




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2021-2022高考數(shù)學(xué)模擬試卷注意事項(xiàng)1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.若直線經(jīng)過拋物線的焦點(diǎn),則()A. B. C.2 D.2.若x∈(0,1),a=lnx,b=,c=elnx,則a,b,c的大小關(guān)系為()A.b>c>a B.c>b>a C.a(chǎn)>b>c D.b>a>c3.已知雙曲線的中心在原點(diǎn)且一個(gè)焦點(diǎn)為,直線與其相交于,兩點(diǎn),若中點(diǎn)的橫坐標(biāo)為,則此雙曲線的方程是A. B.C. D.4.如圖,圓是邊長為的等邊三角形的內(nèi)切圓,其與邊相切于點(diǎn),點(diǎn)為圓上任意一點(diǎn),,則的最大值為()A. B. C.2 D.5.蒙特卡洛算法是以概率和統(tǒng)計(jì)的理論、方法為基礎(chǔ)的一種計(jì)算方法,將所求解的問題同一定的概率模型相聯(lián)系;用均勻投點(diǎn)實(shí)現(xiàn)統(tǒng)計(jì)模擬和抽樣,以獲得問題的近似解,故又稱統(tǒng)計(jì)模擬法或統(tǒng)計(jì)實(shí)驗(yàn)法.現(xiàn)向一邊長為的正方形模型內(nèi)均勻投點(diǎn),落入陰影部分的概率為,則圓周率()A. B.C. D.6.設(shè)分別為的三邊的中點(diǎn),則()A. B. C. D.7.若為虛數(shù)單位,則復(fù)數(shù)在復(fù)平面上對應(yīng)的點(diǎn)位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限8.2019年10月1日上午,慶祝中華人民共和國成立70周年閱兵儀式在天安門廣場隆重舉行.這次閱兵不僅展示了我國的科技軍事力量,更是讓世界感受到了中國的日新月異.今年的閱兵方陣有一個(gè)很搶眼,他們就是院??蒲蟹疥?他們是由軍事科學(xué)院、國防大學(xué)、國防科技大學(xué)聯(lián)合組建.若已知甲、乙、丙三人來自上述三所學(xué)校,學(xué)歷分別有學(xué)士、碩士、博士學(xué)位.現(xiàn)知道:①甲不是軍事科學(xué)院的;②來自軍事科學(xué)院的不是博士;③乙不是軍事科學(xué)院的;④乙不是博士學(xué)位;⑤國防科技大學(xué)的是研究生.則丙是來自哪個(gè)院校的,學(xué)位是什么()A.國防大學(xué),研究生 B.國防大學(xué),博士C.軍事科學(xué)院,學(xué)士 D.國防科技大學(xué),研究生9.雙曲線的漸近線方程是()A. B. C. D.10.已知復(fù)數(shù)z滿足(i為虛數(shù)單位),則在復(fù)平面內(nèi)復(fù)數(shù)z對應(yīng)的點(diǎn)位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限11.已知的內(nèi)角的對邊分別是且,若為最大邊,則的取值范圍是()A. B. C. D.12.定義在R上的函數(shù)滿足,為的導(dǎo)函數(shù),已知的圖象如圖所示,若兩個(gè)正數(shù)滿足,的取值范圍是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知圓,直線與圓交于兩點(diǎn),,若,則弦的長度的最大值為_______.14.已知函數(shù),則________;滿足的的取值范圍為________.15.已知數(shù)列為正項(xiàng)等比數(shù)列,,則的最小值為________.16.等腰直角三角形內(nèi)有一點(diǎn)P,,,,,則面積為______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)手工藝是一種生活態(tài)度和對傳統(tǒng)的堅(jiān)持,在我國有很多手工藝品制作村落,村民的手工技藝世代相傳,有些村落制造出的手工藝品不僅全國聞名,還大量遠(yuǎn)銷海外.近年來某手工藝品村制作的手工藝品在國外備受歡迎,該村村民成立了手工藝品外銷合作社,為嚴(yán)把質(zhì)量關(guān),合作社對村民制作的每件手工藝品都請3位行家進(jìn)行質(zhì)量把關(guān),質(zhì)量把關(guān)程序如下:(i)若一件手工藝品3位行家都認(rèn)為質(zhì)量過關(guān),則該手工藝品質(zhì)量為A級;(ii)若僅有1位行家認(rèn)為質(zhì)量不過關(guān),再由另外2位行家進(jìn)行第二次質(zhì)量把關(guān),若第二次質(zhì)量把關(guān)這2位行家都認(rèn)為質(zhì)量過關(guān),則該手工藝品質(zhì)量為B級,若第二次質(zhì)量把關(guān)這2位行家中有1位或2位認(rèn)為質(zhì)量不過關(guān),則該手工藝品質(zhì)量為C級;(iii)若有2位或3位行家認(rèn)為質(zhì)量不過關(guān),則該手工藝品質(zhì)量為D級.已知每一次質(zhì)量把關(guān)中一件手工藝品被1位行家認(rèn)為質(zhì)量不過關(guān)的概率為,且各手工藝品質(zhì)量是否過關(guān)相互獨(dú)立.(1)求一件手工藝品質(zhì)量為B級的概率;(2)若一件手工藝品質(zhì)量為A,B,C級均可外銷,且利潤分別為900元,600元,300元,質(zhì)量為D級不能外銷,利潤記為100元.①求10件手工藝品中不能外銷的手工藝品最有可能是多少件;②記1件手工藝品的利潤為X元,求X的分布列與期望.18.(12分)已知點(diǎn)為橢圓上任意一點(diǎn),直線與圓交于,兩點(diǎn),點(diǎn)為橢圓的左焦點(diǎn).(1)求證:直線與橢圓相切;(2)判斷是否為定值,并說明理由.19.(12分)如圖,在三棱柱中,、、分別是、、的中點(diǎn).(1)證明:平面;(2)若底面是正三角形,,在底面的投影為,求到平面的距離.20.(12分)已知(1)若,且函數(shù)在區(qū)間上單調(diào)遞增,求實(shí)數(shù)a的范圍;(2)若函數(shù)有兩個(gè)極值點(diǎn),且存在滿足,令函數(shù),試判斷零點(diǎn)的個(gè)數(shù)并證明.21.(12分)在平面直角坐標(biāo)系中,直線的傾斜角為,且經(jīng)過點(diǎn).以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,直線,從原點(diǎn)O作射線交于點(diǎn)M,點(diǎn)N為射線OM上的點(diǎn),滿足,記點(diǎn)N的軌跡為曲線C.(Ⅰ)求出直線的參數(shù)方程和曲線C的直角坐標(biāo)方程;(Ⅱ)設(shè)直線與曲線C交于P,Q兩點(diǎn),求的值.22.(10分)已知函數(shù),.(1)若曲線在點(diǎn)處的切線方程為,求,;(2)當(dāng)時(shí),,求實(shí)數(shù)的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.B【解析】
計(jì)算拋物線的交點(diǎn)為,代入計(jì)算得到答案.【詳解】可化為,焦點(diǎn)坐標(biāo)為,故.故選:.【點(diǎn)睛】本題考查了拋物線的焦點(diǎn),屬于簡單題.2.A【解析】
利用指數(shù)函數(shù)、對數(shù)函數(shù)的單調(diào)性直接求解.【詳解】∵x∈(0,1),∴a=lnx<0,b=()lnx>()0=1,0<c=elnx<e0=1,∴a,b,c的大小關(guān)系為b>c>a.故選:A.【點(diǎn)睛】本題考查三個(gè)數(shù)的大小的判斷,考查指數(shù)函數(shù)、對數(shù)函數(shù)的單調(diào)性等基礎(chǔ)知識,考查運(yùn)算求解能力,是基礎(chǔ)題.3.D【解析】
根據(jù)點(diǎn)差法得,再根據(jù)焦點(diǎn)坐標(biāo)得,解方程組得,,即得結(jié)果.【詳解】設(shè)雙曲線的方程為,由題意可得,設(shè),,則的中點(diǎn)為,由且,得,,即,聯(lián)立,解得,,故所求雙曲線的方程為.故選D.【點(diǎn)睛】本題主要考查利用點(diǎn)差法求雙曲線標(biāo)準(zhǔn)方程,考查基本求解能力,屬于中檔題.4.C【解析】
建立坐標(biāo)系,寫出相應(yīng)的點(diǎn)坐標(biāo),得到的表達(dá)式,進(jìn)而得到最大值.【詳解】以D點(diǎn)為原點(diǎn),BC所在直線為x軸,AD所在直線為y軸,建立坐標(biāo)系,設(shè)內(nèi)切圓的半徑為1,以(0,1)為圓心,1為半徑的圓;根據(jù)三角形面積公式得到,可得到內(nèi)切圓的半徑為可得到點(diǎn)的坐標(biāo)為:故得到故得到,故最大值為:2.故答案為C.【點(diǎn)睛】這個(gè)題目考查了向量標(biāo)化的應(yīng)用,以及參數(shù)方程的應(yīng)用,以向量為載體求相關(guān)變量的取值范圍,是向量與函數(shù)、不等式、三角函數(shù)等相結(jié)合的一類綜合問題.通過向量的運(yùn)算,將問題轉(zhuǎn)化為解不等式或求函數(shù)值域,是解決這類問題的一般方法.5.A【解析】
計(jì)算出黑色部分的面積與總面積的比,即可得解.【詳解】由,∴.故選:A【點(diǎn)睛】本題考查了面積型幾何概型的概率的計(jì)算,屬于基礎(chǔ)題.6.B【解析】
根據(jù)題意,畫出幾何圖形,根據(jù)向量加法的線性運(yùn)算即可求解.【詳解】根據(jù)題意,可得幾何關(guān)系如下圖所示:,故選:B【點(diǎn)睛】本題考查了向量加法的線性運(yùn)算,屬于基礎(chǔ)題.7.D【解析】
根據(jù)復(fù)數(shù)的運(yùn)算,化簡得到,再結(jié)合復(fù)數(shù)的表示,即可求解,得到答案.【詳解】由題意,根據(jù)復(fù)數(shù)的運(yùn)算,可得,所對應(yīng)的點(diǎn)為位于第四象限.故選D.【點(diǎn)睛】本題主要考查了復(fù)數(shù)的運(yùn)算,以及復(fù)數(shù)的幾何意義,其中解答中熟記復(fù)數(shù)的運(yùn)算法則,準(zhǔn)確化簡復(fù)數(shù)為代數(shù)形式是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力,屬于基礎(chǔ)題.8.C【解析】
根據(jù)①③可判斷丙的院校;由②和⑤可判斷丙的學(xué)位.【詳解】由題意①甲不是軍事科學(xué)院的,③乙不是軍事科學(xué)院的;則丙來自軍事科學(xué)院;由②來自軍事科學(xué)院的不是博士,則丙不是博士;由⑤國防科技大學(xué)的是研究生,可知丙不是研究生,故丙為學(xué)士.綜上可知,丙來自軍事科學(xué)院,學(xué)位是學(xué)士.故選:C.【點(diǎn)睛】本題考查了合情推理的簡單應(yīng)用,由條件的相互牽制判斷符合要求的情況,屬于基礎(chǔ)題.9.C【解析】
根據(jù)雙曲線的標(biāo)準(zhǔn)方程即可得出該雙曲線的漸近線方程.【詳解】由題意可知,雙曲線的漸近線方程是.故選:C.【點(diǎn)睛】本題考查雙曲線的漸近線方程的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意雙曲線的簡單性質(zhì)的合理運(yùn)用.10.D【解析】
根據(jù)復(fù)數(shù)運(yùn)算,求得,再求其對應(yīng)點(diǎn)即可判斷.【詳解】,故其對應(yīng)點(diǎn)的坐標(biāo)為.其位于第四象限.故選:D.【點(diǎn)睛】本題考查復(fù)數(shù)的運(yùn)算,以及復(fù)數(shù)對應(yīng)點(diǎn)的坐標(biāo),屬綜合基礎(chǔ)題.11.C【解析】
由,化簡得到的值,根據(jù)余弦定理和基本不等式,即可求解.【詳解】由,可得,可得,通分得,整理得,所以,因?yàn)闉槿切蔚淖畲蠼牵?,又由余弦定理,?dāng)且僅當(dāng)時(shí),等號成立,所以,即,又由,所以的取值范圍是.故選:C.【點(diǎn)睛】本題主要考查了代數(shù)式的化簡,余弦定理,以及基本不等式的綜合應(yīng)用,試題難度較大,屬于中檔試題,著重考查了推理與運(yùn)算能力.12.C【解析】
先從函數(shù)單調(diào)性判斷的取值范圍,再通過題中所給的是正數(shù)這一條件和常用不等式方法來確定的取值范圍.【詳解】由的圖象知函數(shù)在區(qū)間單調(diào)遞增,而,故由可知.故,又有,綜上得的取值范圍是.故選:C【點(diǎn)睛】本題考查了函數(shù)單調(diào)性和不等式的基礎(chǔ)知識,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
設(shè)為的中點(diǎn),根據(jù)弦長公式,只需最小,在中,根據(jù)余弦定理將表示出來,由,得到,結(jié)合弦長公式得到,求出點(diǎn)的軌跡方程,即可求解.【詳解】設(shè)為的中點(diǎn),在中,,①在中,,②①②得,即,,.,得.所以,.故答案為:.【點(diǎn)睛】本題考查直線與圓的位置關(guān)系、相交弦長的最值,解題的關(guān)鍵求出點(diǎn)的軌跡方程,考查計(jì)算求解能力,屬于中檔題.14.【解析】
首先由分段函數(shù)的解析式代入求值即可得到,分和兩種情況討論可得;【詳解】解:因?yàn)椋?,∵,∴?dāng)時(shí),滿足題意,∴;當(dāng)時(shí),由,解得.綜合可知:滿足的的取值范圍為.故答案為:;.【點(diǎn)睛】本題考查分段函數(shù)的性質(zhì)的應(yīng)用,分類討論思想,屬于基礎(chǔ)題.15.27【解析】
利用等比數(shù)列的性質(zhì)求得,結(jié)合其下標(biāo)和性質(zhì)和均值不等式即可容易求得.【詳解】由等比數(shù)列的性質(zhì)可知,則,.當(dāng)且僅當(dāng)時(shí)取得最小值.故答案為:.【點(diǎn)睛】本題考查等比數(shù)列的下標(biāo)和性質(zhì),涉及均值不等式求和的最小值,屬綜合基礎(chǔ)題.16.【解析】
利用余弦定理計(jì)算,然后根據(jù)平方關(guān)系以及三角形面積公式,可得結(jié)果.【詳解】設(shè)由題可知:由,,,所以化簡可得:則或,即或由,所以所以故答案為:【點(diǎn)睛】本題主要考查余弦定理解三角形,仔細(xì)觀察,細(xì)心計(jì)算,屬基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1);(2)①可能是2件;②詳見解析【解析】
(1)由一件手工藝品質(zhì)量為B級的情形,并結(jié)合相互獨(dú)立事件的概率公式,列式計(jì)算即可;(2)①先求得一件手工藝品質(zhì)量為D級的概率為,設(shè)10件手工藝品中不能外銷的手工藝品可能是件,可知,分別令、、,可求出使得最大的整數(shù),進(jìn)而可求出10件手工藝品中不能外銷的手工藝品的最有可能件數(shù);②分別求出一件手工藝品質(zhì)量為A、B、C、D級的概率,進(jìn)而可列出X的分布列,求出期望即可.【詳解】(1)一件手工藝品質(zhì)量為B級的概率為.(2)①由題意可得一件手工藝品質(zhì)量為D級的概率為,設(shè)10件手工藝品中不能外銷的手工藝品可能是件,則,則,其中,.由得,整數(shù)不存在,由得,所以當(dāng)時(shí),,即,由得,所以當(dāng)時(shí),,所以當(dāng)時(shí),最大,即10件手工藝品中不能外銷的手工藝品最有可能是2件.②由題意可知,一件手工藝品質(zhì)量為A級的概率為,一件手工藝品質(zhì)量為B級的概率為,一件手工藝品質(zhì)量為C級的概率為,一件手工藝品質(zhì)量為D級的概率為,所以X的分布列為:X900600300100P則期望為.【點(diǎn)睛】本題考查相互獨(dú)立事件的概率計(jì)算,考查離散型隨機(jī)變量的分布列及數(shù)學(xué)期望,考查學(xué)生的計(jì)算求解能力,屬于中檔題.18.(1)證明見解析;(2)是,理由見解析.【解析】
(1)根據(jù)判別式即可證明.(2)根據(jù)向量的數(shù)量積和韋達(dá)定理即可證明,需要分類討論,【詳解】解:(1)當(dāng)時(shí)直線方程為或,直線與橢圓相切.當(dāng)時(shí),由得,由題知,,即,所以.故直線與橢圓相切.(2)設(shè),,當(dāng)時(shí),,,,所以,即.當(dāng)時(shí),由得,則,,.因?yàn)?所以,即.故為定值.【點(diǎn)睛】本題考查橢圓的簡單性質(zhì),考查向量的運(yùn)算,注意直線方程和橢圓方程聯(lián)立,運(yùn)用韋達(dá)定理,考查化簡整理的運(yùn)算能力,屬于中檔題.19.(1)證明見解析;(2).【解析】
(1)連接,連接、交于點(diǎn),并連接,則點(diǎn)為的中點(diǎn),利用中位線的性質(zhì)得出,,利用空間平行線的傳遞性可得出,然后利用線面平行的判定定理可證得結(jié)論;(2)推導(dǎo)出平面,并計(jì)算出,由此可得出到平面的距離為,即可得解.【詳解】(1)連接,連接、交于點(diǎn),并連接,則點(diǎn)為的中點(diǎn),、分別為、的中點(diǎn),則,同理可得,.平面,平面,因此,平面;(2)由于在底面的投影為,平面,平面,,為正三角形,且為的中點(diǎn),,,平面,且,因此,到平面的距離為.【點(diǎn)睛】本題考查線面平行的證明,同時(shí)也考查了點(diǎn)到平面距離的計(jì)算,考查推理能力與計(jì)算能力,屬于中等題.20.(1)(2)函數(shù)有兩個(gè)零點(diǎn)和【解析】試題分析:(1)求導(dǎo)后根據(jù)函數(shù)在區(qū)間單調(diào)遞增,導(dǎo)函數(shù)大于或等于0(2)先判斷為一個(gè)零點(diǎn),然后再求導(dǎo),根據(jù),化簡求得另一個(gè)零點(diǎn)。解析:(1)當(dāng)時(shí),,因?yàn)楹瘮?shù)在上單調(diào)遞增,所以當(dāng)時(shí),恒成立.[來源:學(xué)&科&網(wǎng)Z&X&X&K]函數(shù)的對稱軸為.①,即時(shí),,即,解之得,解集為空集;②,即時(shí),即,解之得,所以③,即時(shí),即,解之得,所以綜上所述,當(dāng)函數(shù)在區(qū)間上單調(diào)遞增.(2)∵有兩個(gè)極值點(diǎn),∴是方程的兩個(gè)根,且函數(shù)在區(qū)間和上單調(diào)遞增,在上單調(diào)遞減.∵∴函數(shù)也是在區(qū)間和上單調(diào)遞增,在上單調(diào)遞減∵,∴是函數(shù)的一個(gè)零點(diǎn).由題意知:∵,∴,∴∴,∴又=∵是方程的兩個(gè)根,∴,,∴∵函數(shù)圖像連續(xù),且在區(qū)間上單調(diào)遞增,在上單調(diào)遞減,在上單調(diào)遞增∴當(dāng)時(shí),,當(dāng)時(shí),當(dāng)時(shí),∴函數(shù)有兩個(gè)零點(diǎn)和.21.(Ⅰ)(t為參數(shù)),;(Ⅱ)1.【解析】
(Ⅰ)直接由已知寫出直線l1的參數(shù)方程,設(shè)N(ρ,θ),M(ρ1,θ1),(ρ>0,ρ1>0),由題意可得,即ρ=4cosθ,然后化為普通方程;(Ⅱ)將l1的參數(shù)方程代入C的直角坐標(biāo)方程中,得到關(guān)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年重陽節(jié)活動(dòng)策劃方案詳細(xì)
- 2025年電子防噪音耳罩項(xiàng)目可行性研究報(bào)告
- 2025年電動(dòng)直升機(jī)玩具項(xiàng)目可行性研究報(bào)告
- 2025年田中刀項(xiàng)目可行性研究報(bào)告
- 2025年特種節(jié)能加熱器項(xiàng)目可行性研究報(bào)告
- 2025年燕頭項(xiàng)目可行性研究報(bào)告
- 湖北武漢市華中師大一附中2025屆高三3月押軸試題物理試題試卷含解析
- 江蘇航運(yùn)職業(yè)技術(shù)學(xué)院《中醫(yī)藥概論》2023-2024學(xué)年第一學(xué)期期末試卷
- 2025春新版六年級英語下冊《陳述句》寒假銜接練習(xí)帶答案
- 湖北科技學(xué)院《康復(fù)機(jī)構(gòu)開辦與管理》2023-2024學(xué)年第一學(xué)期期末試卷
- 博物館展廳提升改造方案
- 【初中物理】凸透鏡成像規(guī)律+-2024-2025學(xué)年人教版物理八年級上冊
- 醫(yī)院心理危機(jī)干預(yù)預(yù)案
- 湖北公務(wù)員面試模擬64
- 2024年中國燕窩八寶粥市場調(diào)查研究報(bào)告
- GB/T 2624.6-2024用安裝在圓形截面管道中的差壓裝置測量滿管流體流量第6部分:楔形裝置
- 信息安全意識培訓(xùn)課件
- 人教版數(shù)學(xué)八年級上冊:14-整式的乘法與因式分解-專題練習(xí)(附答案)
- Python試題庫(附參考答案)
- AIGC視域下非遺文創(chuàng)產(chǎn)品的數(shù)字化轉(zhuǎn)型升級路徑研究
- 推廣綠色用電活動(dòng)方案
評論
0/150
提交評論