版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2021-2022高考數(shù)學(xué)模擬試卷注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)填寫在答題卡上。2.回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡上對(duì)應(yīng)題目的答案標(biāo)號(hào)涂黑,如需改動(dòng),用橡皮擦干凈后,再選涂其它答案標(biāo)號(hào)?;卮鸱沁x擇題時(shí),將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.如圖,正方形網(wǎng)格紙中的實(shí)線圖形是一個(gè)多面體的三視圖,則該多面體各表面所在平面互相垂直的有()A.2對(duì) B.3對(duì)C.4對(duì) D.5對(duì)2.若平面向量,滿足,則的最大值為()A. B. C. D.3.已知圓與拋物線的準(zhǔn)線相切,則的值為()A.1 B.2 C. D.44.設(shè)等比數(shù)列的前項(xiàng)和為,則“”是“”的()A.充分不必要 B.必要不充分C.充要 D.既不充分也不必要5.若sin(α+3π2A.-12 B.-136.某幾何體的三視圖如圖所示(單位:),則該幾何體的體積(單位:)為()A. B.6 C. D.7.已知命題:“關(guān)于的方程有實(shí)根”,若為真命題的充分不必要條件為,則實(shí)數(shù)的取值范圍是()A. B. C. D.8.已知平面向量滿足,且,則所夾的銳角為()A. B. C. D.09.三棱錐的各個(gè)頂點(diǎn)都在求的表面上,且是等邊三角形,底面,,,若點(diǎn)在線段上,且,則過點(diǎn)的平面截球所得截面的最小面積為()A. B. C. D.10.若復(fù)數(shù)是純虛數(shù),則實(shí)數(shù)的值為()A.或 B. C. D.或11.已知集合U={1,2,3,4,5,6},A={2,4},B={3,4},則=()A.{3,5,6} B.{1,5,6} C.{2,3,4} D.{1,2,3,5,6}12.已知角的頂點(diǎn)為坐標(biāo)原點(diǎn),始邊與軸的非負(fù)半軸重合,終邊上有一點(diǎn),則().A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知向量,,,則__________.14.的展開式中的系數(shù)為__________.15.如圖,在正四棱柱中,P是側(cè)棱上一點(diǎn),且.設(shè)三棱錐的體積為,正四棱柱的體積為V,則的值為________.16.已知多項(xiàng)式滿足,則_________,__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在△ABC中,分別為三個(gè)內(nèi)角A、B、C的對(duì)邊,且(1)求角A;(2)若且求△ABC的面積.18.(12分)如圖,在三棱柱中,已知四邊形為矩形,,,,的角平分線交于.(1)求證:平面平面;(2)求二面角的余弦值.19.(12分)已知數(shù)列是各項(xiàng)均為正數(shù)的等比數(shù)列,,且,,成等差數(shù)列.(Ⅰ)求數(shù)列的通項(xiàng)公式;(Ⅱ)設(shè),為數(shù)列的前項(xiàng)和,記,證明:.20.(12分)如圖,在斜三棱柱中,平面平面,,,,均為正三角形,E為AB的中點(diǎn).(Ⅰ)證明:平面;(Ⅱ)求斜三棱柱截去三棱錐后剩余部分的體積.21.(12分)已知數(shù)列的前項(xiàng)和為,且滿足().(1)求數(shù)列的通項(xiàng)公式;(2)設(shè)(),數(shù)列的前項(xiàng)和.若對(duì)恒成立,求實(shí)數(shù),的值.22.(10分)在直角坐標(biāo)系中,已知點(diǎn),的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.(1)求的普通方程和的直角坐標(biāo)方程;(2)設(shè)曲線與曲線相交于,兩點(diǎn),求的值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.C【解析】
畫出該幾何體的直觀圖,易證平面平面,平面平面,平面平面,平面平面,從而可選出答案.【詳解】該幾何體是一個(gè)四棱錐,直觀圖如下圖所示,易知平面平面,作PO⊥AD于O,則有PO⊥平面ABCD,PO⊥CD,又AD⊥CD,所以,CD⊥平面PAD,所以平面平面,同理可證:平面平面,由三視圖可知:PO=AO=OD,所以,AP⊥PD,又AP⊥CD,所以,AP⊥平面PCD,所以,平面平面,所以該多面體各表面所在平面互相垂直的有4對(duì).【點(diǎn)睛】本題考查了空間幾何體的三視圖,考查了四棱錐的結(jié)構(gòu)特征,考查了面面垂直的證明,屬于中檔題.2.C【解析】
可根據(jù)題意把要求的向量重新組合成已知向量的表達(dá),利用向量數(shù)量積的性質(zhì),化簡為三角函數(shù)最值.【詳解】由題意可得:,,,故選:C【點(diǎn)睛】本題主要考查根據(jù)已知向量的模求未知向量的模的方法技巧,把要求的向量重新組合成已知向量的表達(dá)是本題的關(guān)鍵點(diǎn).本題屬中檔題.3.B【解析】
因?yàn)閳A與拋物線的準(zhǔn)線相切,則圓心為(3,0),半徑為4,根據(jù)相切可知,圓心到直線的距離等于半徑,可知的值為2,選B.【詳解】請?jiān)诖溯斎朐斀猓?.A【解析】
首先根據(jù)等比數(shù)列分別求出滿足,的基本量,根據(jù)基本量的范圍即可確定答案.【詳解】為等比數(shù)列,若成立,有,因?yàn)楹愠闪?,故可以推出且,若成立,?dāng)時(shí),有,當(dāng)時(shí),有,因?yàn)楹愠闪?,所以有,故可以推出,,所以“”是“”的充分不必要條件.故選:A.【點(diǎn)睛】本題主要考查了等比數(shù)列基本量的求解,充分必要條件的集合關(guān)系,屬于基礎(chǔ)題.5.B【解析】
由三角函數(shù)的誘導(dǎo)公式和倍角公式化簡即可.【詳解】因?yàn)閟inα+3π2=3故選B【點(diǎn)睛】本題考查了三角函數(shù)的誘導(dǎo)公式和倍角公式,靈活掌握公式是關(guān)鍵,屬于基礎(chǔ)題.6.D【解析】
根據(jù)幾何體的三視圖,該幾何體是由正方體去掉三棱錐得到,根據(jù)正方體和三棱錐的體積公式可求解.【詳解】如圖,該幾何體為正方體去掉三棱錐,所以該幾何體的體積為:,故選:D【點(diǎn)睛】本題主要考查了空間幾何體的三視圖以及體積的求法,考查了空間想象力,屬于中檔題.7.B【解析】命題p:,為,又為真命題的充分不必要條件為,故8.B【解析】
根據(jù)題意可得,利用向量的數(shù)量積即可求解夾角.【詳解】因?yàn)榧炊詩A角為故選:B【點(diǎn)睛】本題考查了向量數(shù)量積求夾角,需掌握向量數(shù)量積的定義求法,屬于基礎(chǔ)題.9.A【解析】
由題意畫出圖形,求出三棱錐S-ABC的外接球的半徑,再求出外接球球心到D的距離,利用勾股定理求得過點(diǎn)D的平面截球O所得截面圓的最小半徑,則答案可求.【詳解】如圖,設(shè)三角形ABC外接圓的圓心為G,則外接圓半徑AG=,設(shè)三棱錐S-ABC的外接球的球心為O,則外接球的半徑R=取SA中點(diǎn)E,由SA=4,AD=3SD,得DE=1,所以O(shè)D=.則過點(diǎn)D的平面截球O所得截面圓的最小半徑為所以過點(diǎn)D的平面截球O所得截面的最小面積為故選:A【點(diǎn)睛】本題考查三棱錐的外接球問題,還考查了求截面的最小面積,屬于較難題.10.C【解析】試題分析:因?yàn)閺?fù)數(shù)是純虛數(shù),所以且,因此注意不要忽視虛部不為零這一隱含條件.考點(diǎn):純虛數(shù)11.B【解析】
按補(bǔ)集、交集定義,即可求解.【詳解】={1,3,5,6},={1,2,5,6},所以={1,5,6}.故選:B.【點(diǎn)睛】本題考查集合間的運(yùn)算,屬于基礎(chǔ)題.12.B【解析】
根據(jù)角終邊上的點(diǎn)坐標(biāo),求得,代入二倍角公式即可求得的值.【詳解】因?yàn)榻K邊上有一點(diǎn),所以,故選:B【點(diǎn)睛】此題考查二倍角公式,熟練記憶公式即可解決,屬于簡單題目.二、填空題:本題共4小題,每小題5分,共20分。13.3【解析】
由題意得,,再代入中,計(jì)算即可得答案.【詳解】由題意可得,,∴,解得,∴.故答案為:.【點(diǎn)睛】本題考查向量模的計(jì)算,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查運(yùn)算求解能力,求解時(shí)注意向量數(shù)量積公式的運(yùn)用.14.3【解析】
分別用1和進(jìn)行分類討論即可【詳解】當(dāng)?shù)谝粋€(gè)因式取1時(shí),第二個(gè)因式應(yīng)取含的項(xiàng),則對(duì)應(yīng)系數(shù)為:;當(dāng)?shù)谝粋€(gè)因式取時(shí),第二個(gè)因式應(yīng)取含的項(xiàng),則對(duì)應(yīng)系數(shù)為:;故的展開式中的系數(shù)為.故答案為:3【點(diǎn)睛】本題考查二項(xiàng)式定理中具體項(xiàng)對(duì)應(yīng)系數(shù)的求解,屬于基礎(chǔ)題15.【解析】
設(shè)正四棱柱的底面邊長,高,再根據(jù)柱體、錐體的體積公式計(jì)算可得.【詳解】解:設(shè)正四棱柱的底面邊長,高,則,即故答案為:【點(diǎn)睛】本題考查柱體、錐體的體積計(jì)算,屬于基礎(chǔ)題.16.【解析】∵多項(xiàng)式滿足∴令,得,則∴∴該多項(xiàng)式的一次項(xiàng)系數(shù)為∴∴∴令,得故答案為5,72三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1);(2).【解析】
(1)整理得:,再由余弦定理可得,問題得解.(2)由正弦定理得:,,,再代入即可得解.【詳解】(1)由題意,得,∴;(2)由正弦定理,得,,∴.【點(diǎn)睛】本題主要考查了正、余弦定理及三角形面積公式,考查了轉(zhuǎn)化思想及化簡能力,屬于基礎(chǔ)題.18.(1)見解析;(2)【解析】
(1)過點(diǎn)作交于,連接,設(shè),連接,由角平分線的性質(zhì),正方形的性質(zhì),三角形的全等,證得,,由線面垂直的判斷定理證得平面,再由面面垂直的判斷得證.(2)平面幾何知識(shí)和線面的關(guān)系可證得平面,建立空間直角坐標(biāo)系,求得兩個(gè)平面的法向量,根據(jù)二面角的向量計(jì)算公式可求得其值.【詳解】(1)如圖,過點(diǎn)作交于,連接,設(shè),連接,,,又為的角平分線,四邊形為正方形,,又,,,,,又為的中點(diǎn),又平面,,平面,又平面,平面平面,(2)在中,,,,在中,,,又,,,,又,,平面,平面,故建立如圖空間直角坐標(biāo)系,則,,,,,,,設(shè)平面的一個(gè)法向量為,則,,令,得,設(shè)平面的一個(gè)法向量為,則,,令,得,由圖示可知二面角是銳角,故二面角的余弦值為.【點(diǎn)睛】本題考查空間的面面垂直關(guān)系的證明,二面角的計(jì)算,在證明垂直關(guān)系時(shí),注意運(yùn)用平面幾何中的等腰三角形的“三線合一”,勾股定理、菱形的對(duì)角線互相垂直,屬于基礎(chǔ)題.19.(Ⅰ),;(Ⅱ)見解析【解析】
(Ⅰ)由,且成等差數(shù)列,可求得q,從而可得本題答案;(Ⅱ)化簡求得,然后求得,再用裂項(xiàng)相消法求,即可得到本題答案.【詳解】(Ⅰ)因?yàn)閿?shù)列是各項(xiàng)均為正數(shù)的等比數(shù)列,,可設(shè)公比為q,,又成等差數(shù)列,所以,即,解得或(舍去),則,;(Ⅱ)證明:,,,則,因?yàn)?,所以?【點(diǎn)睛】本題主要考查等差等比數(shù)列的綜合應(yīng)用,以及用裂項(xiàng)相消法求和并證明不等式,考查學(xué)生的運(yùn)算求解能力和推理證明能力.20.(Ⅰ)見解析;(Ⅱ)【解析】
(Ⅰ)要證明線面平行,需先證明線線平行,所以連接,交于點(diǎn)M,連接ME,證明;(Ⅱ)由題意可知點(diǎn)到平面ABC的距離等于點(diǎn)到平面ABC的距離,根據(jù)體積公式剩余部分的體積是.【詳解】(Ⅰ)如圖,連接,交于點(diǎn)M,連接ME,則.因?yàn)槠矫?,平面,所以平面.(Ⅱ)因?yàn)槠矫鍭BC,所以點(diǎn)到平面ABC的距離等于點(diǎn)到平面ABC的距離.如圖,設(shè)O是AC的中點(diǎn),連接,OB.因?yàn)闉檎切危?,又平面平面,平面平面,所以平面ABC.所以點(diǎn)到平面ABC的距離,故三棱錐的體積為.而斜三棱柱的體積為.所以剩余部分的體積為.【點(diǎn)睛】本題考查證明線面平行,計(jì)算體積,意在考查推理證明,空間想象能力,計(jì)算能力,屬于中檔題型,一般證明線面平行的方法1.證明線線平行,則線面平行,2.證明面面平行,則線面平行,關(guān)鍵是證明線線平行,一般構(gòu)造平行四邊形,則對(duì)邊平行,或是構(gòu)造三角形中位線.21.(1)(2),.【解析】
(1)根據(jù)數(shù)列的通項(xiàng)與前n項(xiàng)和的關(guān)系式,即求解數(shù)列的通項(xiàng)公式;(2)由(1)可得,利用等比數(shù)列的前n項(xiàng)和公式和裂項(xiàng)法,求得,結(jié)合題意,即可求解.【詳解】(1)由題意,當(dāng)時(shí),由,解得;當(dāng)時(shí),可得,即,顯然當(dāng)時(shí)上式也適合,所以數(shù)列的通項(xiàng)公式為.(2)由(1)可得,所以.因?yàn)閷?duì)恒成立,所以,.【點(diǎn)睛】本題主要考查了數(shù)列的通項(xiàng)公式的求解,等差數(shù)列的前n項(xiàng)和公式,以及裂項(xiàng)法求和的應(yīng)用,其中解答中熟記等差、等比數(shù)列的通項(xiàng)公式和前n項(xiàng)和公式,以及合理利用“裂項(xiàng)法”求和是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力,屬于中檔試題.22.(1);(2)【解析】
(1)消去參數(shù)方程中的參數(shù),求得的普通
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 廣東科貿(mào)職業(yè)學(xué)院《機(jī)能實(shí)驗(yàn)學(xué)》2023-2024學(xué)年第一學(xué)期期末試卷
- 廣東警官學(xué)院《居住區(qū)規(guī)劃原理》2023-2024學(xué)年第一學(xué)期期末試卷
- 廣東江門中醫(yī)藥職業(yè)學(xué)院《連鎖經(jīng)營管理》2023-2024學(xué)年第一學(xué)期期末試卷
- 廣東環(huán)境保護(hù)工程職業(yè)學(xué)院《軟件基礎(chǔ)實(shí)踐》2023-2024學(xué)年第一學(xué)期期末試卷
- 廣東工商職業(yè)技術(shù)大學(xué)《工程材料實(shí)驗(yàn)》2023-2024學(xué)年第一學(xué)期期末試卷
- 廣東第二師范學(xué)院《企業(yè)管理學(xué)概論》2023-2024學(xué)年第一學(xué)期期末試卷
- 共青科技職業(yè)學(xué)院《工程管理專業(yè)外語》2023-2024學(xué)年第一學(xué)期期末試卷
- 贛南師范大學(xué)科技學(xué)院《兒童文學(xué)與寫作》2023-2024學(xué)年第一學(xué)期期末試卷
- 贛南科技學(xué)院《用戶體驗(yàn)設(shè)計(jì)》2023-2024學(xué)年第一學(xué)期期末試卷
- 《迪士尼產(chǎn)業(yè)鏈分析》課件
- 2024-2025學(xué)年烏魯木齊市數(shù)學(xué)三上期末檢測試題含解析
- 湖南2025年湖南機(jī)電職業(yè)技術(shù)學(xué)院合同制教師招聘31人歷年參考題庫(頻考版)含答案解析
- 2025年初級(jí)經(jīng)濟(jì)師之初級(jí)經(jīng)濟(jì)師基礎(chǔ)知識(shí)考試題庫及完整答案【全優(yōu)】
- 黑龍江省哈爾濱市第六中學(xué)2025屆高考數(shù)學(xué)三模試卷含解析
- 五年高考真題(2020-2024)分類匯編 政治 專題19 世界多極化 含解析
- 【MOOC】數(shù)字邏輯設(shè)計(jì)及應(yīng)用-電子科技大學(xué) 中國大學(xué)慕課MOOC答案
- 傷口治療師進(jìn)修匯報(bào)
- 研學(xué)活動(dòng)協(xié)議書合同范本
- 物業(yè)元宵節(jié)活動(dòng)方案
- ISBAR輔助工具在交班中應(yīng)用
- AIGC行業(yè)報(bào)告:國內(nèi)外大模型和AI應(yīng)用梳理
評(píng)論
0/150
提交評(píng)論