版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
云南省楚雄州牟定一中2025年高三下-第三次階段考試(1月)數(shù)學(xué)試題試卷注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知,則的大小關(guān)系為()A. B. C. D.2.近年來,隨著網(wǎng)絡(luò)的普及和智能手機的更新?lián)Q代,各種方便的相繼出世,其功能也是五花八門.某大學(xué)為了調(diào)查在校大學(xué)生使用的主要用途,隨機抽取了名大學(xué)生進行調(diào)查,各主要用途與對應(yīng)人數(shù)的結(jié)果統(tǒng)計如圖所示,現(xiàn)有如下說法:①可以估計使用主要聽音樂的大學(xué)生人數(shù)多于主要看社區(qū)、新聞、資訊的大學(xué)生人數(shù);②可以估計不足的大學(xué)生使用主要玩游戲;③可以估計使用主要找人聊天的大學(xué)生超過總數(shù)的.其中正確的個數(shù)為()A. B. C. D.3.已知雙曲線與雙曲線沒有公共點,則雙曲線的離心率的取值范圍是()A. B. C. D.4.執(zhí)行如圖所示的程序框圖,若輸入的,則輸出的()A.9 B.31 C.15 D.635.已知函數(shù),若,使得,則實數(shù)的取值范圍是()A. B.C. D.6.已知數(shù)列的首項,且,其中,,,下列敘述正確的是()A.若是等差數(shù)列,則一定有 B.若是等比數(shù)列,則一定有C.若不是等差數(shù)列,則一定有 D.若不是等比數(shù)列,則一定有7.已知復(fù)數(shù),,則()A. B. C. D.8.已知分別為圓與的直徑,則的取值范圍為()A. B. C. D.9.如圖,在平面四邊形中,滿足,且,沿著把折起,使點到達點的位置,且使,則三棱錐體積的最大值為()A.12 B. C. D.10.已知雙曲線:的焦點為,,且上點滿足,,,則雙曲線的離心率為A. B. C. D.511.已知分別為雙曲線的左、右焦點,過的直線與雙曲線的左、右兩支分別交于兩點,若,則雙曲線的離心率為()A. B.4 C.2 D.12.設(shè)、,數(shù)列滿足,,,則()A.對于任意,都存在實數(shù),使得恒成立B.對于任意,都存在實數(shù),使得恒成立C.對于任意,都存在實數(shù),使得恒成立D.對于任意,都存在實數(shù),使得恒成立二、填空題:本題共4小題,每小題5分,共20分。13.設(shè)命題:,,則:__________.14.已知內(nèi)角的對邊分別為外接圓的面積為,則的面積為_________.15.某種產(chǎn)品的質(zhì)量指標(biāo)值服從正態(tài)分布,且.某用戶購買了件這種產(chǎn)品,則這件產(chǎn)品中質(zhì)量指標(biāo)值位于區(qū)間之外的產(chǎn)品件數(shù)為_________.16.已知數(shù)列的前項和公式為,則數(shù)列的通項公式為___.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓()的離心率為,且經(jīng)過點.(1)求橢圓的方程;(2)過點作直線與橢圓交于不同的兩點,,試問在軸上是否存在定點使得直線與直線恰關(guān)于軸對稱?若存在,求出點的坐標(biāo);若不存在,說明理由.18.(12分)[選修4-4:極坐標(biāo)與參數(shù)方程]在直角坐標(biāo)系中,曲線的參數(shù)方程為(是參數(shù)),以坐標(biāo)原點為極點,軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.(1)求曲線的極坐標(biāo)方程和曲線的直角坐標(biāo)方程;(2)若射線與曲線交于,兩點,與曲線交于,兩點,求取最大值時的值19.(12分)已知函數(shù),設(shè)為的導(dǎo)數(shù),.(1)求,;(2)猜想的表達式,并證明你的結(jié)論.20.(12分)如圖,在四棱錐中,側(cè)棱底面,,,,,是棱中點.(1)已知點在棱上,且平面平面,試確定點的位置并說明理由;(2)設(shè)點是線段上的動點,當(dāng)點在何處時,直線與平面所成角最大?并求最大角的正弦值.21.(12分)已知函數(shù),.(1)若曲線在點處的切線方程為,求,;(2)當(dāng)時,,求實數(shù)的取值范圍.22.(10分)已知函數(shù),其中為實常數(shù).(1)若存在,使得在區(qū)間內(nèi)單調(diào)遞減,求的取值范圍;(2)當(dāng)時,設(shè)直線與函數(shù)的圖象相交于不同的兩點,,證明:.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.A【解析】
根據(jù)指數(shù)函數(shù)的單調(diào)性,可得,再利用對數(shù)函數(shù)的單調(diào)性,將與對比,即可求出結(jié)論.【詳解】由題知,,則.故選:A.本題考查利用函數(shù)性質(zhì)比較大小,注意與特殊數(shù)的對比,屬于基礎(chǔ)題..2.C【解析】
根據(jù)利用主要聽音樂的人數(shù)和使用主要看社區(qū)、新聞、資訊的人數(shù)作大小比較,可判斷①的正誤;計算使用主要玩游戲的大學(xué)生所占的比例,可判斷②的正誤;計算使用主要找人聊天的大學(xué)生所占的比例,可判斷③的正誤.綜合得出結(jié)論.【詳解】使用主要聽音樂的人數(shù)為,使用主要看社區(qū)、新聞、資訊的人數(shù)為,所以①正確;使用主要玩游戲的人數(shù)為,而調(diào)查的總?cè)藬?shù)為,,故超過的大學(xué)生使用主要玩游戲,所以②錯誤;使用主要找人聊天的大學(xué)生人數(shù)為,因為,所以③正確.故選:C.本題考查統(tǒng)計中相關(guān)命題真假的判斷,計算出相應(yīng)的頻數(shù)與頻率是關(guān)鍵,考查數(shù)據(jù)處理能力,屬于基礎(chǔ)題.3.C【解析】
先求得的漸近線方程,根據(jù)沒有公共點,判斷出漸近線斜率的取值范圍,由此求得離心率的取值范圍.【詳解】雙曲線的漸近線方程為,由于雙曲線與雙曲線沒有公共點,所以雙曲線的漸近線的斜率,所以雙曲線的離心率.故選:C本小題主要考查雙曲線的漸近線,考查雙曲線離心率的取值范圍的求法,屬于基礎(chǔ)題.4.B【解析】
根據(jù)程序框圖中的循環(huán)結(jié)構(gòu)的運算,直至滿足條件退出循環(huán)體,即可得出結(jié)果.【詳解】執(zhí)行程序框;;;;;,滿足,退出循環(huán),因此輸出,故選:B.本題考查循環(huán)結(jié)構(gòu)輸出結(jié)果,模擬程序運行是解題的關(guān)鍵,屬于基礎(chǔ)題.5.C【解析】試題分析:由題意知,當(dāng)時,由,當(dāng)且僅當(dāng)時,即等號是成立,所以函數(shù)的最小值為,當(dāng)時,為單調(diào)遞增函數(shù),所以,又因為,使得,即在的最小值不小于在上的最小值,即,解得,故選C.考點:函數(shù)的綜合問題.【方法點晴】本題主要考查了函數(shù)的綜合問題,其中解答中涉及到基本不等式求最值、函數(shù)的單調(diào)性及其應(yīng)用、全稱命題與存在命題的應(yīng)用等知識點的綜合考查,試題思維量大,屬于中檔試題,著重考查了學(xué)生分析問題和解答問題的能力,以及轉(zhuǎn)化與化歸思想的應(yīng)用,其中解答中轉(zhuǎn)化為在的最小值不小于在上的最小值是解答的關(guān)鍵.6.C【解析】
根據(jù)等差數(shù)列和等比數(shù)列的定義進行判斷即可.【詳解】A:當(dāng)時,,顯然符合是等差數(shù)列,但是此時不成立,故本說法不正確;B:當(dāng)時,,顯然符合是等比數(shù)列,但是此時不成立,故本說法不正確;C:當(dāng)時,因此有常數(shù),因此是等差數(shù)列,因此當(dāng)不是等差數(shù)列時,一定有,故本說法正確;D:當(dāng)時,若時,顯然數(shù)列是等比數(shù)列,故本說法不正確.故選:C本題考查了等差數(shù)列和等比數(shù)列的定義,考查了推理論證能力,屬于基礎(chǔ)題.7.B【解析】分析:利用的恒等式,將分子、分母同時乘以,化簡整理得詳解:,故選B點睛:復(fù)數(shù)問題是高考數(shù)學(xué)中的??紗栴},屬于得分題,主要考查的方面有:復(fù)數(shù)的分類、復(fù)數(shù)的幾何意義、復(fù)數(shù)的模、共軛復(fù)數(shù)以及復(fù)數(shù)的乘除運算,在運算時注意符號的正、負問題.8.A【解析】
由題先畫出基本圖形,結(jié)合向量加法和點乘運算化簡可得,結(jié)合的范圍即可求解【詳解】如圖,其中,所以.故選:A本題考查向量的線性運算在幾何中的應(yīng)用,數(shù)形結(jié)合思想,屬于中檔題9.C【解析】
過作于,連接,易知,,從而可證平面,進而可知,當(dāng)最大時,取得最大值,取的中點,可得,再由,求出的最大值即可.【詳解】在和中,,所以,則,過作于,連接,顯然,則,且,又因為,所以平面,所以,當(dāng)最大時,取得最大值,取的中點,則,所以,因為,所以點在以為焦點的橢圓上(不在左右頂點),其中長軸長為10,焦距長為8,所以的最大值為橢圓的短軸長的一半,故最大值為,所以最大值為,故的最大值為.故選:C.本題考查三棱錐體積的最大值,考查學(xué)生的空間想象能力與計算求解能力,屬于中檔題.10.D【解析】
根據(jù)雙曲線定義可以直接求出,利用勾股定理可以求出,最后求出離心率.【詳解】依題意得,,,因此該雙曲線的離心率.本題考查了雙曲線定義及雙曲線的離心率,考查了運算能力.11.A【解析】
由已知得,,由已知比值得,再利用雙曲線的定義可用表示出,,用勾股定理得出的等式,從而得離心率.【詳解】.又,可令,則.設(shè),得,即,解得,∴,,由得,,,該雙曲線的離心率.故選:A.本題考查求雙曲線的離心率,解題關(guān)鍵是由向量數(shù)量積為0得出垂直關(guān)系,利用雙曲線的定義把雙曲線上的點到焦點的距離都用表示出來,從而再由勾股定理建立的關(guān)系.12.D【解析】
取,可排除AB;由蛛網(wǎng)圖可得數(shù)列的單調(diào)情況,進而得到要使,只需,由此可得到答案.【詳解】取,,數(shù)列恒單調(diào)遞增,且不存在最大值,故排除AB選項;由蛛網(wǎng)圖可知,存在兩個不動點,且,,因為當(dāng)時,數(shù)列單調(diào)遞增,則;當(dāng)時,數(shù)列單調(diào)遞減,則;所以要使,只需要,故,化簡得且.故選:D.本題考查遞推數(shù)列的綜合運用,考查邏輯推理能力,屬于難題.二、填空題:本題共4小題,每小題5分,共20分。13.,【解析】
存在符號改任意符號,結(jié)論變相反.【詳解】命題是特稱命題,則為全稱命題,故將“”改為“”,將“”改為“”,故:,.故答案為:,.本題考查全(特)稱命題.對全(特)稱命題進行否定的方法:(1)改寫量詞:全稱量詞改寫為存在量詞,存在量詞改寫為全稱量詞;(2)否定結(jié)論:對于一般命題的否定只需直接否定結(jié)論即可.14.【解析】
由外接圓面積,求出外接圓半徑,然后由正弦定理可求得三角形的內(nèi)角,從而有,于是可得三角形邊長,可得面積.【詳解】設(shè)外接圓半徑為,則,由正弦定理,得,∴,,.故答案為:.本題考查正弦定理,利用正弦定理求出三角形的內(nèi)角,然后可得邊長,從而得面積,掌握正弦定理是解題關(guān)鍵.15.【解析】
直接計算,可得結(jié)果.【詳解】由題可知:則質(zhì)量指標(biāo)值位于區(qū)間之外的產(chǎn)品件數(shù):故答案為:本題考查正太分布中原則,審清題意,簡單計算,屬基礎(chǔ)題.16.【解析】
由題意,根據(jù)數(shù)列的通項與前n項和之間的關(guān)系,即可求得數(shù)列的通項公式.【詳解】由題意,可知當(dāng)時,;當(dāng)時,.又因為不滿足,所以.本題主要考查了利用數(shù)列的通項與前n項和之間的關(guān)系求解數(shù)列的通項公式,其中解答中熟記數(shù)列的通項與前n項和之間的關(guān)系,合理準(zhǔn)確推導(dǎo)是解答的關(guān)鍵,著重考查了推理與運算能力,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1)(2)見解析【解析】
(1)由題得a,b,c的方程組求解即可(2)直線與直線恰關(guān)于軸對稱,等價于的斜率互為相反數(shù),即,整理.設(shè)直線的方程為,與橢圓聯(lián)立,將韋達定理代入整理即可.【詳解】(1)由題意可得,,又,解得,.所以,橢圓的方程為(2)存在定點,滿足直線與直線恰關(guān)于軸對稱.設(shè)直線的方程為,與橢圓聯(lián)立,整理得,.設(shè),,定點.(依題意則由韋達定理可得,,.直線與直線恰關(guān)于軸對稱,等價于的斜率互為相反數(shù).所以,,即得.又,,所以,,整理得,.從而可得,,即,所以,當(dāng),即時,直線與直線恰關(guān)于軸對稱成立.特別地,當(dāng)直線為軸時,也符合題意.綜上所述,存在軸上的定點,滿足直線與直線恰關(guān)于軸對稱.本題考查橢圓方程,直線與橢圓位置關(guān)系,熟記橢圓方程簡單性質(zhì),熟練轉(zhuǎn)化題目條件,準(zhǔn)確計算是關(guān)鍵,是中檔題.18.(1)的極坐標(biāo)方程為.曲線的直角坐標(biāo)方程為.(2)【解析】
(1)先得到的一般方程,再由極坐標(biāo)化直角坐標(biāo)的公式得到一般方程,將代入得,得到曲線的直角坐標(biāo)方程;(2)設(shè)點、的極坐標(biāo)分別為,,將分別代入曲線、極坐標(biāo)方程得:,,,之后進行化一,可得到最值,此時,可求解.【詳解】(1)由得,將代入得:,故曲線的極坐標(biāo)方程為.由得,將代入得,故曲線的直角坐標(biāo)方程為.(2)設(shè)點、的極坐標(biāo)分別為,,將分別代入曲線、極坐標(biāo)方程得:,,則,其中為銳角,且滿足,,當(dāng)時,取最大值,此時,這個題目考查了參數(shù)方程化為普通方程的方法,極坐標(biāo)化為直角坐標(biāo)的方法,以及極坐標(biāo)中極徑的幾何意義,極徑代表的是曲線上的點到極點的距離,在參數(shù)方程和極坐標(biāo)方程中,能表示距離的量一個是極徑,一個是t的幾何意義,其中極徑多數(shù)用于過極點的曲線,而t的應(yīng)用更廣泛一些.19.,;,證明見解析【解析】
對函數(shù)進行求導(dǎo),并通過三角恒等變換進行轉(zhuǎn)化求得的表達式,對函數(shù)再進行求導(dǎo)并通過三角恒等變換進行轉(zhuǎn)化求得的表達式;根據(jù)中,的表達式進行歸納猜想,再利用數(shù)學(xué)歸納法證明即可.【詳解】(1),其中,[,其中,(2)猜想,下面用數(shù)學(xué)歸納法證明:①當(dāng)時,成立,②假設(shè)時,猜想成立即當(dāng)時,當(dāng)時,猜想成立由①②對成立本題考查導(dǎo)數(shù)及其應(yīng)用、三角恒等變換、歸納與猜想和數(shù)學(xué)歸納法;考查學(xué)生的邏輯推理能力和運算求解能力;熟練掌握用數(shù)學(xué)歸納法進行證明的步驟是求解本題的關(guān)鍵;屬于中檔題.20.(1)為中點,理由見解析;(2)當(dāng)點在線段靠近的三等分點時,直線與平面所成角最大,最大角的正弦值.【解析】
(1)為中點,可利用中位線與平行四邊形性質(zhì)證明,,從而證明平面平面;(2)以A為原點,分別以,,所在直線為、、軸建立空間直角坐標(biāo)系,利用向量法求出當(dāng)點在線段靠近的三等分點時,直線與平面所成角最大,并可求出最大角的正弦值.【詳解】(1)為中點,證明如下:分別為中點,又平面平面平面又,且四邊形為平行四邊形,同理,平面,又平面平面(2)以A為原點,分別以,,所在直線為、、軸建立空間直角坐標(biāo)系則,設(shè)直線與平面所成角為,則取平面的法向量為則令,則所以當(dāng)時,等號成立即當(dāng)點在線段靠近的三等分點時,直線與平面所成角最大,最大角的正弦值.本題主要考查了平面與平面的平行,直線與平面所成角的求解,考查了學(xué)生的直觀想象與運算求解能力.21.(1);(2)【解析】
(1)對函數(shù)求導(dǎo),運用可求得的值,再由在直線上,可求得的值;(2)由已知可得恒成立,構(gòu)造函數(shù),對函數(shù)求導(dǎo),討論和0
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 《沉箱預(yù)制施工方案》課件
- 小學(xué)五年級數(shù)學(xué)上期小數(shù)點乘除法計算練習(xí)題合集
- 七年級生物上冊第一單元生物和生物圈知識點總結(jié)(新版)新人教版
- 教師資格證考試普通話要求
- 《切事故都可以預(yù)防》課件
- 二年級上冊11 葡萄溝(教案)
- 瀝青砼攤鋪合同協(xié)議書
- 焊接培訓(xùn)資料:焊接應(yīng)力的消除
- 健康行業(yè)助理工作總結(jié)評述
- 電梯電梯銷售經(jīng)理銷售業(yè)績總結(jié)
- 幼兒園食堂食品安全主體責(zé)任風(fēng)險管控清單(日管控)
- 九年級上冊第二單元民主與法治 單元作業(yè)設(shè)計
- 陜西華縣皮影戲調(diào)研報告
- 2016年食堂期末庫存
- 運籌學(xué)課程設(shè)計報告
- (完整)雙溪課程評量表
- 人教版高中物理選擇性必修第二冊《法拉第電磁感應(yīng)定律》教案及教學(xué)反思
- 網(wǎng)絡(luò)安全培訓(xùn)-網(wǎng)絡(luò)安全培訓(xùn)課件
- GB/T 6913-2023鍋爐用水和冷卻水分析方法磷酸鹽的測定
- 項目部布置圖方案
- 《文明城市建設(shè)問題研究開題報告3000字》
評論
0/150
提交評論