版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1.4.2用空間向量研究距離、夾角問(wèn)題學(xué)習(xí)目標(biāo)1.能用向量方法解決點(diǎn)到直線、點(diǎn)到平面的距離和簡(jiǎn)單的夾角問(wèn)題2.能用向量的方法解決相互平行的直線、相互平行的直線與平面、相互平行的平面的夾角的距離問(wèn)題3.體會(huì)向量方法在研究幾何問(wèn)題中的作用學(xué)習(xí)重點(diǎn)學(xué)習(xí)難點(diǎn)理解并掌握用向量的方法解決距離、夾角問(wèn)題的方法和步驟辨析各種距離、夾角問(wèn)題并能正確求出各種距離和夾角在上一節(jié)我們已經(jīng)學(xué)會(huì)了用空間向量解決直線、平面的位置關(guān)系,那么立體幾何中還有一些距離、夾角問(wèn)題,能否也用向量方法解決呢?這節(jié)課我們就來(lái)一起探究一下用向量方法解決空間中的距離、夾角問(wèn)題.新課導(dǎo)入新課學(xué)習(xí)已知直線l的單位向量為u,A是直線l上的定點(diǎn),P是直線l外的一點(diǎn).如何利用已知條件求點(diǎn)P到直線l的距離PQlAu用向量方法求點(diǎn)到直線的距離的步驟兩條平行直線的距離如圖,兩直線的方向向量為u,P、Q、A分別是直線
l1,l2上的點(diǎn),則l1l2uAPQa點(diǎn)到平面的距離lPQαnA例題來(lái)了分析:根據(jù)條件建立空間直角坐標(biāo)系,用坐標(biāo)表示相關(guān)的點(diǎn)、直線的方向向量和平面的法向量,再利用有關(guān)公式,通過(guò)坐標(biāo)運(yùn)算得出相應(yīng)的距離.解:用空間向量解決立體幾何問(wèn)題的“三步曲”:(1)建立立體圖形與空間向量的聯(lián)系,用空間向量表示問(wèn)題中涉及的點(diǎn)、直線、平面,把立體幾何向題轉(zhuǎn)化為向量問(wèn)題;(2)通過(guò)向量運(yùn)算,研究點(diǎn)、直線、平面之間的位置關(guān)系以及它們之間的距離和夾角等問(wèn)題;(3)把向量運(yùn)算的結(jié)果“翻譯”成相應(yīng)的幾何結(jié)論.線面距、面面距實(shí)質(zhì)上都是求點(diǎn)面距,求直線到平面、平面到平面的距離的前提是線面、面面平行.點(diǎn)面距的求解步驟:方法一:(1)求出該平面的一個(gè)法向量;(2)找出從該點(diǎn)出發(fā)的平面的任一條斜線段對(duì)應(yīng)的向量;(3)求出法向量與斜線段對(duì)應(yīng)向量的數(shù)量積的絕對(duì)值,再除以法向量的模,即可求出點(diǎn)到平面的距離.方法二:(1)求出該平面的單位法向量;(2)找出從該點(diǎn)出發(fā)的平面的任一條斜線段對(duì)應(yīng)的向量;(3)求出單位法向量與斜線段對(duì)應(yīng)向量的數(shù)量積的絕對(duì)值.點(diǎn)面距、線面距、面面距的求解方法解:步驟一:化向量問(wèn)題步驟二:進(jìn)行向量運(yùn)算步驟三:回到圖形問(wèn)題異面直線所成的角對(duì)異面直線所成角的理解直線與平面所成的角A
BCnuθ對(duì)直線與平面所成的角的幾點(diǎn)說(shuō)明(1)直線與平面相交時(shí),直線與平面所成的角的范圍為(0o,90o].(2)直線與平面所成角的正弦值的求解思路是通過(guò)直線的方向向量及平面的法向量,轉(zhuǎn)化為求兩向量的夾角余弦值的絕對(duì)值.(3)用向量法求解直線與平面所成角時(shí)仍遵循“化為向量問(wèn)題”——“進(jìn)行向量運(yùn)算”——“回歸圖形問(wèn)題”三步.二面角αβαβn1n2對(duì)兩平面夾角的說(shuō)明(1)兩平面夾角的范圍為[0o,90o],二面角的范圍為[0o,180o],注意區(qū)別.(2)兩平面夾角的余弦值可通過(guò)兩個(gè)平面的法向量,轉(zhuǎn)化為兩個(gè)法向量夾角余弦值的絕對(duì)值.分析:因?yàn)槠矫鍼QR與平面A1B1C1的夾角可以轉(zhuǎn)化為平面PQR與平面A1B1C1的法向量的夾角,所以只需要求出這兩個(gè)平面的法向量即可.解:步驟1:化向量問(wèn)題步驟二:進(jìn)行向量運(yùn)算步驟三:回到圖形問(wèn)題求線面角的兩種思路分析:因?yàn)榻德鋫銊蛩傧侣?,所以降落?根繩子拉力的合力的大小等于禮物的重力的大小.8根繩子的拉力在水平面的法向量方向上的投影向量的和向量與禮物的重力是一對(duì)相反向量.解:分析:本題涉及的問(wèn)題包括:直線與平面平行和垂直的判定,計(jì)算兩個(gè)平面的夾角,這些問(wèn)題都可以利用向量方法解決.由于四棱錐的底面是正方形,而且一條側(cè)棱垂直于底面,可以利用這些條件建立適當(dāng)?shù)目臻g直角坐標(biāo)系,用向量及坐標(biāo)表示問(wèn)題中的幾何元素,進(jìn)而解決問(wèn)題.解:用空間向量表示立體圖形中點(diǎn)、直線、平面等元素進(jìn)行空間向量的運(yùn)算,研究點(diǎn)、直線、平面之間的關(guān)系把運(yùn)算結(jié)果“翻譯”成相應(yīng)的幾何意義解決立體幾何問(wèn)題的方法解決立體幾何中的問(wèn)題,可用三種方法:(1)綜合法:以邏輯推理作為工具解決問(wèn)題;(2)向量法:利用向量的概念及其運(yùn)算解決問(wèn)題;
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024-2030年中國(guó)本質(zhì)安全校準(zhǔn)器行業(yè)發(fā)展現(xiàn)狀與競(jìng)爭(zhēng)趨勢(shì)展望報(bào)告
- 2024-2030年中國(guó)服裝行業(yè)形勢(shì)運(yùn)行分析及投資戰(zhàn)略研究報(bào)告
- 2024-2030年中國(guó)智慧機(jī)場(chǎng)行業(yè)商業(yè)模式策略及投資規(guī)劃分析報(bào)告
- 2024-2030年中國(guó)普洱茶行業(yè)競(jìng)爭(zhēng)力策略及投資營(yíng)銷模式分析報(bào)告
- 2024-2030年中國(guó)旅行社信息系統(tǒng)項(xiàng)目可行性研究報(bào)告
- 卒中預(yù)防教育方案
- 老舊小區(qū)改造給排水方案
- 部編人教版小學(xué)語(yǔ)文三年級(jí)上冊(cè)作文計(jì)劃
- 2025年責(zé)任制整體護(hù)理工作方案及具體措施
- 二年級(jí)上冊(cè)語(yǔ)文教學(xué)工作計(jì)劃
- 五年級(jí)數(shù)學(xué)(小數(shù)四則混合運(yùn)算)計(jì)算題專項(xiàng)練習(xí)及答案
- 多無(wú)人機(jī)路徑規(guī)劃
- 2024年度京東公司與供應(yīng)商戰(zhàn)略合作合同3篇
- 河南省鄭州市2023-2024學(xué)年四年級(jí)上學(xué)期語(yǔ)文期末試卷(含答案)
- 國(guó)開(kāi)(陜西)2024年《中國(guó)制造之高端裝備》形考作業(yè)1-4答案
- 2024年便利店?duì)I業(yè)員工作總結(jié)范文(2篇)
- 家具設(shè)計(jì)合同范例
- 2016建筑安裝工程工期定額
- 小說(shuō)改編權(quán)改編作品轉(zhuǎn)讓合同
- 隧道坍塌應(yīng)急演練
- 2023-2024學(xué)年廣東省廣州市白云區(qū)九年級(jí)(上)期末英語(yǔ)試卷
評(píng)論
0/150
提交評(píng)論