版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2021-2022高考數學模擬試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.在正方體中,,分別為,的中點,則異面直線,所成角的余弦值為()A. B. C. D.2.在平面直角坐標系中,銳角頂點在坐標原點,始邊為x軸正半軸,終邊與單位圓交于點,則()A. B. C. D.3.某裝飾公司制作一種扇形板狀裝飾品,其圓心角為120°,并在扇形弧上正面等距安裝7個發(fā)彩色光的小燈泡且在背面用導線相連(弧的兩端各一個,導線接頭忽略不計),已知扇形的半徑為30厘米,則連接導線最小大致需要的長度為()A.58厘米 B.63厘米 C.69厘米 D.76厘米4.已知點(m,8)在冪函數的圖象上,設,則()A.b<a<c B.a<b<c C.b<c<a D.a<c<b5.已知向量,,當時,()A. B. C. D.6.已知全集,集合,,則陰影部分表示的集合是()A. B. C. D.7.已知函數的最大值為,若存在實數,使得對任意實數總有成立,則的最小值為()A. B. C. D.8.某地區(qū)教育主管部門為了對該地區(qū)模擬考試成進行分析,隨機抽取了200分到450分之間的2000名學生的成績,并根據這2000名學生的成績畫出樣本的頻率分布直方圖,如圖所示,則成績在,內的學生人數為()A.800 B.1000 C.1200 D.16009.若非零實數、滿足,則下列式子一定正確的是()A. B.C. D.10.若不等式對恒成立,則實數的取值范圍是()A. B. C. D.11.在一個數列中,如果,都有(為常數),那么這個數列叫做等積數列,叫做這個數列的公積.已知數列是等積數列,且,,公積為,則()A. B. C. D.12.已知雙曲線的中心在原點且一個焦點為,直線與其相交于,兩點,若中點的橫坐標為,則此雙曲線的方程是A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知是偶函數,則的最小值為___________.14.已知實數,滿足約束條件,則的最大值是__________.15.在中,、的坐標分別為,,且滿足,為坐標原點,若點的坐標為,則的取值范圍為__________.16.已知隨機變量,且,則______三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知等差數列和等比數列的各項均為整數,它們的前項和分別為,且,.(1)求數列,的通項公式;(2)求;(3)是否存在正整數,使得恰好是數列或中的項?若存在,求出所有滿足條件的的值;若不存在,說明理由.18.(12分)如圖,在直三棱柱中,分別是中點,且,.求證:平面;求點到平面的距離.19.(12分)在一次電視節(jié)目的答題游戲中,題型為選擇題,只有“A”和“B”兩種結果,其中某選手選擇正確的概率為p,選擇錯誤的概率為q,若選擇正確則加1分,選擇錯誤則減1分,現記“該選手答完n道題后總得分為”.(1)當時,記,求的分布列及數學期望;(2)當,時,求且的概率.20.(12分)為了解本學期學生參加公益勞動的情況,某校從初高中學生中抽取100名學生,收集了他們參加公益勞動時間(單位:小時)的數據,繪制圖表的一部分如表.(1)從男生中隨機抽取一人,抽到的男生參加公益勞動時間在的概率:(2)從參加公益勞動時間的學生中抽取3人進行面談,記為抽到高中的人數,求的分布列;(3)當時,高中生和初中生相比,那學段學生平均參加公益勞動時間較長.(直接寫出結果)21.(12分)某公司生產的某種產品,如果年返修率不超過千分之一,則其生產部門當年考核優(yōu)秀,現獲得該公司年的相關數據如下表所示:年份20112012201320142015201620172018年生產臺數(萬臺)2345671011該產品的年利潤(百萬元)2.12.753.53.2534.966.5年返修臺數(臺)2122286580658488部分計算結果:,,,,注:年返修率=(1)從該公司年的相關數據中任意選取3年的數據,以表示3年中生產部門獲得考核優(yōu)秀的次數,求的分布列和數學期望;(2)根據散點圖發(fā)現2015年數據偏差較大,如果去掉該年的數據,試用剩下的數據求出年利潤(百萬元)關于年生產臺數(萬臺)的線性回歸方程(精確到0.01).附:線性回歸方程中,,.22.(10分)某公園有一塊邊長為3百米的正三角形空地,擬將它分割成面積相等的三個區(qū)域,用來種植三種花卉.方案是:先建造一條直道將分成面積之比為的兩部分(點D,E分別在邊,上);再取的中點M,建造直道(如圖).設,,(單位:百米).(1)分別求,關于x的函數關系式;(2)試確定點D的位置,使兩條直道的長度之和最小,并求出最小值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.D【解析】
連接,,因為,所以為異面直線與所成的角(或補角),不妨設正方體的棱長為2,取的中點為,連接,在等腰中,求出,在利用二倍角公式,求出,即可得出答案.【詳解】連接,,因為,所以為異面直線與所成的角(或補角),不妨設正方體的棱長為2,則,,在等腰中,取的中點為,連接,則,,所以,即:,所以異面直線,所成角的余弦值為.故選:D.【點睛】本題考查空間異面直線的夾角余弦值,利用了正方體的性質和二倍角公式,還考查空間思維和計算能力.2.A【解析】
根據單位圓以及角度范圍,可得,然后根據三角函數定義,可得,最后根據兩角和的正弦公式,二倍角公式,簡單計算,可得結果.【詳解】由題可知:,又為銳角所以,根據三角函數的定義:所以由所以故選:A【點睛】本題考查三角函數的定義以及兩角和正弦公式,還考查二倍角的正弦、余弦公式,難點在于公式的計算,識記公式,簡單計算,屬基礎題.3.B【解析】
由于實際問題中扇形弧長較小,可將導線的長視為扇形弧長,利用弧長公式計算即可.【詳解】因為弧長比較短的情況下分成6等分,所以每部分的弦長和弧長相差很小,可以用弧長近似代替弦長,故導線長度約為63(厘米).故選:B.【點睛】本題主要考查了扇形弧長的計算,屬于容易題.4.B【解析】
先利用冪函數的定義求出m的值,得到冪函數解析式為f(x)=x3,在R上單調遞增,再利用冪函數f(x)的單調性,即可得到a,b,c的大小關系.【詳解】由冪函數的定義可知,m﹣1=1,∴m=2,∴點(2,8)在冪函數f(x)=xn上,∴2n=8,∴n=3,∴冪函數解析式為f(x)=x3,在R上單調遞增,∵,1<lnπ<3,n=3,∴,∴a<b<c,故選:B.【點睛】本題主要考查了冪函數的性質,以及利用函數的單調性比較函數值大小,屬于中檔題.5.A【解析】
根據向量的坐標運算,求出,,即可求解.【詳解】,.故選:A.【點睛】本題考查向量的坐標運算、誘導公式、二倍角公式、同角間的三角函數關系,屬于中檔題.6.D【解析】
先求出集合N的補集,再求出集合M與的交集,即為所求陰影部分表示的集合.【詳解】由,,可得或,又所以.故選:D.【點睛】本題考查了韋恩圖表示集合,集合的交集和補集的運算,屬于基礎題.7.B【解析】
根據三角函數的兩角和差公式得到,進而可以得到函數的最值,區(qū)間(m,n)長度要大于等于半個周期,最終得到結果.【詳解】函數則函數的最大值為2,存在實數,使得對任意實數總有成立,則區(qū)間(m,n)長度要大于等于半個周期,即故答案為:B.【點睛】這個題目考查了三角函數的兩角和差的正余弦公式的應用,以及三角函數的圖像的性質的應用,題目比較綜合.8.B【解析】
由圖可列方程算得a,然后求出成績在內的頻率,最后根據頻數=總數×頻率可以求得成績在內的學生人數.【詳解】由頻率和為1,得,解得,所以成績在內的頻率,所以成績在內的學生人數.故選:B【點睛】本題主要考查頻率直方圖的應用,屬基礎題.9.C【解析】
令,則,,將指數式化成對數式得、后,然后取絕對值作差比較可得.【詳解】令,則,,,,,因此,.故選:C.【點睛】本題考查了利用作差法比較大小,同時也考查了指數式與對數式的轉化,考查推理能力,屬于中等題.10.B【解析】
轉化為,構造函數,利用導數研究單調性,求函數最值,即得解.【詳解】由,可知.設,則,所以函數在上單調遞增,所以.所以.故的取值范圍是.故選:B【點睛】本題考查了導數在恒成立問題中的應用,考查了學生綜合分析,轉化劃歸,數學運算的能力,屬于中檔題.11.B【解析】
計算出的值,推導出,再由,結合數列的周期性可求得數列的前項和.【詳解】由題意可知,則對任意的,,則,,由,得,,,,因此,.故選:B.【點睛】本題考查數列求和,考查了數列的新定義,推導出數列的周期性是解答的關鍵,考查推理能力與計算能力,屬于中等題.12.D【解析】
根據點差法得,再根據焦點坐標得,解方程組得,,即得結果.【詳解】設雙曲線的方程為,由題意可得,設,,則的中點為,由且,得,,即,聯立,解得,,故所求雙曲線的方程為.故選D.【點睛】本題主要考查利用點差法求雙曲線標準方程,考查基本求解能力,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13.2【解析】
由偶函數性質可得,解得,再結合基本不等式即可求解【詳解】令得,所以,當且僅當時取等號.故答案為:2【點睛】考查函數的奇偶性、基本不等式,屬于基礎題14.【解析】
令,所求問題的最大值為,只需求出即可,作出可行域,利用幾何意義即可解決.【詳解】作出可行域,如圖令,則,顯然當直線經過時,最大,且,故的最大值為.故答案為:.【點睛】本題考查線性規(guī)劃中非線性目標函數的最值問題,要做好此類題,前提是正確畫出可行域,本題是一道基礎題.15.【解析】
由正弦定理可得點在曲線上,設,則,將代入可得,利用二次函數的性質可得范圍.【詳解】解:由正弦定理得,則點在曲線上,設,則,,又,,因為,則,即的取值范圍為.故答案為:.【點睛】本題考查雙曲線的定義,考查向量數量積的坐標運算,考查學生計算能力,有一定的綜合性,但難度不大.16.0.1【解析】
根據原則,可得,簡單計算,可得結果.【詳解】由題可知:隨機變量,則期望為所以故答案為:【點睛】本題考查正態(tài)分布的計算,掌握正態(tài)曲線的圖形以及計算,屬基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1);(2);(3)存在,1.【解析】
(1)利用基本量法直接計算即可;(2)利用錯位相減法計算;(3),令可得,,討論即可.【詳解】(1)設數列的公差為,數列的公比為,因為,所以,即,解得,或(舍去).所以.(2),,所以,所以.(3)由(1)可得,,所以.因為是數列或中的一項,所以,所以,因為,所以,又,則或.當時,有,即,令.則.當時,;當時,,即.由,知無整數解.當時,有,即存在使得是數列中的第2項,故存在正整數,使得是數列中的項.【點睛】本題考查數列的綜合應用,涉及到等差、等比數列的通項,錯位相減法求數列的前n項和,數列中的存在性問題,是一道較為綜合的題.18.(1)詳見解析;(2).【解析】
(1)利用線面垂直的判定定理和性質定理即可證明;(2)取中點為,則,證得平面,利用等體積法求解即可.【詳解】(1)因為,,,是的中點,,為直三棱柱,所以平面,因為為中點,所以平面,,又,平面(2),又分別是中點,.由(1)知,,又平面,取中點為,連接如圖,則,平面,設點到平面的距離為,由,得,即,解得,點到平面的距離為.【點睛】本題考查線面垂直的判定定理和性質定理、等體積法求點到面的距離;考查邏輯推理能力和運算求解能力;熟練掌握線面垂直的判定定理和性質定理是求解本題的關鍵;屬于中檔題.19.(1)見解析,0(2)【解析】
(1)即該選手答完3道題后總得分,可能出現的情況為3道題都答對,答對2道答錯1道,答對1道答錯2道,3道題都答錯,進而求解即可;(2)當時,即答完8題后,正確的題數為5題,錯誤的題數是3題,又,則第一題答對,第二題第三題至少有一道答對,進而求解.【詳解】解:(1)的取值可能為,,1,3,又因為,故,,,,所以的分布列為:13所以(2)當時,即答完8題后,正確的題數為5題,錯誤的題數是3題,又已知,第一題答對,若第二題回答正確,則其余6題可任意答對3題;若第二題回答錯誤,第三題回答正確,則后5題可任意答對題,此時的概率為(或).【點睛】本題考查二項分布的分布列及期望,考查數據處理能力,考查分類討論思想.20.(1)(2)詳見解析(3)初中生平均參加公益勞動時間較長【解析】
(1)由圖表直接利用隨機事件的概率公式求解;(2)X的所有可能取值為0,1,2,3.由古典概型概率公式求概率,則分布列可求;(3)由圖表直接判斷結果.【詳解】(1)100名學生中共有男生48名,其中共有20人參加公益勞動時間在,設男生中隨機抽取一人,抽到的男生參加公益勞動時間在的事件為,那么;(2)的所有可能取值為0,1,2,3.∴;;;.∴隨機變量的分布列為:(3)由圖表可知,初中生平均參加公益勞動時間較長.【點睛】本小題主要考查古典概型的計算,考查超幾何分布的分布列的計算,屬于基礎題.21.(1)見解析;(2)【解析】
(1)先判斷得到隨機變量的所有可能取值,然后根據古典概型概率公式和組合數計算得到相應的概率,進而得到分布列和期望.(2)由于去掉年的數據后不影響的值,可根據表中數據求出;然后再根據去掉年的數據后所剩數據求出即可得
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 格林童話讀后感(15篇)
- 大學認識實習報告范文匯編10篇
- 六一兒童節(jié)主題活動總結10篇
- 個人試用期轉正工作總結(匯編15篇)
- 幼兒園學前班新學期工作計劃
- 教師的感恩演講稿四篇
- 軍訓個人心得體會(集錦15篇)
- 山西財經大學計算機應用技術814數據結構考研題庫
- 九年級下冊數學教學計劃錦集(17篇)
- 健康檢查服務合同(2篇)
- 七年級歷史試卷上冊可打印
- 《東南亞經濟與貿易》習題集、案例、答案、參考書目
- 燒烤店裝修合同范文模板
- 2024年中國櫻桃番茄種市場調查研究報告
- 數據分析基礎與應用指南
- 人教版(PEP)小學六年級英語上冊全冊教案
- 廣東省廣州市海珠區(qū)2023-2024學年六年級上學期月考英語試卷
- 消防水域救援個人防護裝備試驗 大綱
- 機電樣板施工主要技術方案
- 涉稅風險管理方案
- 青島市2022-2023學年七年級上學期期末道德與法治試題
評論
0/150
提交評論