版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2023-2024學年山西?。ù笸貐^(qū))重點達標名校中考數(shù)學模試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(共10小題,每小題3分,共30分)1.如圖,A、B、C三點在正方形網格線的交點處,若將△ABC繞著點A逆時針旋轉得到△AC′B′,則tanB′的值為()A. B. C. D.2.如圖,邊長為2a的等邊△ABC中,M是高CH所在直線上的一個動點,連接MB,將線段BM繞點B逆時針旋轉60°得到BN,連接HN.則在點M運動過程中,線段HN長度的最小值是()A. B.a C. D.3.如圖是幾何體的三視圖,該幾何體是()A.圓錐 B.圓柱 C.三棱柱 D.三棱錐4.某車間需加工一批零件,車間20名工人每天加工零件數(shù)如表所示:每天加工零件數(shù)45678人數(shù)36542每天加工零件數(shù)的中位數(shù)和眾數(shù)為()A.6,5 B.6,6 C.5,5 D.5,65.據調查,某班20為女同學所穿鞋子的尺碼如表所示,尺碼(碼)3435363738人數(shù)251021則鞋子尺碼的眾數(shù)和中位數(shù)分別是()A.35碼,35碼 B.35碼,36碼 C.36碼,35碼 D.36碼,36碼6.如圖所示,二次函數(shù)y=ax2+bx+c(a≠0)的圖象經過點(﹣1,2),且與x軸交點的橫坐標分別為x1、x2,其中﹣2<x1<﹣1,0<x2<1.下列結論:①4a﹣2b+c<0;②2a﹣b<0;③abc<0;④b2+8a<4ac.其中正確的結論有()A.1個 B.2個 C.3個 D.4個7.為了大力宣傳節(jié)約用電,某小區(qū)隨機抽查了10戶家庭的月用電量情況,統(tǒng)計如下表,關于這10戶家庭的月用電量說法正確的是()月用電量(度)2530405060戶數(shù)12421A.極差是3 B.眾數(shù)是4 C.中位數(shù)40 D.平均數(shù)是20.58.如圖,D是等邊△ABC邊AD上的一點,且AD:DB=1:2,現(xiàn)將△ABC折疊,使點C與D重合,折痕為EF,點E、F分別在AC、BC上,則CE:CF=()A. B. C. D.9.如果k<0,b>0,那么一次函數(shù)y=kx+b的圖象經過()A.第一、二、三象限 B.第二、三、四象限C.第一、三、四象限 D.第一、二、四象限10.如圖,△ABC的面積為12,AC=3,現(xiàn)將△ABC沿AB所在直線翻折,使點C落在直線AD上的C處,P為直線AD上的一點,則線段BP的長可能是()A.3 B.5 C.6 D.10二、填空題(本大題共6個小題,每小題3分,共18分)11.若方程x2﹣2x﹣1=0的兩根分別為x1,x2,則x1+x2﹣x1x2的值為_____.12.如圖,將邊長為12的正方形ABCD沿其對角線AC剪開,再把△ABC沿著AD方向平移,得到△A′B′C′,當兩個三角形重疊部分的面積為32時,它移動的距離AA′等于________.13.已知一組數(shù)據1,2,x,2,3,3,5,7的眾數(shù)是2,則這組數(shù)據的中位數(shù)是.14.高速公路某收費站出城方向有編號為的五個小客車收費出口,假定各收費出口每20分鐘通過小客車的數(shù)量分別都是不變的.同時開放其中的某兩個收費出口,這兩個出口20分鐘一共通過的小客車數(shù)量記錄如下:收費出口編號通過小客車數(shù)量(輛)260330300360240在五個收費出口中,每20分鐘通過小客車數(shù)量最多的一個出口的編號是___________.15.如圖,數(shù)軸上點A表示的數(shù)為a,化簡:a_____.16.有一組數(shù)據:3,5,5,6,7,這組數(shù)據的眾數(shù)為_____.三、解答題(共8題,共72分)17.(8分)為響應“植樹造林、造福后人”的號召,某班組織部分同學義務植樹棵,由于同學們的積極參與,實際參加的人數(shù)比原計劃增加了,結果每人比原計劃少栽了棵,問實際有多少人參加了這次植樹活動?18.(8分)填空并解答:某單位開設了一個窗口辦理業(yè)務,并按顧客“先到達,先辦理”的方式服務,該窗口每2分鐘服務一位顧客.已知早上8:00上班窗口開始工作時,已經有6位顧客在等待,在窗口工作1分鐘后,又有一位“新顧客”到達,且以后每5分鐘就有一位“新顧客”到達.該單位上午8:00上班,中午11:30下班.(1)問哪一位“新顧客”是第一個不需要排隊的?分析:可設原有的6為顧客分別為a1、a2、a3、a4、a5、a6,“新顧客”為c1、c2、c3、c4….窗口開始工作記為0時刻.a1a2a3a4a5a6c1c2c3c4…到達窗口時刻000000161116…服務開始時刻024681012141618…每人服務時長2222222222…服務結束時刻2468101214161820…根據上述表格,則第位,“新顧客”是第一個不需要排隊的.(2)若其他條件不變,若窗口每a分鐘辦理一個客戶(a為正整數(shù)),則當a最小取什么值時,窗口排隊現(xiàn)象不可能消失.分析:第n個“新顧客”到達窗口時刻為,第(n﹣1)個“新顧客”服務結束的時刻為.19.(8分)已知關于的一元二次方程(為實數(shù)且).求證:此方程總有兩個實數(shù)根;如果此方程的兩個實數(shù)根都是整數(shù),求正整數(shù)的值.20.(8分)已知,拋物線y=ax2+c過點(-2,2)和點(4,5),點F(0,2)是y軸上的定點,點B是拋物線上除頂點外的任意一點,直線l:y=kx+b經過點B、F且交x軸于點A.(1)求拋物線的解析式;(2)①如圖1,過點B作BC⊥x軸于點C,連接FC,求證:FC平分∠BFO;②當k=時,點F是線段AB的中點;(3)如圖2,M(3,6)是拋物線內部一點,在拋物線上是否存在點B,使△MBF的周長最???若存在,求出這個最小值及直線l的解析式;若不存在,請說明理由.21.(8分)如圖,拋物線y=ax2+bx﹣2經過點A(4,0),B(1,0).(1)求出拋物線的解析式;(2)點D是直線AC上方的拋物線上的一點,求△DCA面積的最大值;(3)P是拋物線上一動點,過P作PM⊥x軸,垂足為M,是否存在P點,使得以A,P,M為頂點的三角形與△OAC相似?若存在,請求出符合條件的點P的坐標;若不存在,請說明理由.22.(10分)某中學為了提高學生的消防意識,舉行了消防知識競賽,所有參賽學生分別設有一、二、三等獎和紀念獎,獲獎情況已繪制成如圖所示的兩幅不完整的統(tǒng)計圖,根據圖中所經信息解答下列問題:(1)這次知識競賽共有多少名學生?(2)“二等獎”對應的扇形圓心角度數(shù),并將條形統(tǒng)計圖補充完整;(3)小華參加了此次的知識競賽,請你幫他求出獲得“一等獎或二等獎”的概率.23.(12分)如圖1,定義:在直角三角形ABC中,銳角α的鄰邊與對邊的比叫做角α的余切,記作ctanα,即ctanα=角α的鄰邊角(1)如圖1,若BC=3,AB=5,則ctanB=_____;(2)ctan60°=_____;(3)如圖2,已知:△ABC中,∠B是銳角,ctanC=2,AB=10,BC=20,試求∠B的余弦cosB的值.24.如圖,在等邊△ABC中,點D是AB邊上一點,連接CD,將線段CD繞點C按順時針方向旋轉60°后得到CE,連接AE.求證:AE∥BC.
參考答案一、選擇題(共10小題,每小題3分,共30分)1、D【解析】
過C點作CD⊥AB,垂足為D,根據旋轉性質可知,∠B′=∠B,把求tanB′的問題,轉化為在Rt△BCD中求tanB.【詳解】過C點作CD⊥AB,垂足為D.根據旋轉性質可知,∠B′=∠B.在Rt△BCD中,tanB=,∴tanB′=tanB=.故選D.【點睛】本題考查了旋轉的性質,旋轉后對應角相等;三角函數(shù)的定義及三角函數(shù)值的求法.2、A【解析】
取CB的中點G,連接MG,根據等邊三角形的性質可得BH=BG,再求出∠HBN=∠MBG,根據旋轉的性質可得MB=NB,然后利用“邊角邊”證明∴△MBG≌△NBH,再根據全等三角形對應邊相等可得HN=MG,然后根據垂線段最短可得MG⊥CH時最短,再根據∠BCH=30°求解即可.【詳解】如圖,取BC的中點G,連接MG,∵旋轉角為60°,∴∠MBH+∠HBN=60°,又∵∠MBH+∠MBC=∠ABC=60°,∴∠HBN=∠GBM,∵CH是等邊△ABC的對稱軸,∴HB=AB,∴HB=BG,又∵MB旋轉到BN,∴BM=BN,在△MBG和△NBH中,,∴△MBG≌△NBH(SAS),∴MG=NH,根據垂線段最短,MG⊥CH時,MG最短,即HN最短,此時∵∠BCH=×60°=30°,CG=AB=×2a=a,∴MG=CG=×a=,∴HN=,故選A.【點睛】本題考查了旋轉的性質,等邊三角形的性質,全等三角形的判定與性質,垂線段最短的性質,作輔助線構造出全等三角形是解題的關鍵,也是本題的難點.3、C【解析】分析:根據一個空間幾何體的主視圖和左視圖都是長方形,可判斷該幾何體是柱體,進而根據俯視圖的形狀,可判斷是三棱柱,得到答案.詳解:∵幾何體的主視圖和左視圖都是長方形,故該幾何體是一個柱體,又∵俯視圖是一個三角形,故該幾何體是一個三棱柱,故選C.點睛:本題考查的知識點是三視圖,如果有兩個視圖為三角形,該幾何體一定是錐,如果有兩個矩形,該幾何體一定柱,其底面由第三個視圖的形狀決定.4、A【解析】
根據眾數(shù)、中位數(shù)的定義分別進行解答即可.【詳解】由表知數(shù)據5出現(xiàn)了6次,次數(shù)最多,所以眾數(shù)為5;因為共有20個數(shù)據,所以中位數(shù)為第10、11個數(shù)據的平均數(shù),即中位數(shù)為=6,故選A.【點睛】本題考查了眾數(shù)和中位數(shù)的定義.用到的知識點:一組數(shù)據中出現(xiàn)次數(shù)最多的數(shù)據叫做這組數(shù)據的眾數(shù).將一組數(shù)據按照從小到大(或從大到?。┑捻樞蚺帕?,如果數(shù)據的個數(shù)是奇數(shù),則處于中間位置的數(shù)就是這組數(shù)據的中位數(shù);如果這組數(shù)據的個數(shù)是偶數(shù),則中間兩個數(shù)據的平均數(shù)就是這組數(shù)據的中位數(shù).5、D【解析】
眾數(shù)是一組數(shù)據中出現(xiàn)次數(shù)最多的數(shù)據,注意眾數(shù)可以不止一個;找中位數(shù)要把數(shù)據按從小到大的順序排列,位于最中間的一個數(shù)(或兩個數(shù)的平均數(shù))為中位數(shù).【詳解】數(shù)據36出現(xiàn)了10次,次數(shù)最多,所以眾數(shù)為36,一共有20個數(shù)據,位置處于中間的數(shù)是:36,36,所以中位數(shù)是(36+36)÷2=36.故選D.【點睛】考查中位數(shù)與眾數(shù),掌握眾數(shù)是一組數(shù)據中出現(xiàn)次數(shù)最多的數(shù)據,注意眾數(shù)可以不止一個;找中位數(shù)要把數(shù)據按從小到大的順序排列,位于最中間的一個數(shù)(或兩個數(shù)的平均數(shù))為中位數(shù)是解題的關鍵.6、C【解析】
首先根據拋物線的開口方向可得到a<0,拋物線交y軸于正半軸,則c>0,而拋物線與x軸的交點中,﹣2<x1<﹣1、0<x2<1說明拋物線的對稱軸在﹣1~0之間,即x=﹣>﹣1,可根據這些條件以及函數(shù)圖象上一些特殊點的坐標來進行判斷【詳解】由圖知:拋物線的開口向下,則a<0;拋物線的對稱軸x=﹣>﹣1,且c>0;①由圖可得:當x=﹣2時,y<0,即4a﹣2b+c<0,故①正確;②已知x=﹣>﹣1,且a<0,所以2a﹣b<0,故②正確;③拋物線對稱軸位于y軸的左側,則a、b同號,又c>0,故abc>0,所以③不正確;④由于拋物線的對稱軸大于﹣1,所以拋物線的頂點縱坐標應該大于2,即:>2,由于a<0,所以4ac﹣b2<8a,即b2+8a>4ac,故④正確;因此正確的結論是①②④.故選:C.【點睛】本題主要考查對二次函數(shù)圖象與系數(shù)的關系,拋物線與x軸的交點,二次函數(shù)圖象上點的坐標特征等知識點的理解和掌握,能根據圖象確定與系數(shù)有關的式子的正負是解此題的關鍵.7、C【解析】
極差、中位數(shù)、眾數(shù)、平均數(shù)的定義和計算公式分別對每一項進行分析,即可得出答案.【詳解】解:A、這組數(shù)據的極差是:60-25=35,故本選項錯誤;
B、40出現(xiàn)的次數(shù)最多,出現(xiàn)了4次,則眾數(shù)是40,故本選項錯誤;
C、把這些數(shù)從小到大排列,最中間兩個數(shù)的平均數(shù)是(40+40)÷2=40,則中位數(shù)是40,故本選項正確;
D、這組數(shù)據的平均數(shù)(25+30×2+40×4+50×2+60)÷10=40.5,故本選項錯誤;
故選:C.【點睛】本題考查了極差、平均數(shù)、中位數(shù)、眾數(shù)的知識,解答本題的關鍵是掌握各知識點的概念.8、B【解析】
解:由折疊的性質可得,∠EDF=∠C=60o,CE=DE,CF=DF再由∠BDF+∠ADE=∠BDF+∠BFD=120o可得∠ADE=∠BFD,又因∠A=∠B=60o,根據兩角對應相等的兩三角形相似可得△AED∽△BDF所以,設AD=a,BD=2a,AB=BC=CA=3a,再設CE==DE=x,CF==DF=y,則AE=3a-x,BF=3a-y,所以整理可得ay=3ax-xy,2ax=3ay-xy,即xy=3ax-ay①,xy=3ay-2ax②;把①代入②可得3ax-ay=3ay-2ax,所以5ax=4ay,,即故選B.【點睛】本題考查相似三角形的判定及性質.9、D【解析】
根據k、b的符號來求確定一次函數(shù)y=kx+b的圖象所經過的象限.【詳解】∵k<0,
∴一次函數(shù)y=kx+b的圖象經過第二、四象限.
又∵b>0時,
∴一次函數(shù)y=kx+b的圖象與y軸交與正半軸.
綜上所述,該一次函數(shù)圖象經過第一、二、四象限.
故選D.【點睛】本題主要考查一次函數(shù)圖象在坐標平面內的位置與k、b的關系.解答本題注意理解:直線y=kx+b所在的位置與k、b的符號有直接的關系.k>0時,直線必經過一、三象限.k<0時,直線必經過二、四象限.b>0時,直線與y軸正半軸相交.b=0時,直線過原點;b<0時,直線與y軸負半軸相交.10、D【解析】
過B作BN⊥AC于N,BM⊥AD于M,根據折疊得出∠C′AB=∠CAB,根據角平分線性質得出BN=BM,根據三角形的面積求出BN,即可得出點B到AD的最短距離是8,得出選項即可.【詳解】解:如圖:
過B作BN⊥AC于N,BM⊥AD于M,
∵將△ABC沿AB所在直線翻折,使點C落在直線AD上的C′處,
∴∠C′AB=∠CAB,
∴BN=BM,
∵△ABC的面積等于12,邊AC=3,
∴×AC×BN=12,
∴BN=8,
∴BM=8,
即點B到AD的最短距離是8,
∴BP的長不小于8,
即只有選項D符合,
故選D.【點睛】本題考查的知識點是折疊的性質,三角形的面積,角平分線性質的應用,解題關鍵是求出B到AD的最短距離,注意:角平分線上的點到角的兩邊的距離相等.二、填空題(本大題共6個小題,每小題3分,共18分)11、1【解析】根據題意得x1+x2=2,x1x2=﹣1,所以x1+x2﹣x1x2=2﹣(﹣1)=1.故答案為1.12、4或8【解析】
由平移的性質可知陰影部分為平行四邊形,設A′D=x,根據題意陰影部分的面積為(12?x)×x,即x(12?x),當x(12?x)=32時,解得:x=4或x=8,所以AA′=8或AA′=4。【詳解】設AA′=x,AC與A′B′相交于點E,∵△ACD是正方形ABCD剪開得到的,∴△ACD是等腰直角三角形,∴∠A=45°,∴△AA′E是等腰直角三角形,∴A′E=AA′=x,A′D=AD?AA′=12?x,∵兩個三角形重疊部分的面積為32,∴x(12?x)=32,整理得,x?12x+32=0,解得x=4,x=8,即移動的距離AA′等4或8.【點睛】本題考查正方形和圖形的平移,熟練掌握計算法則是解題關鍵·.13、2.1【解析】試題分析:∵數(shù)據1,2,x,2,3,3,1,7的眾數(shù)是2,∴x=2,∴這組數(shù)據的中位數(shù)是(2+3)÷2=2.1;故答案為2.1.考點:1、眾數(shù);2、中位數(shù)14、B【解析】
利用同時開放其中的兩個安全出口,20分鐘所通過的小車的數(shù)量分析對比,能求出結果.【詳解】同時開放A、E兩個安全出口,與同時開放D、E兩個安全出口,20分鐘的通過數(shù)量發(fā)現(xiàn)得到D疏散乘客比A快;同理同時開放BC與CD進行對比,可知B疏散乘客比D快;同理同時開放BC與AB進行對比,可知C疏散乘客比A快;同理同時開放DE與CD進行對比,可知E疏散乘客比C快;同理同時開放AB與AE進行對比,可知B疏散乘客比E快;所以B口的速度最快故答案為B.【點睛】本題考查簡單的合理推理,考查推理論證能力等基礎知識,考查運用求解能力,考查函數(shù)與方程思想,是基礎題.15、1.【解析】
直接利用二次根式的性質以及結合數(shù)軸得出a的取值范圍進而化簡即可.【詳解】由數(shù)軸可得:0<a<1,則a+=a+=a+(1﹣a)=1.故答案為1.【點睛】本題主要考查了二次根式的性質與化簡,正確得出a的取值范圍是解題的關鍵.16、1【解析】
根據眾數(shù)的概念進行求解即可得.【詳解】在數(shù)據3,1,1,6,7中1出現(xiàn)次數(shù)最多,所以這組數(shù)據的眾數(shù)為1,故答案為:1.【點睛】本題考查了眾數(shù)的概念,熟知一組數(shù)據中出現(xiàn)次數(shù)最多的數(shù)據叫做眾數(shù)是解題的關鍵.三、解答題(共8題,共72分)17、人【解析】
解:設原計劃有x人參加了這次植樹活動依題意得:解得x=30人經檢驗x=30是原方程式的根實際參加了這次植樹活動1.5x=45人答實際有45人參加了這次植樹活動.18、(1)5;(2)5n﹣4,na+6a.【解析】
(1)第5位,“新顧客”到達時間是20分鐘,第11位顧客結束服務的時間是20分鐘,所以第5位“新顧客”是第一個不需要排隊的;(2)由表格中信息可得,“新顧客”到達時間為1,6,11,16,…,則第n個“新顧客”到達窗口時刻為5n﹣4,由表格可知,“新顧客”服務開始的時間為6a,7a,8a,…,第n﹣1個“新顧客”服務開始的時間為(6+n﹣1)a=(5+n)a,第n﹣1個“新顧客”服務結束的時間為(5+n)a+a=na+6a.【詳解】(1)第5位,“新顧客”到達時間是20分鐘,第11位顧客結束服務的時間是20分鐘,所以第5位“新顧客”是第一個不需要排隊的;故答案為:5;(2)由表格中信息可得,“新顧客”到達時間為1,6,11,16,…,∴第n個“新顧客”到達窗口時刻為5n﹣4,由表格可知,“新顧客”服務開始的時間為6a,7a,8a,…,∴第n個“新顧客”服務開始的時間為(6+n)a,∴第n﹣1個“新顧客”服務開始的時間為(6+n﹣1)a=(5+n)a,∵每a分鐘辦理一個客戶,∴第n﹣1個“新顧客”服務結束的時間為(5+n)a+a=na+6a,故答案為:5n﹣4,na+6a.【點睛】本題考查了列代數(shù)式,用代數(shù)式表示數(shù)的規(guī)律,解題關鍵是要讀懂題目的意思,根據題目給出的條件,尋找規(guī)律,列出代數(shù)式.19、(1)證明見解析;(2)或.【解析】
(1)求出△的值,再判斷出其符號即可;(2)先求出x的值,再由方程的兩個實數(shù)根都是整數(shù),且m是正整數(shù)求出m的值即可.【詳解】(1)依題意,得,,.∵,∴方程總有兩個實數(shù)根.(2)∵,∴,.∵方程的兩個實數(shù)根都是整數(shù),且是正整數(shù),∴或.∴或.【點睛】本題考查的是根的判別式,熟知一元二次方程ax2+bx+c=0(a≠0)的根與△=b2-4ac的關系是解答此題的關鍵.20、(1);(2)①見解析;②;(3)存在點B,使△MBF的周長最小.△MBF周長的最小值為11,直線l的解析式為.【解析】
(1)用待定系數(shù)法將已知兩點的坐標代入拋物線解析式即可解答.(2)①由于BC∥y軸,容易看出∠OFC=∠BCF,想證明∠BFC=∠OFC,可轉化為求證∠BFC=∠BCF,根據“等邊對等角”,也就是求證BC=BF,可作BD⊥y軸于點D,設B(m,),通過勾股定理用表示出的長度,與相等,即可證明.②用表示出點的坐標,運用勾股定理表示出的長度,令,解關于的一元二次方程即可.(3)求折線或者三角形周長的最小值問題往往需要將某些線段代換轉化到一條直線上,再通過“兩點之間線段最短”或者“垂線段最短”等定理尋找最值.本題可過點M作MN⊥x軸于點N,交拋物線于點B1,過點B作BE⊥x軸于點E,連接B1F,通過第(2)問的結論將△MBF的邊轉化為,可以發(fā)現(xiàn),當點運動到位置時,△MBF周長取得最小值,根據求平面直角坐標系里任意兩點之間的距離的方法代入點與的坐標求出的長度,再加上即是△MBF周長的最小值;將點的橫坐標代入二次函數(shù)求出,再聯(lián)立與的坐標求出的解析式即可.【詳解】(1)解:將點(-2,2)和(4,5)分別代入,得:解得:∴拋物線的解析式為:.(2)①證明:過點B作BD⊥y軸于點D,設B(m,),∵BC⊥x軸,BD⊥y軸,F(xiàn)(0,2)∴BC=,BD=|m|,DF=∴BC=BF∴∠BFC=∠BCF又BC∥y軸,∴∠OFC=∠BCF∴∠BFC=∠OFC∴FC平分∠BFO.②(說明:寫一個給1分)(3)存在點B,使△MBF的周長最小.過點M作MN⊥x軸于點N,交拋物線于點B1,過點B作BE⊥x軸于點E,連接B1F由(2)知B1F=B1N,BF=BE∴△MB1F的周長=MF+MB1+B1F=MF+MB1+B1N=MF+MN△MBF的周長=MF+MB+BF=MF+MB+BE根據垂線段最短可知:MN<MB+BE∴當點B在點B1處時,△MBF的周長最小∵M(3,6),F(xiàn)(0,2)∴,MN=6∴△MBF周長的最小值=MF+MN=5+6=11將x=3代入,得:∴B1(3,)將F(0,2)和B1(3,)代入y=kx+b,得:,解得:∴此時直線l的解析式為:.【點睛】本題綜合考查了二次函數(shù)與一次函數(shù)的圖象與性質,等腰三角形的性質,動點與最值問題等,熟練掌握各個知識點,結合圖象作出合理輔助線,進行適當?shù)霓D化是解答關鍵.21、(1)y=﹣x2+x﹣2;(2)當t=2時,△DAC面積最大為4;(3)符合條件的點P為(2,1)或(5,﹣2)或(﹣3,﹣14).【解析】
(1)把A與B坐標代入解析式求出a與b的值,即可確定出解析式;(2)如圖所示,過D作DE與y軸平行,三角形ACD面積等于DE與OA乘積的一半,表示出S與t的二次函數(shù)解析式,利用二次函數(shù)性質求出S的最大值即可;(3)存在P點,使得以A,P,M為頂點的三角形與△OAC相似,分當1<m<4時;當m<1時;當m>4時三種情況求出點P坐標即可.【詳解】(1)∵該拋物線過點A(4,0),B(1,0),∴將A與B代入解析式得:,解得:,則此拋物線的解析式為y=﹣x2+x﹣2;(2)如圖,設D點的橫坐標為t(0<t<4),則D點的縱坐標為﹣t2+t﹣2,過D作y軸的平行線交AC于E,由題意可求得直線AC的解析式為y=x﹣2,∴E點的坐標為(t,t﹣2),∴DE=﹣t2+t﹣2﹣(t﹣2)=﹣t2+2t,∴S△DAC=×(﹣t2+2t)×4=﹣t2+4t=﹣(t﹣2)2+4,則當t=2時,△DAC面積最大為4;(3)存在,如圖,設P點的橫坐標為m,則P點的縱坐標為﹣m2+m﹣2,當1<m<4時,AM=4﹣m,PM=﹣m2+m﹣2,又∵∠COA=∠PMA=90°,∴①當==2時,△APM∽△ACO,即4﹣m=2(﹣m2+m﹣2),解得:m=2或m=4(舍去),此時P(2,1);②當==時,△APM∽△CAO,即2(4﹣m)=﹣m2+m﹣2,解得:m=4或m=5(均不合題意,舍去)∴當1<m<4時,P(2,1);類似地可求出當m>4時,P(5,﹣2);當m<1時,P(﹣3,﹣14),綜上所述,符合條件的點P為(2,1)或(5,﹣2)或(﹣3,﹣14).【點睛】本題綜合考查了拋物線解析式的求法,拋物線與相似三角形的問題,坐標系里求三角形的面積及其最大值問題,要求會用字母代替長度,坐標,會對代數(shù)式進行
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度廠房拆遷評估與補償實施流程合同4篇
- 2025年華師大版九年級科學上冊階段測試試卷
- 稅收政策與企業(yè)財務風險-洞察分析
- 二零二五版新型多功能腳手架租賃安裝服務合同3篇
- 2025年冀教版七年級地理下冊月考試卷含答案
- 2025年度金融科技產品研發(fā)合同范本:二零二五版區(qū)塊鏈技術應用協(xié)議4篇
- 2025年外研版2024九年級科學下冊階段測試試卷
- 音樂制作產業(yè)鏈協(xié)同創(chuàng)新-洞察分析
- 二零二五年度古建筑群打蠟修繕合同4篇
- 2025年新世紀版八年級化學下冊階段測試試卷
- 巖土工程勘察課件0巖土工程勘察
- 《腎上腺腫瘤》課件
- 2024-2030年中國典當行業(yè)發(fā)展前景預測及融資策略分析報告
- 《乘用車越野性能主觀評價方法》
- 幼師個人成長發(fā)展規(guī)劃
- 2024-2025學年北師大版高二上學期期末英語試題及解答參考
- 動物醫(yī)學類專業(yè)生涯發(fā)展展示
- 批發(fā)面包采購合同范本
- 乘風化麟 蛇我其誰 2025XX集團年終總結暨頒獎盛典
- 2024年大數(shù)據分析公司與中國政府合作協(xié)議
- 一年級數(shù)學(上)計算題專項練習匯編
評論
0/150
提交評論