為豐富的數(shù)學名著,書中有如下問題:“今有芻甍,下廣三丈,袤四丈,上袤二丈,無廣,高二丈,問:積幾何?”其意思為:“今有底面為矩形的屋脊狀的楔體,下底面寬3丈,長4丈,上棱長2丈,高2丈,問:它的體積是多少?”已知l丈為10尺,該楔體的三視圖如圖所示,其中網(wǎng)格紙上小正方形邊長為1,則該楔體的體積為()A.10000立方尺B.11000立方尺C.12000立方尺D.13000立方尺6.已知正項數(shù)列滿足:,設(shè),當最小時,的值為()A. B. C. D.7.函數(shù)的定義域為()A.或 B.或C. D.8.過拋物線的焦點且與的對稱軸垂直的直線與交于,兩點,,為的準線上的一點,則的面積為()A.1 B.2 C.4 D.89.復數(shù)的共軛復數(shù)在復平面內(nèi)所對應(yīng)的點位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限10.已知不同直線、與不同平面、,且,,則下列說法中正確的是()A.若,則 B.若,則C.若,則 D.若,則11.已知三棱錐且平面,其外接球體積為()A. B. C. D.12.將函數(shù)的圖象沿軸向左平移個單位長度后,得到函數(shù)的圖象,則“”是“是偶函數(shù)”的()A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分也不必要條件二、填空題:本題共4小題,每小題5分,共20分。13.若隨機變量的分布列如表所示,則______,______.-10114.已知等差數(shù)列的前項和為,且,則______.15.在矩形ABCD中,,,點E,F(xiàn)分別為BC,CD邊上動點,且滿足,則的最大值為________.16.角α的頂點在坐標原點,始邊與x軸的非負半軸重合,終邊經(jīng)過點P(1,2),則sin(π﹣α)的值是_____.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,四邊形是邊長為3的菱形,平面.(1)求證:平面;(2)若與平面所成角為,求二面角的正弦值.18.(12分)隨著互聯(lián)網(wǎng)金融的不斷發(fā)展,很多互聯(lián)網(wǎng)公司推出余額增值服務(wù)產(chǎn)品和活期資金管理服務(wù)產(chǎn)品,如螞蟻金服旗下的“余額寶”,騰訊旗下的“財富通”,京東旗下“京東小金庫”.為了調(diào)查廣大市民理財產(chǎn)品的選擇情況,隨機抽取1200名使用理財產(chǎn)品的市民,按照使用理財產(chǎn)品的情況統(tǒng)計得到如下頻數(shù)分布表:分組頻數(shù)(單位:名)使用“余額寶”使用“財富通”使用“京東小金庫”30使用其他理財產(chǎn)品50合計1200已知這1200名市民中,使用“余額寶”的人比使用“財富通”的人多160名.(1)求頻數(shù)分布表中,的值;(2)已知2018年“余額寶”的平均年化收益率為,“財富通”的平均年化收益率為.若在1200名使用理財產(chǎn)品的市民中,從使用“余額寶”和使用“財富通”的市民中按分組用分層抽樣方法共抽取7人,然后從這7人中隨機選取2人,假設(shè)這2人中每個人理財?shù)馁Y金有10000元,這2名市民2018年理財?shù)睦⒖偤蜑?,求的分布列及?shù)學期望.注:平均年化收益率,也就是我們所熟知的利息,理財產(chǎn)品“平均年化收益率為”即將100元錢存入某理財產(chǎn)品,一年可以獲得3元利息.19.(12分)已知()過點,且當時,函數(shù)取得最大值1.(1)將函數(shù)的圖象向右平移個單位得到函數(shù),求函數(shù)的表達式;(2)在(1)的條件下,函數(shù),求在上的值域.20.(12分)設(shè)直線與拋物線交于兩點,與橢圓交于兩點,設(shè)直線(為坐標原點)的斜率分別為,若.(1)證明:直線過定點,并求出該定點的坐標;(2)是否存在常數(shù),滿足?并說明理由.21.(12分)橢圓的左、右焦點分別為,橢圓上兩動點使得四邊形為平行四邊形,且平行四邊形的周長和最大面積分別為8和.(1)求橢圓的標準方程;(2)設(shè)直線與橢圓的另一交點為,當點在以線段為直徑的圓上時,求直線的方程.22.(10分)如圖為某大江的一段支流,岸線與近似滿足∥,寬度為.圓為江中的一個半徑為的小島,小鎮(zhèn)位于岸線上,且滿足岸線,.現(xiàn)計劃建造一條自小鎮(zhèn)經(jīng)小島至對岸的水上通道(圖中粗線部分折線段,在右側(cè)),為保護小島,段設(shè)計成與圓相切.設(shè).(1)試將通道的長表示成的函數(shù),并指出定義域;(2)若建造通道的費用是每公里100萬元,則建造此通道最少需要多少萬元?

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.A【解析】

由圖根據(jù)三角函數(shù)圖像的對稱性可得,利用周期公式可得,再根據(jù)圖像過,即可求出,再利用三角函數(shù)的平移變換即可求解.【詳解】由圖像可知,即,所以,解得,又,所以,由,所以或,又,所以,,所以,,即,因為函數(shù)的圖象由圖象向右平移個單位長度而得到,所以.故選:A【點睛】本題考查了由圖像求三角函數(shù)的解析式、三角函數(shù)圖像的平移伸縮變換,需掌握三角形函數(shù)的平移伸縮變換原則,屬于基礎(chǔ)題.2.D【解析】

由程序框圖確定程序功能后可得出結(jié)論.【詳解】執(zhí)行該程序可得.故選:D.【點睛】本題考查程序框圖.解題可模擬程序運行,觀察變量值的變化,然后可得結(jié)論,也可以由程序框圖確定程序功能,然后求解.3.C【解析】

由正弦定理化邊為角,由三角函數(shù)恒等變換可得.【詳解】∵,由正弦定理可得,∴,三角形中,∴,∴.故選:C.【點睛】本題考查正弦定理,考查兩角和的正弦公式和誘導公式,掌握正弦定理的邊角互化是解題關(guān)鍵.4.C【解析】

根據(jù)等差數(shù)列性質(zhì)得到,再計算得到答案.【詳解】已知等差數(shù)列中,故答案選C【點睛】本題考查了等差數(shù)列的性質(zhì),是數(shù)列的常考題型.5.A【解析】由題意,將楔體分割為三棱柱與兩個四棱錐的組合體,作出幾何體的直觀圖如圖所示:

沿上棱兩端向底面作垂面,且使垂面與上棱垂直,

則將幾何體分成兩個四棱錐和1個直三棱柱,

則三棱柱的體積V1四棱錐的體積V2=13×1×3×2=2【點睛】本題考查三視圖及幾何體體積的計算,其中正確還原幾何體,利用方格數(shù)據(jù)分割與計算是解題的關(guān)鍵.6.B【解析】

由得,即,所以得,利用基本不等式求出最小值,得到,再由遞推公式求出.【詳解】由得,即,,當且僅當時取得最小值,此時.故選:B【點睛】本題主要考查了數(shù)列中的最值問題,遞推公式的應(yīng)用,基本不等式求最值,考查了學生的運算求解能力.7.A【解析】

根據(jù)偶次根式被開方數(shù)非負可得出關(guān)于的不等式,即可解得函數(shù)的定義域.【詳解】由題意可得,解得或.因此,函數(shù)的定義域為或.故選:A.【點睛】本題考查具體函數(shù)定義域的求解,考查計算能力,屬于基礎(chǔ)題.8.C【解析】

設(shè)拋物線的解析式,得焦點為,對稱軸為軸,準線為,這樣可設(shè)點坐標為,代入拋物線方程可求得,而到直線的距離為,從而可求得三角形面積.【詳解】設(shè)拋物線的解析式,則焦點為,對稱軸為軸,準線為,∵直線經(jīng)過拋物線的焦點,,是與的交點,又軸,∴可設(shè)點坐標為,代入,解得,又∵點在準線上,設(shè)過點的的垂線與交于點,,∴.故應(yīng)選C.【點睛】本題考查拋物線的性質(zhì),解題時只要設(shè)出拋物線的標準方程,就能得出點坐標,從而求得參數(shù)的值.本題難度一般.9.D【解析】

由復數(shù)除法運算求出,再寫出其共軛復數(shù),得共軛復數(shù)對應(yīng)點的坐標.得結(jié)論.【詳解】,,對應(yīng)點為,在第四象限.故選:D.【點睛】本題考查復數(shù)的除法運算,考查共軛復數(shù)的概念,考查復數(shù)的幾何意義.掌握復數(shù)的運算法則是解題關(guān)鍵.10.C【解析】

根據(jù)空間中平行關(guān)系、垂直關(guān)系的相關(guān)判定和性質(zhì)可依次判斷各個選項得到結(jié)果.【詳解】對于,若,則可能為平行或異面直線,錯誤;對于,若,則可能為平行、相交或異面直線,錯誤;對于,若,且,由面面垂直的判定定理可知,正確;對于,若,只有當垂直于的交線時才有,錯誤.故選:.【點睛】本題考查空間中線面關(guān)系、面面關(guān)系相關(guān)命題的辨析,關(guān)鍵是熟練掌握空間中的平行關(guān)系與垂直關(guān)系的相關(guān)命題.11.A【解析】

由,平面,可將三棱錐還原成長方體,則三棱錐的外接球即為長方體的外接球,進而求解.【詳解】由題,因為,所以,設(shè),則由,可得,解得,可將三棱錐還原成如圖所示的長方體,則三棱錐的外接球即為長方體的外接球,設(shè)外接球的半徑為,則,所以,所以外接球的體積.故選:A【點睛】本題考查三棱錐的外接球體積,考查空間想象能力.12.A【解析】

求出函數(shù)的解析式,由函數(shù)為偶函數(shù)得出的表達式,然后利用充分條件和必要條件的定義判斷即可.【詳解】將函數(shù)的圖象沿軸向左平移個單位長度,得到的圖象對應(yīng)函數(shù)的解析式為,若函數(shù)為偶函數(shù),則,解得,當時,.因此,“”是“是偶函數(shù)”的充分不必要條件.故選:A.【點睛】本題考查充分不必要條件的判斷,同時也考查了利用圖象變換求三角函數(shù)解析式以及利用三角函數(shù)的奇偶性求參數(shù),考查運算求解能力與推理能力,屬于中等題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】

首先求得a的值,然后利用均值的性質(zhì)計算均值,最后求得的值,由方差的性質(zhì)計算的值即可.【詳解】由題意可知,解得(舍去)或.則,則,由方差的計算性質(zhì)得.【點睛】本題主要考查分布列的性質(zhì),均值的計算公式,方差的計算公式,方差的性質(zhì)等知識,意在考查學生的轉(zhuǎn)化能力和計算求解能力.14.【解析】

根據(jù)等差數(shù)列的性質(zhì)求得,結(jié)合等差數(shù)列前項和公式求得的值.【詳解】因為為等差數(shù)列,所以,解得,所以.故答案為:【點睛】本小題考查等差數(shù)列的性質(zhì),前項和公式的應(yīng)用等基礎(chǔ)知識;考查運算求解能力,應(yīng)用意識.15.【解析】

利用平面直角坐標系,設(shè)出點E,F(xiàn)的坐標,由可得,利用數(shù)量積運算求得,再利用線性規(guī)劃的知識求出的最大值.【詳解】建立平面直角坐標系,如圖(1)所示:設(shè),,,即,又,令,其中,畫出圖形,如圖(2)所示:當直線經(jīng)過點時,取得最大值.故答案為:【點睛】本題考查了向量數(shù)量積的坐標運算、簡單的線性規(guī)劃問題,解題的關(guān)鍵是建立恰當?shù)淖鴺讼?,屬于基礎(chǔ)題.16.【解析】

計算sinα,再利用誘導公式計算得到答案.【詳解】由題意可得x=1,y=2,r,∴sinα,∴sin(π﹣α)=sinα.故答案為:.【點睛】本題考查了三角函數(shù)定義,誘導公式,意在考查學生的計算能力.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1)證明見解析(2)【解析】

(1)由已知線面垂直得,結(jié)合菱形對角線垂直,可證得線面垂直;(2)由已知知兩兩互相垂直.以分別為軸,軸,軸建立空間直角坐標系如圖所示,由已知線面垂直知與平面所成角為,這樣可計算出的長,寫出各點坐標,求出平面的法向量,由法向量夾角可得二面角.【詳解】證明:(1)因為平面,平面,所以.因為四邊形是菱形,所以.又因為,平面,平面,所以平面.解:(2)據(jù)題設(shè)知,兩兩互相垂直.以分別為軸,軸,軸建立空間直角坐標系如圖所示,因為與平面所成角為,即,所以又,所以,所以所以設(shè)平面的一個法向量,則令,則.因為平面,所以為平面的一個法向量,且所以,.所以二面角的正弦值為.【點睛】本題考查線面垂直的判定定理和性質(zhì)定理,考查用向量法求二面角.立體幾何中求空間角常常是建立空間直角坐標系,用空間向量法求空間角,這樣可減少思維量,把問題轉(zhuǎn)化為計算.18.(1);(2)680元.【解析】

(1)根據(jù)題意,列方程,然后求解即可(2)根據(jù)題意,計算出10000元使用“余額寶”的利息為(元)和10000元使用“財富通”的利息為(元),得到所有可能的取值為560(元),700(元),840(元),然后根據(jù)所有可能的取值,計算出相應(yīng)的概率,并列出的分布列表,然后求解數(shù)學期望即可【詳解】(1)據(jù)題意,得,所以.(2)據(jù),得這被抽取的7人中使用“余額寶”的有4人,使用“財富通”的有3人.10000元使用“余額寶”的利息為(元).10000元使用“財富通”的利息為(元).所有可能的取值為560(元),700(元),840(元).,,.的分布列為560700840所以(元).【點睛】本題考查頻數(shù)分布表以及分布列和數(shù)學期望問題,屬于基礎(chǔ)題19.(1);(2).【解析】

試題分析:(1)由題意可得函數(shù)f(x)的解析式為,則.(2)整理函數(shù)h(x)的解析式可得:,結(jié)合函數(shù)的定義域可得函數(shù)的值域為.試題解析:(1)由函數(shù)取得最大值1,可得,函數(shù)過得,,∵,∴,.(2),,,值域為.20.(1)證明見解析(0,2);(2)存在,理由見解析【解析】

(1)設(shè)直線l的方程為y=kx+b代入拋物線的方程,利用OA⊥OB,求出b,即可知直線過定點(2)由斜率公式分別求出,,聯(lián)立直線與拋物線,橢圓,再由根與系數(shù)的關(guān)系得,,,代入,,化簡即可求解.【詳解】(1)證明:由題知,直線l的斜率存在且不過原點,故設(shè)由可得,.,,故所以直線l的方程為故直線l恒過定點.(2)由(1)知設(shè)由

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論