




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2021-2022高考數學模擬試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知,則()A.5 B. C.13 D.2.公差不為零的等差數列{an}中,a1+a2+a5=13,且a1、a2、a5成等比數列,則數列{an}的公差等于()A.1 B.2 C.3 D.43.設集合,,則()A. B.C. D.4.集合,則集合的真子集的個數是A.1個 B.3個 C.4個 D.7個5.已知定義在上的函數,若函數為偶函數,且對任意,,都有,若,則實數的取值范圍是()A. B. C. D.6.已知,是函數圖像上不同的兩點,若曲線在點,處的切線重合,則實數的最小值是()A. B. C. D.17.要得到函數的圖象,只需將函數的圖象A.向左平移個單位長度B.向右平移個單位長度C.向左平移個單位長度D.向右平移個單位長度8.將函數的圖象先向右平移個單位長度,在把所得函數圖象的橫坐標變?yōu)樵瓉淼谋?,縱坐標不變,得到函數的圖象,若函數在上沒有零點,則的取值范圍是()A. B.C. D.9.已知復數,則的虛部是()A. B. C. D.110.計算等于()A. B. C. D.11.函數的部分圖象如圖所示,已知,函數的圖象可由圖象向右平移個單位長度而得到,則函數的解析式為()A. B.C. D.12.等差數列中,已知,且,則數列的前項和中最小的是()A.或 B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.3張獎券分別標有特等獎、一等獎和二等獎.甲、乙兩人同時各抽取1張獎券,兩人都未抽得特等獎的概率是__________.14.四邊形中,,,,,則的最小值是______.15.已知向量,,若,則實數______.16.已知函數是定義在上的奇函數,其圖象關于直線對稱,當時,(其中是自然對數的底數,若,則實數的值為_____.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,三棱錐中,(1)證明:面面;(2)求二面角的余弦值.18.(12分)a,b,c分別為△ABC內角A,B,C的對邊.已知a=3,,且B=60°.(1)求△ABC的面積;(2)若D,E是BC邊上的三等分點,求.19.(12分)如圖,在三棱柱中,是邊長為2的等邊三角形,,,.(1)證明:平面平面;(2),分別是,的中點,是線段上的動點,若二面角的平面角的大小為,試確定點的位置.20.(12分)的內角的對邊分別為,若(1)求角的大小(2)若,求的周長21.(12分)如圖,底面ABCD是邊長為2的菱形,,平面ABCD,,,BE與平面ABCD所成的角為.(1)求證:平面平面BDE;(2)求二面角B-EF-D的余弦值.22.(10分)如圖,在三棱柱中,、、分別是、、的中點.(1)證明:平面;(2)若底面是正三角形,,在底面的投影為,求到平面的距離.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.C【解析】
先化簡復數,再求,最后求即可.【詳解】解:,,故選:C【點睛】考查復數的運算,是基礎題.2.B【解析】
設數列的公差為.由,成等比數列,列關于的方程組,即求公差.【詳解】設數列的公差為,①.成等比數列,②,解①②可得.故選:.【點睛】本題考查等差數列基本量的計算,屬于基礎題.3.D【解析】
利用一元二次不等式的解法和集合的交運算求解即可.【詳解】由題意知,集合,,由集合的交運算可得,.故選:D【點睛】本題考查一元二次不等式的解法和集合的交運算;考查運算求解能力;屬于基礎題.4.B【解析】
由題意,結合集合,求得集合,得到集合中元素的個數,即可求解,得到答案.【詳解】由題意,集合,則,所以集合的真子集的個數為個,故選B.【點睛】本題主要考查了集合的運算和集合中真子集的個數個數的求解,其中作出集合的運算,得到集合,再由真子集個數的公式作出計算是解答的關鍵,著重考查了推理與運算能力.5.A【解析】
根據題意,分析可得函數的圖象關于對稱且在上為減函數,則不等式等價于,解得的取值范圍,即可得答案.【詳解】解:因為函數為偶函數,所以函數的圖象關于對稱,因為對任意,,都有,所以函數在上為減函數,則,解得:.即實數的取值范圍是.故選:A.【點睛】本題考查函數的對稱性與單調性的綜合應用,涉及不等式的解法,屬于綜合題.6.B【解析】
先根據導數的幾何意義寫出在兩點處的切線方程,再利用兩直線斜率相等且縱截距相等,列出關系樹,從而得出,令函數,結合導數求出最小值,即可選出正確答案.【詳解】解:當時,,則;當時,則.設為函數圖像上的兩點,當或時,,不符合題意,故.則在處的切線方程為;在處的切線方程為.由兩切線重合可知,整理得.不妨設則,由可得則當時,的最大值為.則在上單調遞減,則.故選:B.【點睛】本題考查了導數的幾何意義,考查了推理論證能力,考查了函數與方程、分類與整合、轉化與化歸等思想方法.本題的難點是求出和的函數關系式.本題的易錯點是計算.7.D【解析】
先將化為,根據函數圖像的平移原則,即可得出結果.【詳解】因為,所以只需將的圖象向右平移個單位.【點睛】本題主要考查三角函數的平移,熟記函數平移原則即可,屬于基礎題型.8.A【解析】
根據y=Acos(ωx+φ)的圖象變換規(guī)律,求得g(x)的解析式,根據定義域求出的范圍,再利用余弦函數的圖象和性質,求得ω的取值范圍.【詳解】函數的圖象先向右平移個單位長度,可得的圖象,再將圖象上每個點的橫坐標變?yōu)樵瓉淼谋?縱坐標不變),得到函數的圖象,∴周期,若函數在上沒有零點,∴,∴,,解得,又,解得,當k=0時,解,當k=-1時,,可得,.故答案為:A.【點睛】本題考查函數y=Acos(ωx+φ)的圖象變換及零點問題,此類問題通常采用數形結合思想,構建不等關系式,求解可得,屬于較難題.9.C【解析】
化簡復數,分子分母同時乘以,進而求得復數,再求出,由此得到虛部.【詳解】,,所以的虛部為.故選:C【點睛】本小題主要考查復數的乘法、除法運算,考查共軛復數的虛部,屬于基礎題.10.A【解析】
利用誘導公式、特殊角的三角函數值,結合對數運算,求得所求表達式的值.【詳解】原式.故選:A【點睛】本小題主要考查誘導公式,考查對數運算,屬于基礎題.11.A【解析】
由圖根據三角函數圖像的對稱性可得,利用周期公式可得,再根據圖像過,即可求出,再利用三角函數的平移變換即可求解.【詳解】由圖像可知,即,所以,解得,又,所以,由,所以或,又,所以,,所以,,即,因為函數的圖象由圖象向右平移個單位長度而得到,所以.故選:A【點睛】本題考查了由圖像求三角函數的解析式、三角函數圖像的平移伸縮變換,需掌握三角形函數的平移伸縮變換原則,屬于基礎題.12.C【解析】
設公差為,則由題意可得,解得,可得.令
,可得
當時,,當時,,由此可得數列前項和中最小的.【詳解】解:等差數列中,已知,且,設公差為,
則,解得
,.
令
,可得,故當時,,當時,,
故數列前項和中最小的是.故選:C.【點睛】本題主要考查等差數列的性質,等差數列的通項公式的應用,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
利用排列組合公式進行計算,再利用古典概型公式求出不是特等獎的兩張的概率即可.【詳解】解:3張獎券分別標有特等獎、一等獎和二等獎,甲、乙兩人同時各抽取1張獎券,則兩人同時抽取兩張共有:種排法排除特等獎外兩人選兩張共有:種排法.故兩人都未抽得特等獎的概率是:故答案為:【點睛】本題主要考查古典概型的概率公式的應用,是基礎題.14.【解析】
在中利用正弦定理得出,進而可知,當時,取最小值,進而計算出結果.【詳解】,如圖,在中,由正弦定理可得,即,故當時,取到最小值為.故答案為:.【點睛】本題考查解三角形,同時也考查了常見的三角函數值,考查邏輯推理能力與計算能力,屬于中檔題.15.-2【解析】
根據向量坐標運算可求得,根據平行關系可構造方程求得結果.【詳解】由題意得:,解得:本題正確結果:【點睛】本題考查向量的坐標運算,關鍵是能夠利用平行關系構造出方程.16.【解析】
先推導出函數的周期為,可得出,代值計算,即可求出實數的值.【詳解】由于函數是定義在上的奇函數,則,又該函數的圖象關于直線對稱,則,所以,,則,所以,函數是周期為的周期函數,所以,解得.故答案為:.【點睛】本題考查利用函數的對稱性計算函數值,解題的關鍵就是結合函數的奇偶性與對稱軸推導出函數的周期,考查推理能力與計算能力,屬于中等題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1)證明見解析(2)【解析】
(1)取中點,連結,證明平面得到答案.(2)如圖所示,建立空間直角坐標系,為平面的一個法向量,平面的一個法向量為,計算夾角得到答案.【詳解】(1)取中點,連結,,,,,為直角,,平面,平面,∴面面.(2)如圖所示,建立空間直角坐標系,則,可取為平面的一個法向量.設平面的一個法向量為.則,其中,,不妨取,則..為銳二面角,∴二面角的余弦值為.【點睛】本題考查了面面垂直,二面角,意在考查學生的計算能力和空間想象能力.18.(1);(2)【解析】
(1)根據正弦定理,可得△ABC為直角三角形,然后可計算b,可得結果.(2)計算,然后根據余弦定理,可得,利用平方關系,可得結果.【詳解】(1)△ABC中,由csinC=asinA+bsinB,利用正弦定理得c2=a2+b2,所以△ABC是直角三角形.又a=3,B=60°,所以;所以△ABC的面積為.(2)設D靠近點B,則BD=DE=EC=1.,所以所以.【點睛】本題考查正弦定理的應用,屬基礎題.19.(1)證明見解析;(2)為線段上靠近點的四等分點,且坐標為【解析】
(1)先通過線面垂直的判定定理證明平面,再根據面面垂直的判定定理即可證明;(2)分析位置關系并建立空間直角坐標系,根據二面角的余弦值與平面法向量夾角的余弦值之間的關系,即可計算出的坐標從而位置可確定.【詳解】(1)證明:因為,,,所以,即.又因為,,所以,,所以平面.因為平面,所以平面平面.(2)解:連接,因為,是的中點,所以.由(1)知,平面平面,所以平面.以為原點建立如圖所示的空間直角坐標系,則平面的一個法向量是,,,.設,,,,代入上式得,,,所以.設平面的一個法向量為,,,由,得.令,得.因為二面角的平面角的大小為,所以,即,解得.所以點為線段上靠近點的四等分點,且坐標為.【點睛】本題考查面面垂直的證明以及利用向量法求解二面角有關的問題,難度一般.(1)證明面面垂直,可通過先證明線面垂直,再證明面面垂直;(2)二面角的余弦值不一定等于平面法向量夾角的余弦值,要注意結合圖形分析.20.(1)(2)11【解析】
(1)利用二倍角公式將式子化簡成,再利用兩角和與差的余弦公式即可求解.(2)利用余弦定理可得,再將平方,利用向量數量積可得,從而可求周長.【詳解】由題解得,所以由余弦定理,,再由解得:所以故的周長為【點睛】本題主要考查了余弦定理解三角形、兩角和與差的余弦公式、需熟記公式,屬于基礎題.21.(1)證明見解析;(2)【解析】
(1)要證明平面平面BDE,只需在平面內找一條直線垂直平面BDE即可;(2)以O為坐標原點,OA,OB,OG所在直線分別為x、y、z軸建立如圖空間直角坐標系,分別求出平面BEF的法向量,平面的法向量,算出即可.【詳解】(1)∵平面ABCD,平面ABCD.∴.又∵底面ABCD是菱形,∴.∵,∴平面BDE,設AC,BD交于O,取BE的中點G,連FG,OG,,,四邊形OCFG是平行四邊形,平面BDE∴平面BDE,又因平面BEF,∴平面平面BDE.(2)以O為坐標原點,OA,OB,OG所在直線分別為x、y、z軸建立如圖空間直角坐標系∵BE與平面ABCD所成的角為,,,,,,.,設平面BEF的法向量為,,,設平面的法向量設二面角的大小為..【點睛】本題考查線面垂直證面面垂直、面面所成角的計算,考查學生的計算能力,解決此類問題最關鍵是準確寫出點的坐標,是一道中檔題.22.(
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五版西瓜種植合作協(xié)議
- 二零二五部分股權轉讓合同書范例
- 單位協(xié)定存款協(xié)議
- 公司借款擔保合同二零二五年
- 二零二五版運費結算協(xié)議書
- 2025年普通員工勞動合同
- 交通安全違法行為宣講
- 2025國際服務貿易合同的
- 2025建筑工程施工、分包合同
- 2025年合同的效力范圍
- 專題12 九年級下冊易混易錯總結-備戰(zhàn)2024年中考道德與法治一輪復習知識清單(全國通用)
- 華住會酒店員工手冊
- 成人住院患者跌倒評估與預防(團體標準)解讀
- 刺殺操培訓課件
- 物流員工的入職培訓
- 華為商務禮儀課件內部
- 絨毛膜羊膜炎疾病演示課件
- 分泌性中耳炎護理查房 課件
- 海康人臉抓拍系統(tǒng)方案
- GB/T 43441.1-2023信息技術數字孿生第1部分:通用要求
- 初中語文作業(yè)設計研究
評論
0/150
提交評論