版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2021-2022高考數(shù)學(xué)模擬試卷注意事項(xiàng)1.考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回.2.答題前,請(qǐng)務(wù)必將自己的姓名、準(zhǔn)考證號(hào)用0.5毫米黑色墨水的簽字筆填寫(xiě)在試卷及答題卡的規(guī)定位置.3.請(qǐng)認(rèn)真核對(duì)監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號(hào)與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對(duì)應(yīng)選項(xiàng)的方框涂滿(mǎn)、涂黑;如需改動(dòng),請(qǐng)用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無(wú)效.5.如需作圖,須用2B鉛筆繪、寫(xiě)清楚,線條、符號(hào)等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.復(fù)數(shù),若復(fù)數(shù)在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)關(guān)于虛軸對(duì)稱(chēng),則等于()A. B. C. D.2.設(shè)為定義在上的奇函數(shù),當(dāng)時(shí),(為常數(shù)),則不等式的解集為()A. B. C. D.3.已知,則()A. B. C. D.4.已知雙曲線的右焦點(diǎn)為,過(guò)的直線交雙曲線的漸近線于兩點(diǎn),且直線的傾斜角是漸近線傾斜角的2倍,若,則該雙曲線的離心率為()A. B. C. D.5.方程的實(shí)數(shù)根叫作函數(shù)的“新駐點(diǎn)”,如果函數(shù)的“新駐點(diǎn)”為,那么滿(mǎn)足()A. B. C. D.6.已知雙曲線:的焦點(diǎn)為,,且上點(diǎn)滿(mǎn)足,,,則雙曲線的離心率為A. B. C. D.57.已知a,b是兩條不同的直線,α,β是兩個(gè)不同的平面,且,,則“”是“”的()A.充分不必要條件 B.必要不充分條件 C.充要條件 D.既不充分也不必要條件8.在中,點(diǎn)D是線段BC上任意一點(diǎn),,,則()A. B.-2 C. D.29.函數(shù)在上的最大值和最小值分別為()A.,-2 B.,-9 C.-2,-9 D.2,-210.已知復(fù)數(shù)為虛數(shù)單位),則z的虛部為()A.2 B. C.4 D.11.已知數(shù)列滿(mǎn)足,且成等比數(shù)列.若的前n項(xiàng)和為,則的最小值為()A. B. C. D.12.集合中含有的元素個(gè)數(shù)為()A.4 B.6 C.8 D.12二、填空題:本題共4小題,每小題5分,共20分。13.已知,(,),則=_______.14.已知向量,,若向量與向量平行,則實(shí)數(shù)___________.15.已知某幾何體的三視圖如圖所示,則該幾何體外接球的表面積是______.16.已知是定義在上的奇函數(shù),當(dāng)時(shí),,則不等式的解集用區(qū)間表示為_(kāi)_________.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知函數(shù)(1)當(dāng)時(shí),求不等式的解集;(2)的圖象與兩坐標(biāo)軸的交點(diǎn)分別為,若三角形的面積大于,求參數(shù)的取值范圍.18.(12分)若數(shù)列滿(mǎn)足:對(duì)于任意,均為數(shù)列中的項(xiàng),則稱(chēng)數(shù)列為“數(shù)列”.(1)若數(shù)列的前項(xiàng)和,,試判斷數(shù)列是否為“數(shù)列”?說(shuō)明理由;(2)若公差為的等差數(shù)列為“數(shù)列”,求的取值范圍;(3)若數(shù)列為“數(shù)列”,,且對(duì)于任意,均有,求數(shù)列的通項(xiàng)公式.19.(12分)某學(xué)校為了解全校學(xué)生的體重情況,從全校學(xué)生中隨機(jī)抽取了100人的體重?cái)?shù)據(jù),得到如下頻率分布直方圖,以樣本的頻率作為總體的概率.(1)估計(jì)這100人體重?cái)?shù)據(jù)的平均值和樣本方差;(結(jié)果取整數(shù),同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表)(2)從全校學(xué)生中隨機(jī)抽取3名學(xué)生,記為體重在的人數(shù),求的分布列和數(shù)學(xué)期望;(3)由頻率分布直方圖可以認(rèn)為,該校學(xué)生的體重近似服從正態(tài)分布.若,則認(rèn)為該校學(xué)生的體重是正常的.試判斷該校學(xué)生的體重是否正常?并說(shuō)明理由.20.(12分)團(tuán)購(gòu)已成為時(shí)下商家和顧客均非常青睞的一種省錢(qián)、高校的消費(fèi)方式,不少商家同時(shí)加入多家團(tuán)購(gòu)網(wǎng).現(xiàn)恰有三個(gè)團(tuán)購(gòu)網(wǎng)站在市開(kāi)展了團(tuán)購(gòu)業(yè)務(wù),市某調(diào)查公司為調(diào)查這三家團(tuán)購(gòu)網(wǎng)站在本市的開(kāi)展情況,從本市已加入了團(tuán)購(gòu)網(wǎng)站的商家中隨機(jī)地抽取了50家進(jìn)行調(diào)查,他們加入這三家團(tuán)購(gòu)網(wǎng)站的情況如下圖所示.(1)從所調(diào)查的50家商家中任選兩家,求他們加入團(tuán)購(gòu)網(wǎng)站的數(shù)量不相等的概率;(2)從所調(diào)查的50家商家中任取兩家,用表示這兩家商家參加的團(tuán)購(gòu)網(wǎng)站數(shù)量之差的絕對(duì)值,求隨機(jī)變量的分布列和數(shù)學(xué)期望;(3)將頻率視為概率,現(xiàn)從市隨機(jī)抽取3家已加入團(tuán)購(gòu)網(wǎng)站的商家,記其中恰好加入了兩個(gè)團(tuán)購(gòu)網(wǎng)站的商家數(shù)為,試求事件“”的概率.21.(12分)已知,分別是橢圓:的左,右焦點(diǎn),點(diǎn)在橢圓上,且拋物線的焦點(diǎn)是橢圓的一個(gè)焦點(diǎn).(1)求,的值:(2)過(guò)點(diǎn)作不與軸重合的直線,設(shè)與圓相交于A,B兩點(diǎn),且與橢圓相交于C,D兩點(diǎn),當(dāng)時(shí),求△的面積.22.(10分)(選修4-4:坐標(biāo)系與參數(shù)方程)在平面直角坐標(biāo)系,已知曲線(為參數(shù)),在以原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸建立的極坐標(biāo)系中,直線的極坐標(biāo)方程為.(1)求曲線的普通方程和直線的直角坐標(biāo)方程;(2)過(guò)點(diǎn)且與直線平行的直線交于,兩點(diǎn),求點(diǎn)到,的距離之積.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.A【解析】
先通過(guò)復(fù)數(shù)在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)關(guān)于虛軸對(duì)稱(chēng),得到,再利用復(fù)數(shù)的除法求解.【詳解】因?yàn)閺?fù)數(shù)在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)關(guān)于虛軸對(duì)稱(chēng),且復(fù)數(shù),所以所以故選:A【點(diǎn)睛】本題主要考查復(fù)數(shù)的基本運(yùn)算和幾何意義,屬于基礎(chǔ)題.2.D【解析】
由可得,所以,由為定義在上的奇函數(shù)結(jié)合增函數(shù)+增函數(shù)=增函數(shù),可知在上單調(diào)遞增,注意到,再利用函數(shù)單調(diào)性即可解決.【詳解】因?yàn)樵谏鲜瞧婧瘮?shù).所以,解得,所以當(dāng)時(shí),,且時(shí),單調(diào)遞增,所以在上單調(diào)遞增,因?yàn)?,故有,解?故選:D.【點(diǎn)睛】本題考查利用函數(shù)的奇偶性、單調(diào)性解不等式,考查學(xué)生對(duì)函數(shù)性質(zhì)的靈活運(yùn)用能力,是一道中檔題.3.C【解析】
利用誘導(dǎo)公式得,,再利用倍角公式,即可得答案.【詳解】由可得,∴,∴.故選:C.【點(diǎn)睛】本題考查誘導(dǎo)公式、倍角公式,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查邏輯推理能力和運(yùn)算求解能力,求解時(shí)注意三角函數(shù)的符號(hào).4.B【解析】
先求出直線l的方程為y(x﹣c),與y=±x聯(lián)立,可得A,B的縱坐標(biāo),利用,求出a,b的關(guān)系,即可求出該雙曲線的離心率.【詳解】雙曲線1(a>b>0)的漸近線方程為y=±x,∵直線l的傾斜角是漸近線OA傾斜角的2倍,∴kl,∴直線l的方程為y(x﹣c),與y=±x聯(lián)立,可得y或y,∵,∴2?,∴ab,∴c=2b,∴e.故選B.【點(diǎn)睛】本題考查雙曲線的簡(jiǎn)單性質(zhì),考查向量知識(shí),考查學(xué)生的計(jì)算能力,屬于中檔題.5.D【解析】
由題設(shè)中所給的定義,方程的實(shí)數(shù)根叫做函數(shù)的“新駐點(diǎn)”,根據(jù)零點(diǎn)存在定理即可求出的大致范圍【詳解】解:由題意方程的實(shí)數(shù)根叫做函數(shù)的“新駐點(diǎn)”,對(duì)于函數(shù),由于,,設(shè),該函數(shù)在為增函數(shù),,,在上有零點(diǎn),故函數(shù)的“新駐點(diǎn)”為,那么故選:.【點(diǎn)睛】本題是一個(gè)新定義的題,理解定義,分別建立方程解出存在范圍是解題的關(guān)鍵,本題考查了推理判斷的能力,屬于基礎(chǔ)題..6.D【解析】
根據(jù)雙曲線定義可以直接求出,利用勾股定理可以求出,最后求出離心率.【詳解】依題意得,,,因此該雙曲線的離心率.【點(diǎn)睛】本題考查了雙曲線定義及雙曲線的離心率,考查了運(yùn)算能力.7.C【解析】
根據(jù)線面平行的性質(zhì)定理和判定定理判斷與的關(guān)系即可得到答案.【詳解】若,根據(jù)線面平行的性質(zhì)定理,可得;若,根據(jù)線面平行的判定定理,可得.故選:C.【點(diǎn)睛】本題主要考查了線面平行的性質(zhì)定理和判定定理,屬于基礎(chǔ)題.8.A【解析】
設(shè),用表示出,求出的值即可得出答案.【詳解】設(shè)由,,.故選:A【點(diǎn)睛】本題考查了向量加法、減法以及數(shù)乘運(yùn)算,需掌握向量加法的三角形法則以及向量減法的幾何意義,屬于基礎(chǔ)題.9.B【解析】
由函數(shù)解析式中含絕對(duì)值,所以去絕對(duì)值并畫(huà)出函數(shù)圖象,結(jié)合圖象即可求得在上的最大值和最小值.【詳解】依題意,,作出函數(shù)的圖象如下所示;由函數(shù)圖像可知,當(dāng)時(shí),有最大值,當(dāng)時(shí),有最小值.故選:B.【點(diǎn)睛】本題考查了絕對(duì)值函數(shù)圖象的畫(huà)法,由函數(shù)圖象求函數(shù)的最值,屬于基礎(chǔ)題.10.A【解析】
對(duì)復(fù)數(shù)進(jìn)行乘法運(yùn)算,并計(jì)算得到,從而得到虛部為2.【詳解】因?yàn)椋詚的虛部為2.【點(diǎn)睛】本題考查復(fù)數(shù)的四則運(yùn)算及虛部的概念,計(jì)算過(guò)程要注意.11.D【解析】
利用等比中項(xiàng)性質(zhì)可得等差數(shù)列的首項(xiàng),進(jìn)而求得,再利用二次函數(shù)的性質(zhì),可得當(dāng)或時(shí),取到最小值.【詳解】根據(jù)題意,可知為等差數(shù)列,公差,由成等比數(shù)列,可得,∴,解得.∴.根據(jù)單調(diào)性,可知當(dāng)或時(shí),取到最小值,最小值為.故選:D.【點(diǎn)睛】本題考查等差數(shù)列通項(xiàng)公式、等比中項(xiàng)性質(zhì)、等差數(shù)列前項(xiàng)和的最值,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查邏輯推理能力和運(yùn)算求解能力,求解時(shí)注意當(dāng)或時(shí)同時(shí)取到最值.12.B【解析】解:因?yàn)榧现械脑乇硎镜氖潜?2整除的正整數(shù),那么可得為1,2,3,4,6,,12故選B二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
先利用倍角公式及差角公式把已知條件化簡(jiǎn)可得,平方可得.【詳解】∵,∴,則,平方可得.故答案為:.【點(diǎn)睛】本題主要考查三角恒等變換,倍角公式的合理選擇是求解的關(guān)鍵,側(cè)重考查數(shù)學(xué)運(yùn)算的核心素養(yǎng).14.【解析】
由題可得,因?yàn)橄蛄颗c向量平行,所以,解得.15.【解析】
先由三視圖在長(zhǎng)方體中將其還原成直觀圖,再利用球的直徑是長(zhǎng)方體體對(duì)角線即可解決.【詳解】由三視圖知該幾何體是一個(gè)三棱錐,如圖所示長(zhǎng)方體對(duì)角線長(zhǎng)為,所以三棱錐外接球半徑為,故所求外接球的表面積.故答案為:.【點(diǎn)睛】本題考查幾何體三視圖以及幾何體外接球的表面積,考查學(xué)生空間想象能力以及基本計(jì)算能力,是一道基礎(chǔ)題.16.【解析】設(shè),則,由題意可得故當(dāng)時(shí),由不等式,可得,或求得,或故答案為(三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(1)(2)【解析】
(1)當(dāng)時(shí),不等式可化為:,再利用絕對(duì)值的意義,分,,討論求解.(2)根據(jù)可得,得到函數(shù)的圖象與兩坐標(biāo)軸的交點(diǎn)坐標(biāo)分別為,再利用三角形面積公式由求解.【詳解】(1)當(dāng)時(shí),不等式可化為:①當(dāng)時(shí),不等式化為,解得:②當(dāng)時(shí),不等式化為,解得:,③當(dāng)時(shí),不等式化為解集為,綜上,不等式的解集為.(2)由題得,所以函數(shù)的圖象與兩坐標(biāo)軸的交點(diǎn)坐標(biāo)分別為,的面積為,由,得(舍),或,所以,參數(shù)的取值范圍是.【點(diǎn)睛】本題主要考查絕對(duì)值不等式的解法和絕對(duì)值函數(shù)的應(yīng)用,還考查分類(lèi)討論的思想和運(yùn)算求解的能力,屬于中檔題.18.(1)不是,見(jiàn)解析(2)(3)【解析】
(1)利用遞推關(guān)系求出數(shù)列的通項(xiàng)公式,進(jìn)一步驗(yàn)證時(shí),是否為數(shù)列中的項(xiàng),即可得答案;(2)由題意得,再對(duì)公差進(jìn)行分類(lèi)討論,即可得答案;(3)由題意得數(shù)列為等差數(shù)列,設(shè)數(shù)列的公差為,再根據(jù)不等式得到公差的值,即可得答案;【詳解】(1)當(dāng)時(shí),又,所以.所以當(dāng)時(shí),,而,所以時(shí),不是數(shù)列中的項(xiàng),故數(shù)列不是為“數(shù)列”(2)因?yàn)閿?shù)列是公差為的等差數(shù)列,所以.因?yàn)閿?shù)列為“數(shù)列”所以任意,存在,使得,即有.①若,則只需,使得,從而得是數(shù)列中的項(xiàng).②若,則.此時(shí),當(dāng)時(shí),不為正整數(shù),所以不符合題意.綜上,.(3)由題意,所以,又因?yàn)椋覕?shù)列為“數(shù)列”,所以,即,所以數(shù)列為等差數(shù)列.設(shè)數(shù)列的公差為,則有,由,得,整理得,①.②若,取正整數(shù),則當(dāng)時(shí),,與①式對(duì)應(yīng)任意恒成立相矛盾,因此.同樣根據(jù)②式可得,所以.又,所以.經(jīng)檢驗(yàn)當(dāng)時(shí),①②兩式對(duì)應(yīng)任意恒成立,所以數(shù)列的通項(xiàng)公式為.【點(diǎn)睛】本題考查數(shù)列新定義題、等差數(shù)列的通項(xiàng)公式,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想、分類(lèi)討論思想,考查邏輯推理能力、運(yùn)算求解能力,難度較大.19.(1)60;25(2)見(jiàn)解析,2.1(3)可以認(rèn)為該校學(xué)生的體重是正常的.見(jiàn)解析【解析】
(1)根據(jù)頻率分布直方圖可求出平均值和樣本方差;(2)由題意知服從二項(xiàng)分布,分別求出,,,,進(jìn)而可求出分布列以及數(shù)學(xué)期望;(3)由第一問(wèn)可知服從正態(tài)分布,繼而可求出的值,從而可判斷.【詳解】解:(1)(2)由已知可得從全校學(xué)生中隨機(jī)抽取1人,體重在的概率為0.7.隨機(jī)拍取3人,相當(dāng)于3次獨(dú)立重復(fù)實(shí)驗(yàn),隨機(jī)交量服從二項(xiàng)分布,則,,,,所以的分布列為:01230.0270.1890.4410.343數(shù)學(xué)期望(3)由題意知服從正態(tài)分布,則,所以可以認(rèn)為該校學(xué)生的體重是正常的.【點(diǎn)睛】本題考查了由頻率分布直方圖求進(jìn)行數(shù)據(jù)估計(jì),考查了二項(xiàng)分布,考查了正態(tài)分布.注意,統(tǒng)計(jì)類(lèi)問(wèn)題,如果題目中沒(méi)有特殊說(shuō)明,則求出數(shù)據(jù)的精度和題目中數(shù)據(jù)的小數(shù)后位數(shù)相同.20.(1);(2)從而的分布列為012;(3).【解析】
(1)運(yùn)用概率的計(jì)算公式求概率分布,再運(yùn)用數(shù)學(xué)期望公式進(jìn)行求解;(2)借助題設(shè)條件運(yùn)用貝努力公式進(jìn)行分析求解:(1)記所選取額兩家商家加入團(tuán)購(gòu)網(wǎng)站的數(shù)量相等為事件,則,所以他們加入團(tuán)購(gòu)網(wǎng)站的數(shù)量不相等的概率為.(2)由題,知的可能取值分別為0,1,2,,,從而的分布列為012.(3)所調(diào)查的50家商家中加入了兩個(gè)團(tuán)購(gòu)網(wǎng)站的商家有25家,將頻率視為概率,則從市中任取一家加入團(tuán)購(gòu)網(wǎng)站的商家,他同時(shí)加入了兩個(gè)團(tuán)購(gòu)網(wǎng)站的概率為,所以,所以事件“”的概率為.21.(1);(2).【解析】
(1)由已知根據(jù)拋物線和橢圓的定義和性質(zhì),可求出,;(2)設(shè)直線方程為,聯(lián)立直線與圓的方程可以求出,再聯(lián)立直線和橢圓的方程化簡(jiǎn),由根與系數(shù)的關(guān)系得到結(jié)論,繼而求出面積.【詳解】(1)焦點(diǎn)為F(1,0),則F1(1,0),F(xiàn)2(1,0),,解得,=1,=1,(Ⅱ)由已知,可設(shè)直線方程為,,聯(lián)立得,易知△>0,則===因?yàn)?,所以?,解
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年新科版選修4歷史上冊(cè)階段測(cè)試試卷含答案
- 2025年度共享辦公空間租賃協(xié)議延期及使用權(quán)轉(zhuǎn)讓合同4篇
- 按揭二手車(chē)轉(zhuǎn)讓合同(2篇)
- 二零二五年度新能源汽車(chē)電池回收利用合同集錦2篇
- 二零二五年度企業(yè)并購(gòu)財(cái)務(wù)盡職調(diào)查合同3篇
- 二零二五年度農(nóng)家樂(lè)鄉(xiāng)村旅游資源整合開(kāi)發(fā)合同4篇
- 二零二五年度紡織機(jī)械設(shè)備租賃合同范本4篇
- 2025年度納稅擔(dān)保稅務(wù)風(fēng)險(xiǎn)控制合同
- 2025年苗木種植與生態(tài)農(nóng)業(yè)循環(huán)經(jīng)濟(jì)合作合同4篇
- 2025年度綠色建筑認(rèn)證結(jié)算工程款合同樣本2篇
- 【寒假預(yù)習(xí)】專(zhuān)題04 閱讀理解 20篇 集訓(xùn)-2025年人教版(PEP)六年級(jí)英語(yǔ)下冊(cè)寒假提前學(xué)(含答案)
- 2024年智能監(jiān)獄安防監(jiān)控工程合同3篇
- 2024年度窯爐施工協(xié)議詳例細(xì)則版B版
- 幼兒園籃球課培訓(xùn)
- 【企業(yè)盈利能力探析的國(guó)內(nèi)外文獻(xiàn)綜述2400字】
- 統(tǒng)編版(2024新版)七年級(jí)《道德與法治》上冊(cè)第一單元《少年有夢(mèng)》單元測(cè)試卷(含答案)
- 100道20以?xún)?nèi)的口算題共20份
- 高三完形填空專(zhuān)項(xiàng)訓(xùn)練單選(部分答案)
- 護(hù)理查房高鉀血癥
- 項(xiàng)目監(jiān)理策劃方案匯報(bào)
- 《職業(yè)培訓(xùn)師的培訓(xùn)》課件
評(píng)論
0/150
提交評(píng)論