![新高考一輪復(fù)習(xí)核心考點講與練考點03 函數(shù)及其性質(zhì)原卷版_第1頁](http://file4.renrendoc.com/view3/M00/2D/1B/wKhkFmbFFq6AY_dQAAGVCnxAjcM945.jpg)
![新高考一輪復(fù)習(xí)核心考點講與練考點03 函數(shù)及其性質(zhì)原卷版_第2頁](http://file4.renrendoc.com/view3/M00/2D/1B/wKhkFmbFFq6AY_dQAAGVCnxAjcM9452.jpg)
![新高考一輪復(fù)習(xí)核心考點講與練考點03 函數(shù)及其性質(zhì)原卷版_第3頁](http://file4.renrendoc.com/view3/M00/2D/1B/wKhkFmbFFq6AY_dQAAGVCnxAjcM9453.jpg)
![新高考一輪復(fù)習(xí)核心考點講與練考點03 函數(shù)及其性質(zhì)原卷版_第4頁](http://file4.renrendoc.com/view3/M00/2D/1B/wKhkFmbFFq6AY_dQAAGVCnxAjcM9454.jpg)
![新高考一輪復(fù)習(xí)核心考點講與練考點03 函數(shù)及其性質(zhì)原卷版_第5頁](http://file4.renrendoc.com/view3/M00/2D/1B/wKhkFmbFFq6AY_dQAAGVCnxAjcM9455.jpg)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
考點03函數(shù)及其性質(zhì)(核心考點講與練)1.函數(shù)的概念設(shè)A,B是兩個非空數(shù)集,如果按照確定的法則f,對A中的任意數(shù)x,都有唯一確定的數(shù)y與它對應(yīng),那么就稱f:A→B為從集合A到集合B的一個函數(shù),記作y=f(x),x∈A.2.函數(shù)的定義域、值域(1)函數(shù)y=f(x)自變量取值的范圍(數(shù)集A)叫做這個函數(shù)的定義域;所有函數(shù)值構(gòu)成的集合{y|y=f(x),x∈A}叫做這個函數(shù)的值域.(2)如果兩個函數(shù)的定義域相同,并且對應(yīng)法則完全一致,則這兩個函數(shù)為相等函數(shù).3.函數(shù)的表示法表示函數(shù)的常用方法有解析法、圖象法和列表法.4.分段函數(shù)(1)在函數(shù)的定義域內(nèi),對于自變量x的不同取值區(qū)間,有著不同的對應(yīng)法則,這種函數(shù)稱為分段函數(shù).(2)分段函數(shù)是一個函數(shù),分段函數(shù)的定義域是各段定義域的并集,值域是各段值域的并集.5.函數(shù)的單調(diào)性(1)單調(diào)函數(shù)的定義增函數(shù)減函數(shù)定義設(shè)函數(shù)y=f(x)的定義域為A,區(qū)間M?A,如果取區(qū)間M中任意兩個值x1,x2,改變量Δx=x2-x1>0,則當(dāng)Δy=f(x2)-f(x1)>0時,就稱函數(shù)y=f(x)在區(qū)間M上是增函數(shù)Δy=f(x2)-f(x1)<0時,就稱函數(shù)y=f(x)在區(qū)間M上是減函數(shù)圖象描述自左向右看圖象是上升的自左向右看圖象是下降的(2)如果一個函數(shù)在某個區(qū)間M上是增函數(shù)或是減函數(shù),就說這個函數(shù)在這個區(qū)間M上具有單調(diào)性,區(qū)間M稱為單調(diào)區(qū)間.6.函數(shù)的最值前提設(shè)函數(shù)y=f(x)的定義域為I,如果存在實數(shù)M滿足條件(1)對于任意x∈I,都有f(x)≤M;(2)存在x0∈I,使得f(x0)=M(3)對于任意x∈I,都有f(x)≥M;(4)存在x0∈I,使得f(x0)=M結(jié)論M為最大值M為最小值7.函數(shù)的奇偶性奇偶性定義圖象特點奇函數(shù)設(shè)函數(shù)y=f(x)的定義域為D,如果對D內(nèi)的任意一個x,都有-x∈D,且f(-x)=-f(x),則這個函數(shù)叫做奇函數(shù)關(guān)于原點對稱偶函數(shù)設(shè)函數(shù)y=g(x)的定義域為D,如果對D內(nèi)的任意一個x,都有-x∈D,且g(-x)=g(x),則這個函數(shù)叫做偶函數(shù)關(guān)于y軸對稱8.函數(shù)的周期性(1)周期函數(shù):對于函數(shù)y=f(x),如果存在一個非零常數(shù)T,使得當(dāng)x取定義域內(nèi)的任何值時,都有f(x+T)=f(x),那么就稱函數(shù)y=f(x)為周期函數(shù),稱T為這個函數(shù)的周期.(2)最小正周期:如果在周期函數(shù)f(x)的所有周期中存在一個最小的正數(shù),那么這個最小正數(shù)就叫做f(x)的最小正周期.1.利用基本不等式求最值時,要注意其必須滿足的三個條件:(1)“一正”就是各項必須為正數(shù);(2)“二定”就是要求和的最小值,必須把構(gòu)成和的二項之積轉(zhuǎn)化成定值;要求積的最大值,則必須把構(gòu)成積的因式的和轉(zhuǎn)化成定值;(3)“三相等”是利用基本不等式求最值時,必須驗證等號成立的條件,若不能取等號則這個定值就不是所求的最值,這也是最容易發(fā)生錯誤的地方.2.已知函數(shù)零點(方程根)的個數(shù)求參數(shù)值(取值范圍)常用的方法:(1)直接法:直接求解方程得到方程的根,再通過解不等式確定參數(shù)范圍;(2)分離參數(shù)法:先將參數(shù)分離,轉(zhuǎn)化成求函數(shù)的值域問題加以解決;(3)數(shù)形結(jié)合法:先對解析式變形,進(jìn)而構(gòu)造兩個函數(shù),然后在同一平面直角坐標(biāo)系中畫出函數(shù)的圖象,利用數(shù)形結(jié)合的方法求解.3.函數(shù)的對稱性與單調(diào)性,指數(shù)式、對數(shù)式的大小比較.比較指數(shù)式大小時,常?;癁橥讛?shù)的冪,利用指數(shù)函數(shù)性質(zhì)比較,或化為同指數(shù)的冪,利用冪函數(shù)性質(zhì)比較,比較對數(shù)式大小,常?;癁橥讛?shù)的對數(shù),利用對數(shù)函數(shù)性質(zhì)比較,如果不能化為同底數(shù)或同指數(shù),或不同類型的數(shù)常常借助中間值如0或1比較大?。?.導(dǎo)數(shù)是研究函數(shù)的單調(diào)性、極值(最值)最有效的工具,而函數(shù)是高中數(shù)學(xué)中重要的知識點,對導(dǎo)數(shù)的應(yīng)用的考查主要從以下幾個角度進(jìn)行:(1)考查導(dǎo)數(shù)的幾何意義,往往與解析幾何、微積分相聯(lián)系.(2)利用導(dǎo)數(shù)求函數(shù)的單調(diào)區(qū)間,判斷單調(diào)性;已知單調(diào)性,求參數(shù).(3)利用導(dǎo)數(shù)求函數(shù)的最值(極值),解決生活中的優(yōu)化問題.(4)考查數(shù)形結(jié)合思想的應(yīng)用.函數(shù)及其表示一、單選題1.(2022·天津市第四十七中學(xué)模擬預(yù)測)已知函數(shù)SKIPIF1<0,若在區(qū)間SKIPIF1<0上存在SKIPIF1<0個不同的數(shù)SKIPIF1<0,使得SKIPIF1<0成立,則SKIPIF1<0的取值集合是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<02.(2022·天津市第四十七中學(xué)模擬預(yù)測)已知函數(shù)SKIPIF1<0,若SKIPIF1<0,則實數(shù)SKIPIF1<0的取值范圍是(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<03.(2022·河北·模擬預(yù)測)設(shè)函數(shù)SKIPIF1<0則不等式SKIPIF1<0的解集為(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<04.(2022·浙江嘉興·二模)已知函數(shù)SKIPIF1<0的圖象如圖所示,則SKIPIF1<0的解析式可能是(
)(SKIPIF1<0是自然對數(shù)的底數(shù))A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<05.(2022·天津·耀華中學(xué)模擬預(yù)測)已知函數(shù)SKIPIF1<0(SKIPIF1<0,且SKIPIF1<0)在區(qū)間SKIPIF1<0上為單調(diào)函數(shù),若函數(shù)SKIPIF1<0有三個不同的零點,則實數(shù)a的取值范圍為(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<06.(2022·浙江省義烏中學(xué)模擬預(yù)測)已知函數(shù)SKIPIF1<0,則圖象為下圖的函數(shù)可能是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<07.(2021·全國·模擬預(yù)測)已知函數(shù)SKIPIF1<0的定義域是SKIPIF1<0(m,n為整數(shù)),值域是SKIPIF1<0,則滿足條件的整數(shù)對SKIPIF1<0的個數(shù)是(
)A.2 B.3 C.4 D.58.(2020·南開中學(xué)模擬預(yù)測)下列各組函數(shù)中,表示同一函數(shù)的是(
)A.SKIPIF1<0與SKIPIF1<0 B.SKIPIF1<0與SKIPIF1<0C.SKIPIF1<0與SKIPIF1<0 D.SKIPIF1<0與SKIPIF1<09.(2020·廣東中山·模擬預(yù)測)下列各組表示同一函數(shù)的是(
)A.SKIPIF1<0,SKIPIF1<0 B.SKIPIF1<0,SKIPIF1<0C.SKIPIF1<0,SKIPIF1<0 D.SKIPIF1<0,SKIPIF1<010.(2020·全國·一模)網(wǎng)購女鞋時,常常會看到一張女鞋尺碼對照表如下,第一行是我們習(xí)慣稱呼的“鞋號”(單位:.號),第二行是腳長(單位:SKIPIF1<0),請根據(jù)表中數(shù)據(jù),思考:他們家正好有一款“32號”的女鞋在搞打折,那么適合購買這款鞋的腳長的取值范圍是(
)鞋碼3536373839腳長225230235240245A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0二、多選題11.(2022·江蘇南通·模擬預(yù)測)已知定義在R上的函數(shù)SKIPIF1<0的圖象連續(xù)不間斷,當(dāng)SKIPIF1<0時,SKIPIF1<0,且當(dāng)SKIPIF1<0時,SKIPIF1<0,則下列說法正確的是(
)A.SKIPIF1<0B.SKIPIF1<0在SKIPIF1<0上單調(diào)遞減C.若SKIPIF1<0,則SKIPIF1<0D.若SKIPIF1<0是SKIPIF1<0的兩個零點,且SKIPIF1<0,則SKIPIF1<012.(2022·江蘇·沭陽如東中學(xué)模擬預(yù)測)華人數(shù)學(xué)家李天巖和美國數(shù)學(xué)家約克給出了“混沌”的數(shù)學(xué)定義,由此發(fā)展的混沌理論在生物學(xué)?經(jīng)濟(jì)學(xué)和社會學(xué)領(lǐng)域都有重要作用.在混沌理論中,函數(shù)的周期點是一個關(guān)鍵概念,定義如下:設(shè)SKIPIF1<0是定義在R上的函數(shù),對于SKIPIF1<0R,令SKIPIF1<0,若存在正整數(shù)k使得SKIPIF1<0,且當(dāng)0<j<k時,SKIPIF1<0,則稱SKIPIF1<0是SKIPIF1<0的一個周期為k的周期點.若SKIPIF1<0,下列各值是SKIPIF1<0周期為2的周期點的有(
)A.0 B.SKIPIF1<0 C.SKIPIF1<0 D.113.(2022·江蘇江蘇·一模)下列函數(shù)中,最大值是1的函數(shù)有(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<014.(2021·江西·模擬預(yù)測)已知函數(shù)SKIPIF1<0,則下列敘述正確的是(
)A.SKIPIF1<0的值域為SKIPIF1<0 B.SKIPIF1<0在區(qū)間SKIPIF1<0上單調(diào)遞增C.SKIPIF1<0 D.若SKIPIF1<0,則SKIPIF1<0的最小值為-315.(2021·江西·模擬預(yù)測)下列各組函數(shù)中表示同一個函數(shù)的是(
)A.SKIPIF1<0,SKIPIF1<0 B.SKIPIF1<0,SKIPIF1<0C.SKIPIF1<0,SKIPIF1<0 D.SKIPIF1<0,SKIPIF1<016.(2021·全國·模擬預(yù)測)已知函數(shù)SKIPIF1<0,則SKIPIF1<0和SKIPIF1<0滿足(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0三、填空題17.(2022·福建·三模)寫出一個同時具有下列性質(zhì)①②③的函數(shù)SKIPIF1<0________.①定義域為SKIPIF1<0;②值域為SKIPIF1<0;③對任意SKIPIF1<0且SKIPIF1<0,均有SKIPIF1<0.18.(2022·山東淄博·一模)以模型SKIPIF1<0去擬合一組數(shù)據(jù)時,設(shè)SKIPIF1<0,將其變換后得到線性回歸方程SKIPIF1<0,則SKIPIF1<0______.19.(2022·全國·模擬預(yù)測)已知SKIPIF1<0,則SKIPIF1<0______.20.(2022·重慶·模擬預(yù)測)已知定義在R上的函數(shù)SKIPIF1<0不是常值函數(shù),且同時滿足:①SKIPIF1<0;②對任意SKIPIF1<0,均存在SKIPIF1<0使得SKIPIF1<0成立;則函數(shù)SKIPIF1<0______.(寫出一個符合條件的答案即可)四、雙空題21.(2022·浙江嘉興·二模)已知函數(shù)SKIPIF1<0的定義域為R,且滿足SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0若SKIPIF1<0,則實數(shù)SKIPIF1<0___________,SKIPIF1<0___________.22.(2022·江蘇·金陵中學(xué)二模)已知函數(shù)SKIPIF1<0,則SKIPIF1<0的最小正周期為___________;當(dāng)SKIPIF1<0時,SKIPIF1<0的值域為___________.23.(2022·山東濟(jì)南·一模)已知函數(shù)SKIPIF1<0,對任意非零實數(shù)x,均滿足SKIPIF1<0.則SKIPIF1<0的值為___________;函數(shù)SKIPIF1<0的最小值為___________.函數(shù)的基本性質(zhì)一、函數(shù)的單調(diào)性一、單選題1.(2022·天津·耀華中學(xué)模擬預(yù)測)已知函數(shù)SKIPIF1<0,則下述關(guān)系式正確的是(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<02.(2022·廣東廣州·二模)下列函數(shù)中,既是偶函數(shù)又在SKIPIF1<0上單調(diào)遞增的是(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<03.(2022·遼寧撫順·一模)已知函數(shù)SKIPIF1<0對任意SKIPIF1<0都有SKIPIF1<0,若SKIPIF1<0的圖象關(guān)于直線SKIPIF1<0對稱,且對任意的,SKIPIF1<0,當(dāng)SKIPIF1<0時,都有SKIPIF1<0,則下列結(jié)論正確的是(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<04.(2022·全國·哈師大附中模擬預(yù)測(理))已知實數(shù)SKIPIF1<0滿足SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0二、多選題5.(2022·廣東茂名·二模)若對任意的SKIPIF1<0,SKIPIF1<0,且SKIPIF1<0,都有SKIPIF1<0,則m的值可能是(
)(注SKIPIF1<0…為自然對數(shù)的底數(shù))A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.16.(2022·福建泉州·模擬預(yù)測)已知函數(shù)SKIPIF1<0的定義域為SKIPIF1<0,且滿足SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0為非零常數(shù),則下列說法正確的是(
)A.當(dāng)SKIPIF1<0時,SKIPIF1<0B.當(dāng)SKIPIF1<0時,SKIPIF1<0在SKIPIF1<0單調(diào)遞增C.當(dāng)SKIPIF1<0時,SKIPIF1<0在SKIPIF1<0的值域為SKIPIF1<0D.當(dāng)SKIPIF1<0,且SKIPIF1<0時,若將函數(shù)SKIPIF1<0與SKIPIF1<0的圖象在SKIPIF1<0的SKIPIF1<0個交點記為SKIPIF1<0,則SKIPIF1<07.(2022·廣東廣東·一模)下列四個函數(shù)中,以SKIPIF1<0為周期且在SKIPIF1<0上單調(diào)遞增的偶函數(shù)有(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0三、填空題8.(2022·全國·模擬預(yù)測)已知函數(shù)SKIPIF1<0,若對任意的正數(shù)SKIPIF1<0,滿足SKIPIF1<0SKIPIF1<0,則SKIPIF1<0的最小值為_________.9.(2022·山東·濟(jì)南市歷城第二中學(xué)模擬預(yù)測)函數(shù)SKIPIF1<0在SKIPIF1<0上是減函數(shù),則實數(shù)SKIPIF1<0的范圍是_______.10.(2022·北京豐臺·一模)設(shè)函數(shù)SKIPIF1<0的定義域為SKIPIF1<0,能說明“若函數(shù)SKIPIF1<0在SKIPIF1<0上的最大值為SKIPIF1<0,則函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增“為假命題的一個函數(shù)是__________.四、解答題11.(2022·江蘇江蘇·一模)已知實數(shù)SKIPIF1<0,函數(shù)SKIPIF1<0,SKIPIF1<0是自然對數(shù)的底數(shù).(1)當(dāng)SKIPIF1<0時,求函數(shù)SKIPIF1<0的單調(diào)區(qū)間;(2)求證:SKIPIF1<0存在極值點SKIPIF1<0,并求SKIPIF1<0的最小值.12.(2022·山東青島·一模)已知函數(shù)SKIPIF1<0.(1)若函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,求實數(shù)SKIPIF1<0的取值范圍;(2)設(shè)函數(shù)SKIPIF1<0,若SKIPIF1<0,求SKIPIF1<0的值.13.(2022·湖北·黃岡中學(xué)模擬預(yù)測)已知函數(shù)SKIPIF1<0,SKIPIF1<0,且SKIPIF1<0(1)若SKIPIF1<0,且SKIPIF1<0,試比較SKIPIF1<0與SKIPIF1<0的大小關(guān)系,并說明理由;(2)若SKIPIF1<0,且SKIPIF1<0,證明:(i)SKIPIF1<0;(ii)SKIPIF1<0.(參考數(shù)據(jù):SKIPIF1<0)二、函數(shù)的最值一、單選題1.(2021·湖南·模擬預(yù)測)已知奇函數(shù)SKIPIF1<0為SKIPIF1<0上的增函數(shù),且在區(qū)間SKIPIF1<0上的最大值為9,最小值為-6,則SKIPIF1<0的值為(
)A.3 B.1 C.-1 D.-32.(2022·浙江嘉興·二模)設(shè)a,SKIPIF1<0,若SKIPIF1<0時,恒有SKIPIF1<0,則(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<03.(2022·浙江省義烏中學(xué)模擬預(yù)測)設(shè)SKIPIF1<0,則有(
)A.存在SKIPIF1<0成立 B.任意SKIPIF1<0恒成立C.任意SKIPIF1<0恒成立 D.存在SKIPIF1<0成立4.(2022·重慶·二模)已知SKIPIF1<0,若SKIPIF1<0對任意SKIPIF1<0恒成立,則實數(shù)m的最大值為(
)A.2 B.4 C.SKIPIF1<0 D.SKIPIF1<05.(2022·天津?qū)嶒炛袑W(xué)模擬預(yù)測)已知函數(shù)SKIPIF1<0,若?SKIPIF1<0∈R,使得SKIPIF1<0成立,則實數(shù)m的取值范圍為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0二、多選題6.(2022·湖北·一模)已知函數(shù)SKIPIF1<0,則下列說法正確的是(
)A.SKIPIF1<0是偶函數(shù) B.SKIPIF1<0在(0,+∞)上單調(diào)遞減C.SKIPIF1<0是周期函數(shù) D.SKIPIF1<0≥-1恒成立7.(2022·福建漳州·一模)已知函數(shù)SKIPIF1<0,則(
)A.SKIPIF1<0的定義域為SKIPIF1<0 B.SKIPIF1<0是偶函數(shù)C.函數(shù)SKIPIF1<0的零點為0 D.當(dāng)SKIPIF1<0時,SKIPIF1<0的最大值為SKIPIF1<0三、填空題8.(2022·浙江省諸暨市第二高級中學(xué)模擬預(yù)測)已知平面單位向量SKIPIF1<0,SKIPIF1<0滿足SKIPIF1<0.設(shè)SKIPIF1<0,SKIPIF1<0,向量SKIPIF1<0,SKIPIF1<0的夾角為SKIPIF1<0,則SKIPIF1<0的最大值是_______________.9.(2022·湖北·一模)已知函數(shù)SKIPIF1<0(x>0),若SKIPIF1<0的最大值為SKIPIF1<0,則正實數(shù)a=___________.10.(2020·山東臨沂·二模)若SKIPIF1<0,SKIPIF1<0,則實數(shù)SKIPIF1<0的取值范圍為___________.11.(2021·北京延慶·模擬預(yù)測)同學(xué)們,你們是否注意到:自然下垂的鐵鏈;空曠的田野上,兩根電線桿之間的電線;峽谷的上空,橫跨深澗的觀光索道的鋼索.這些現(xiàn)象中都有相似的曲線形態(tài).事實上,這些曲線在數(shù)學(xué)上常常被稱為懸鏈線.懸鏈線的相關(guān)理論在工程、航海、光學(xué)等方面有廣泛的應(yīng)用.在恰當(dāng)?shù)淖鴺?biāo)系中,這類函數(shù)的表達(dá)式可以為SKIPIF1<0(其中SKIPIF1<0,SKIPIF1<0是非零常數(shù),無理數(shù)SKIPIF1<0…),對于函數(shù)SKIPIF1<0以下結(jié)論正確的是______.①如果SKIPIF1<0,那么函數(shù)SKIPIF1<0為奇函數(shù);②如果SKIPIF1<0,那么SKIPIF1<0為單調(diào)函數(shù);③如果SKIPIF1<0,那么函數(shù)SKIPIF1<0沒有零點;④如果SKIPIF1<0那么函數(shù)SKIPIF1<0的最小值為2.12.(2021·浙江浙江·二模)設(shè)SKIPIF1<0,SKIPIF1<0,若SKIPIF1<0,且SKIPIF1<0的最大值是SKIPIF1<0,則SKIPIF1<0___________.四、解答題13.(2022·海南·模擬預(yù)測)已知函數(shù)SKIPIF1<0.(1)求SKIPIF1<0在區(qū)間-π2,0上的最大值和最小值;(2)設(shè)SKIPIF1<0,若當(dāng)SKIPIF1<0時,SKIPIF1<0,求實數(shù)a的取值范圍.14.(2021·江西·模擬預(yù)測)設(shè)函數(shù)SKIPIF1<0是定義在SKIPIF1<0上的奇函數(shù),且當(dāng)SKIPIF1<0時,SKIPIF1<0.(1)求SKIPIF1<0的解析式;(2)若SKIPIF1<0,使得SKIPIF1<0,求實數(shù)SKIPIF1<0的取值范圍.三、函數(shù)的奇偶性一、單選題1.(2022·廣東茂名·二模)已知SKIPIF1<0,則不等式SKIPIF1<0的解集為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<02.(2022·湖南湘潭·三模)函數(shù)SKIPIF1<0的部分圖象大致為(
)A. B.C. D.3.(2022·廣東茂名·二模)已知函數(shù)SKIPIF1<0,SKIPIF1<0分別是定義在R上的偶函數(shù)和奇函數(shù),且SKIPIF1<0,若函數(shù)SKIPIF1<0有唯一零點,則正實數(shù)SKIPIF1<0的值為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.1 D.24.(2021·全國·模擬預(yù)測)已知SKIPIF1<0為定義在R上的奇函數(shù),且當(dāng)SKIPIF1<0時,SKIPIF1<0,則SKIPIF1<0(
)A.﹣2022 B.2022 C.SKIPIF1<0 D.SKIPIF1<05.(2022·遼寧·大連二十四中模擬預(yù)測)已知函數(shù)SKIPIF1<0,若SKIPIF1<0且SKIPIF1<0,則有(
)A.SKIPIF1<0可能是奇函數(shù),也可能是偶函數(shù) B.SKIPIF1<0C.SKIPIF1<0時,SKIPIF1<0 D.SKIPIF1<06.(2022·江蘇南通·模擬預(yù)測)若函數(shù)SKIPIF1<0為奇函數(shù),則實數(shù)SKIPIF1<0的值為(
)A.1 B.2 C.SKIPIF1<0 D.SKIPIF1<07.(2022·湖北·二模)已知函數(shù)SKIPIF1<0,則使不等式SKIPIF1<0成立的x的取值范圍是(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<08.(2022·天津三中二模)設(shè)函數(shù)SKIPIF1<0的定義域為D,若對任意的SKIPIF1<0,且SKIPIF1<0,恒有SKIPIF1<0,則稱函數(shù)SKIPIF1<0具有對稱性,其中點SKIPIF1<0為函數(shù)SKIPIF1<0的對稱中心,研究函數(shù)SKIPIF1<0的對稱中心,求SKIPIF1<0(
)A.2022 B.4043 C.4044 D.8086二、多選題9.(2022·江蘇泰州·模擬預(yù)測)已知定義在SKIPIF1<0上的單調(diào)遞增的函數(shù)SKIPIF1<0滿足:任意SKIPIF1<0,有SKIPIF1<0,SKIPIF1<0,則(
)A.當(dāng)SKIPIF1<0時,SKIPIF1<0B.任意SKIPIF1<0,SKIPIF1<0C.存在非零實數(shù)SKIPIF1<0,使得任意SKIPIF1<0,SKIPIF1<0D.存在非零實數(shù)SKIPIF1<0,使得任意SKIPIF1<0,SKIPIF1<0三、填空題10.(2022·廣東深圳·二模)已知函數(shù)SKIPIF1<0是偶函數(shù),則SKIPIF1<0___________.11.(2022·山東菏澤·一模)已知奇函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上是增函數(shù),且SKIPIF1<0,SKIPIF1<0,當(dāng)SKIPIF1<0,SKIPIF1<0時,都有SKIPIF1<0,則不等式SKIPIF1<0的解集為______.四、函數(shù)的周期性一、單選題1.(2022·山東濟(jì)寧·一模)定義在R上的奇函數(shù)SKIPIF1<0滿足SKIPIF1<0,則SKIPIF1<0(
)A.0 B.1 C.-1 D.20222.(2022·福建·模擬預(yù)測)已知SKIPIF1<0是定義在SKIPIF1<0上的奇函數(shù),SKIPIF1<0,且SKIPIF1<0,則SKIPIF1<0(
)A.1 B.0 C.SKIPIF1<0 D.SKIPIF1<03.(2022·江蘇江蘇·二模)已知SKIPIF1<0是定義域為R的偶函數(shù),f(5.5)=2,g(x)=(x-1)SKIPIF1<0.若g(x+1)是偶函數(shù),則SKIPIF1<0=(
)A.-3 B.-2 C.2 D.3二、多選題4.(2022·河北·模擬預(yù)測)若函數(shù)SKIPIF1<0(SKIPIF1<0)是周期為2的奇函數(shù).則下列選項一定正確的是(
)A.函數(shù)SKIPIF1<0的圖象關(guān)于點SKIPIF1<0對稱B.2是函數(shù)SKIPIF1<0的一個周期C.SKIPIF1<0D.SKIPIF1<05.(2022·全國·模擬預(yù)測)已知函數(shù)SKIPIF1<0,則(
)A.SKIPIF1<0是函數(shù)SKIPIF1<0的一個周期B.SKIPIF1<0是函數(shù)SKIPIF1<0的一條對稱軸C.函數(shù)SKIPIF1<0的最大值為SKIPIF1<0,最小值為SKIPIF1<0D.函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增6.(2021·廣東肇慶·模擬預(yù)測)已知定義在SKIPIF1<0上的偶函數(shù)SKIPIF1<0對任意的SKIPIF1<0滿足SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,函數(shù)SKIPIF1<0且SKIPIF1<0,則下列結(jié)論正確的有(
)A.SKIPIF1<0是周期為SKIPIF1<0的周期函數(shù)B.當(dāng)SKIPIF1<0時,SKIPIF1<0C.若SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,則SKIPIF1<0D.若方程SKIPIF1<0在SKIPIF1<0上有SKIPIF1<0個不同的實數(shù)根,則實數(shù)SKIPIF1<0的取值范圍是SKIPIF1<0三、填空題7.(2022·廣東茂名·二模)請寫出一個函數(shù)SKIPIF1<0_______,使之同時具有以下性質(zhì):①圖象關(guān)于y軸對稱;②SKIPIF1<0,SKIPIF1<0.8.(2022·重慶·二模)已知定義域為R的函數(shù)SKIPIF1<0滿足SKIPIF1<0且SKIPIF1<0,則函數(shù)SKIPIF1<0的解析式可以是______.五、函數(shù)的對稱性一、單選題1.(2022·廣東佛山·模擬預(yù)測)已知函數(shù)SKIPIF1<0的圖象與函數(shù)SKIPIF1<0的圖象關(guān)于直線SKIPIF1<0對稱,將SKIPIF1<0的圖象向右平移SKIPIF1<0個單位長度后得到函數(shù)SKIPIF1<0的圖象,則函數(shù)SKIPIF1<0在SKIPIF1<0時的值域為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<02.(2021·全國·模擬預(yù)測)已知函數(shù)SKIPIF1<0,且對任意的實數(shù)x,SKIPIF1<0恒成立.若存在實數(shù)SKIPIF1<0,SKIPIF1<0,…,SKIPIF1<0(SKIPIF1<0),使得SKIPIF1<0成立,則n的最大值為(
)A.25 B.26 C.28 D.313.(2021·浙江·模擬預(yù)測)已知定義在SKIPIF1<0上的圖象連續(xù)的函數(shù)SKIPIF1<0的導(dǎo)數(shù)是SKIPIF1<0,SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,則不等式SKIPIF1<0的解集為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<04.(2021·廣東·梅州市梅江區(qū)嘉應(yīng)中學(xué)模擬預(yù)測)已知定義在R上的函數(shù)SKIPIF1<0滿足:對任意SKIPIF1<0,都有SKIPIF1<0,且當(dāng)SKIPIF1<0時,SKIPIF1<0(其中SKIPIF1<0為SKIPIF1<0的導(dǎo)函數(shù)).設(shè)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則a,b,c的大小關(guān)系是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0二、多選題5.(2022·江蘇·新沂市第一中學(xué)模擬預(yù)測)已知三次函數(shù)SKIPIF1<0,若函數(shù)SKIPIF1<0的圖象關(guān)于點(1,0)對稱,且SKIPIF1<0,則(
)A.SKIPIF1<0 B.SKIPIF1<0有3個零點C.SKIPIF1<0的對稱中心是SKIPIF1<0 D.SKIPIF1<0三、填空題6.(2022·重慶·模擬預(yù)測)寫出一個同時滿足下列三個條件的函數(shù)SKIPIF1<0的解析式__________.①SKIPIF1<0的定義域為SKIPIF1<0,值域為SKIPIF1<0;②SKIPIF1<0;③SKIPIF1<0在SKIPIF1<0上單調(diào)遞減.7.(2022·廣東廣州·二模)函數(shù)SKIPIF1<0的所有零點之和為__________.一、單選題1.(2020·山東·高考真題)已知函數(shù)SKIPIF1<0是偶函數(shù),當(dāng)SKIPIF1<0時,SKIPIF1<0,則該函數(shù)在SKIPIF1<0上的圖像大致是(
)A. B.C. D.2.(2020·山東·高考真題)已知函數(shù)SKIPIF1<0的定義域是SKIPIF1<0,若對于任意兩個不相等的實數(shù)SKIPIF1<0,SKIPIF1<0,總有SKIPIF1<0成立,則函數(shù)SKIPIF1<0一定是(
)A.奇函數(shù) B.偶函數(shù) C.增函數(shù) D.減函數(shù)3.(2020·山東·高考真題)函數(shù)SKIPIF1<0的定義域是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<04.(2021·全國·高考真題(理))設(shè)函數(shù)SKIPIF1<0的定義域為R,SKIPIF1<0為奇函數(shù),SKIPIF1<0為偶函數(shù),當(dāng)SKIPIF1<0時,SKIPIF1<0.若SKIPIF1<0,則SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<05.(2021·全國·高考真題(文))設(shè)SKIPIF1<0是定義域為R的奇函數(shù),且SKIPIF1<0.若SKIPIF1<0,則SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<06.(2021·全國·高考真題(理))設(shè)函數(shù)SKIPIF1<0,則下列函數(shù)中為奇函數(shù)的是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0二、填空題7.(2021·全國·高考真題)已知函數(shù)SKIPIF1<0是偶函數(shù),則SKIPIF1<0______.三、解答題8.(2021·全國·高考真題(文))已知函數(shù)SKIPIF1<0.(1)畫出SKIPIF1<0和SKIPIF1<0的圖像;(2)若SKIPIF1<0,求a的取值范圍.一、單選題1.(2022·全國·模擬預(yù)測)已知函數(shù)SKIPIF1<0的值域為SKIPIF1<0,則a的最小值為()A.1 B.2 C.3 D.42.(2022·北京·北師大實驗中學(xué)模擬預(yù)測)下列函數(shù)中,既是偶函數(shù)又在SKIPIF1<0單調(diào)遞增的函數(shù)是()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<03.(2022·全國·模擬預(yù)測)函數(shù)SKIPIF1<0在SKIPIF1<0上的大致圖象為()A. B.C. D.4.(2022·全國·模擬預(yù)測)已知函數(shù)SKIPIF1<0,則SKIPIF1<0()A.e B.1 C.SKIPIF1<0 D.SKIPIF1<05.(2022·全國·模擬預(yù)測)函數(shù)SKIPIF1<0的圖象大致為()A. B.C. D.6.(2022·全國·模擬預(yù)測)已知定義域為R的函數(shù)SKIPIF1<0滿足SKIPIF1<0,且當(dāng)SKIPIF1<0時,SKIPIF1<0,則不等式SKIPIF1<0的解集為()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<07.(2022·全國·模擬預(yù)測)若函數(shù)SKIPIF1<0在SKIPIF1<0上的最大值與最小值之和不小于SKIPIF1<0,則實數(shù)a的取值范圍為()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<08.(2022·全國·模擬預(yù)測)已知SKIPIF1<0為R上的奇函數(shù),SKIPIF1<0,若SKIPIF1<0且SKIPIF1<0,都有SKIPIF1<0,則不等式SKIPIF1<0的解集為()A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<09.(2022·廣東汕頭·一模)定義在R上的偶函數(shù)SKIPIF1<0滿足SKIPIF1<0,且當(dāng)SKIPIF1<0時,SKIPIF1<0,若關(guān)于x的方程SKIPIF1<0至少有8個實數(shù)解,則實數(shù)m的取值范圍是()A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度科技項目投資居間合同風(fēng)險管理與法律保障
- 2025年度海安企業(yè)勞動合同員工薪酬福利調(diào)整合同
- 2025年度智能家居水電改造專業(yè)施工協(xié)議合同范本
- 2025年度互聯(lián)網(wǎng)大數(shù)據(jù)分析技術(shù)服務(wù)合同
- 2025年人力資源居間服務(wù)合同上訴狀模板
- 2025年度智能養(yǎng)老社區(qū)租賃合同匯編
- 2025年度果園與酒店水果專供采購合同示范文本
- 2025年度環(huán)保建材供應(yīng)與服務(wù)合同(CF-ES)
- 2025年度卡片銷售與市場調(diào)研分析合作合同
- 2025年度智慧城市基礎(chǔ)設(shè)施建設(shè)合同范本-@-4
- 海通食品集團(tuán)楊梅汁產(chǎn)品市場營銷
- 印章管理辦法(公安部)
- 圍術(shù)期下肢深靜脈血栓預(yù)防的術(shù)中護(hù)理
- 教學(xué)設(shè)計 分?jǐn)?shù)的再認(rèn)識 省賽一等獎
- DBJ51-T 151-2020 四川省海綿城市建設(shè)工程評價標(biāo)準(zhǔn)
- GB/T 3795-2006錳鐵
- GB/T 31329-2014循環(huán)冷卻水節(jié)水技術(shù)規(guī)范
- GB/T 12996-2012電動輪椅車
- 小象學(xué)院深度學(xué)習(xí)-第7講遞歸神經(jīng)網(wǎng)絡(luò)
- 京東1+X理論考試試題及答案
- 人教版四年級下冊數(shù)學(xué)應(yīng)用題練習(xí)全
評論
0/150
提交評論