安徽省安慶市重點中學(xué)2022年高三第五次模擬考試數(shù)學(xué)試卷含解析_第1頁
安徽省安慶市重點中學(xué)2022年高三第五次模擬考試數(shù)學(xué)試卷含解析_第2頁
安徽省安慶市重點中學(xué)2022年高三第五次模擬考試數(shù)學(xué)試卷含解析_第3頁
安徽省安慶市重點中學(xué)2022年高三第五次模擬考試數(shù)學(xué)試卷含解析_第4頁
安徽省安慶市重點中學(xué)2022年高三第五次模擬考試數(shù)學(xué)試卷含解析_第5頁
已閱讀5頁,還剩17頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2021-2022高考數(shù)學(xué)模擬試卷注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知定點,,是圓上的任意一點,點關(guān)于點的對稱點為,線段的垂直平分線與直線相交于點,則點的軌跡是()A.橢圓 B.雙曲線 C.拋物線 D.圓2.已知不等式組表示的平面區(qū)域的面積為9,若點,則的最大值為()A.3 B.6 C.9 D.123.已知拋物線的焦點與雙曲線的一個焦點重合,且拋物線的準線被雙曲線截得的線段長為,那么該雙曲線的離心率為()A. B. C. D.4.我國古代數(shù)學(xué)著作《九章算術(shù)》中有如下問題:“今有器中米,不知其數(shù),前人取半,中人三分取一,后人四分取一,余米一斗五升(注:一斗為十升).問,米幾何?”下圖是解決該問題的程序框圖,執(zhí)行該程序框圖,若輸出的S=15(單位:升),則輸入的k的值為()?A.45 B.60 C.75 D.1005.已知正方體的體積為,點,分別在棱,上,滿足最小,則四面體的體積為A. B. C. D.6.已知全集,集合,,則陰影部分表示的集合是()A. B. C. D.7.在中,為邊上的中線,為的中點,且,,則()A. B. C. D.8.已知復(fù)數(shù)滿足,則的最大值為()A. B. C. D.69.已知向量與的夾角為,定義為與的“向量積”,且是一個向量,它的長度,若,,則()A. B.C.6 D.10.復(fù)數(shù)滿足(為虛數(shù)單位),則的值是()A. B. C. D.11.已知向量,且,則m=()A.?8 B.?6C.6 D.812.復(fù)數(shù)的虛部是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.設(shè)、分別為橢圓:的左、右兩個焦點,過作斜率為1的直線,交于、兩點,則________14.已知集合,,則__________.15.古代“五行”學(xué)認為:“物質(zhì)分金、木、土、水、火五種屬性,金克木,木克土,土克水,水克火,火克金.”將五種不同屬性的物質(zhì)任意排成一列,但排列中屬性相克的兩種物質(zhì)不相鄰,則這樣的排列方法有_________種.(用數(shù)字作答)16.若正三棱柱的所有棱長均為2,點為側(cè)棱上任意一點,則四棱錐的體積為__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在底面邊長為1,側(cè)棱長為2的正四棱柱中,P是側(cè)棱上的一點,.(1)若,求直線AP與平面所成角;(2)在線段上是否存在一個定點Q,使得對任意的實數(shù)m,都有,并證明你的結(jié)論.18.(12分)已知函數(shù).(1)當時,解關(guān)于的不等式;(2)若對任意,都存在,使得不等式成立,求實數(shù)的取值范圍.19.(12分)已知,函數(shù)有最小值7.(1)求的值;(2)設(shè),,求證:.20.(12分)某動漫影視制作公司長期堅持文化自信,不斷挖掘中華優(yōu)秀傳統(tǒng)文化中的動漫題材,創(chuàng)作出一批又一批的優(yōu)秀動漫影視作品,獲得市場和廣大觀眾的一致好評,同時也為公司贏得豐厚的利潤.該公司年至年的年利潤關(guān)于年份代號的統(tǒng)計數(shù)據(jù)如下表(已知該公司的年利潤與年份代號線性相關(guān)).年份年份代號年利潤(單位:億元)(Ⅰ)求關(guān)于的線性回歸方程,并預(yù)測該公司年(年份代號記為)的年利潤;(Ⅱ)當統(tǒng)計表中某年年利潤的實際值大于由(Ⅰ)中線性回歸方程計算出該年利潤的估計值時,稱該年為級利潤年,否則稱為級利潤年.將(Ⅰ)中預(yù)測的該公司年的年利潤視作該年利潤的實際值,現(xiàn)從年至年這年中隨機抽取年,求恰有年為級利潤年的概率.參考公式:,.21.(12分)已知函數(shù),不等式的解集為.(1)求實數(shù),的值;(2)若,,,求證:.22.(10分)如圖,已知四棱錐的底面是等腰梯形,,,,,為等邊三角形,且點P在底面上的射影為的中點G,點E在線段上,且.(1)求證:平面.(2)求二面角的余弦值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.B【解析】

根據(jù)線段垂直平分線的性質(zhì),結(jié)合三角形中位線定理、圓錐曲線和圓的定義進行判斷即可.【詳解】因為線段的垂直平分線與直線相交于點,如下圖所示:所以有,而是中點,連接,故,因此當在如下圖所示位置時有,所以有,而是中點,連接,故,因此,綜上所述:有,所以點的軌跡是雙曲線.故選:B【點睛】本題考查了雙曲線的定義,考查了數(shù)學(xué)運算能力和推理論證能力,考查了分類討論思想.2.C【解析】

分析:先畫出滿足約束條件對應(yīng)的平面區(qū)域,利用平面區(qū)域的面積為9求出,然后分析平面區(qū)域多邊形的各個頂點,即求出邊界線的交點坐標,代入目標函數(shù)求得最大值.詳解:作出不等式組對應(yīng)的平面區(qū)域如圖所示:則,所以平面區(qū)域的面積,解得,此時,由圖可得當過點時,取得最大值9,故選C.點睛:該題考查的是有關(guān)線性規(guī)劃的問題,在求解的過程中,首先需要正確畫出約束條件對應(yīng)的可行域,之后根據(jù)目標函數(shù)的形式,判斷z的幾何意義,之后畫出一條直線,上下平移,判斷哪個點是最優(yōu)解,從而聯(lián)立方程組,求得最優(yōu)解的坐標,代入求值,要明確目標函數(shù)的形式大體上有三種:斜率型、截距型、距離型;根據(jù)不同的形式,應(yīng)用相應(yīng)的方法求解.3.A【解析】

由拋物線的焦點得雙曲線的焦點,求出,由拋物線準線方程被曲線截得的線段長為,由焦半徑公式,聯(lián)立求解.【詳解】解:由拋物線,可得,則,故其準線方程為,拋物線的準線過雙曲線的左焦點,.拋物線的準線被雙曲線截得的線段長為,,又,,則雙曲線的離心率為.故選:.【點睛】本題考查拋物線的性質(zhì)及利用過雙曲線的焦點的弦長求離心率.弦過焦點時,可結(jié)合焦半徑公式求解弦長.4.B【解析】

根據(jù)程序框圖中程序的功能,可以列方程計算.【詳解】由題意,.故選:B.【點睛】本題考查程序框圖,讀懂程序的功能是解題關(guān)鍵.5.D【解析】

由題意畫出圖形,將所在的面延它們的交線展開到與所在的面共面,可得當時最小,設(shè)正方體的棱長為,得,進一步求出四面體的體積即可.【詳解】解:如圖,

∵點M,N分別在棱上,要最小,將所在的面延它們的交線展開到與所在的面共面,三線共線時,最小,

設(shè)正方體的棱長為,則,∴.

取,連接,則共面,在中,設(shè)到的距離為,

設(shè)到平面的距離為,

.

故選D.【點睛】本題考查多面體體積的求法,考查了多面體表面上的最短距離問題,考查計算能力,是中檔題.6.D【解析】

先求出集合N的補集,再求出集合M與的交集,即為所求陰影部分表示的集合.【詳解】由,,可得或,又所以.故選:D.【點睛】本題考查了韋恩圖表示集合,集合的交集和補集的運算,屬于基礎(chǔ)題.7.A【解析】

根據(jù)向量的線性運算可得,利用及,計算即可.【詳解】因為,所以,所以,故選:A【點睛】本題主要考查了向量的線性運算,向量數(shù)量積的運算,向量數(shù)量積的性質(zhì),屬于中檔題.8.B【解析】

設(shè),,利用復(fù)數(shù)幾何意義計算.【詳解】設(shè),由已知,,所以點在單位圓上,而,表示點到的距離,故.故選:B.【點睛】本題考查求復(fù)數(shù)模的最大值,其實本題可以利用不等式來解決.9.D【解析】

先根據(jù)向量坐標運算求出和,進而求出,代入題中給的定義即可求解.【詳解】由題意,則,,得,由定義知,故選:D.【點睛】此題考查向量的坐標運算,引入新定義,屬于簡單題目.10.C【解析】

直接利用復(fù)數(shù)的除法的運算法則化簡求解即可.【詳解】由得:本題正確選項:【點睛】本題考查復(fù)數(shù)的除法的運算法則的應(yīng)用,考查計算能力.11.D【解析】

由已知向量的坐標求出的坐標,再由向量垂直的坐標運算得答案.【詳解】∵,又,∴3×4+(﹣2)×(m﹣2)=0,解得m=1.故選D.【點睛】本題考查平面向量的坐標運算,考查向量垂直的坐標運算,屬于基礎(chǔ)題.12.C【解析】因為,所以的虛部是,故選C.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】

由橢圓的標準方程,求出焦點的坐標,寫出直線方程,與橢圓方程聯(lián)立,求出弦長,利用定義可得,進而求出。【詳解】由知,焦點,所以直線:,代入得,即,設(shè),,故由定義有,,所以?!军c睛】本題主要考查橢圓的定義、橢圓的簡單幾何性質(zhì)、以及直線與橢圓位置關(guān)系中弦長的求法,注意直線過焦點,位置特殊,采取合適的弦長公式,簡化運算。14.【解析】

直接根據(jù)集合和集合求交集即可.【詳解】解:,,所以.故答案為:【點睛】本題考查集合的交集運算,是基礎(chǔ)題.15.1.【解析】試題分析:由題意,可看作五個位置排列五種事物,第一位置有五種排列方法,不妨假設(shè)排上的是金,則第二步只能從土與水兩者中選一種排放,故有兩種選擇不妨假設(shè)排上的是水,第三步只能排上木,第四步只能排上火,第五步只能排上土,故總的排列方法種數(shù)有5×2×1×1×1=1.考點:排列、組合及簡單計數(shù)問題.點評:本題考查排列排列組合及簡單計數(shù)問題,解答本題關(guān)鍵是理解題設(shè)中的限制條件及“五行”學(xué)說的背景,利用分步原理正確計數(shù),本題較抽象,計數(shù)時要考慮周詳.16.【解析】

依題意得,再求點到平面的距離為點到直線的距離,用公式所以即可得出答案.【詳解】解:正三棱柱的所有棱長均為2,則,點到平面的距離為點到直線的距離所以,所以.故答案為:【點睛】本題考查椎體的體積公式,考查運算能力,是基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1);(2)存在,Q為線段中點【解析】

解法一:(1)作出平面與平面的交線,可證平面,計算,,得出,從而得出的大小;(2)證明平面,故而可得當Q為線段的中點時.解法二,以為原點,以為建立空間直角坐標系:(1)由,利用空間向量的數(shù)量積可求線面角;(2)設(shè)上存在一定點Q,設(shè)此點的橫坐標為,可得,由向量垂直,數(shù)量積等于零即可求解.【詳解】(1)解法一:連接交于,設(shè)與平面的公共點為,連接,則平面平面,四邊形是正方形,,平面,平面,,又,平面,為直線AP與平面所成角,平面,平面,平面平面,,又為的中點,,,,直線AP與平面所成角為.(2)四邊形正方形,,平面,平面,,又,平面,又平面,,當Q為線段中點時,對于任意的實數(shù),都有.解法二:(1)建立如圖所示的空間直角坐標系,則,,所以,,,又由,,則為平面的一個法向量,設(shè)直線AP與平面所成角為,則,故當時,直線AP與平面所成角為.(2)若在上存在一定點Q,設(shè)此點的橫坐標為,則,,依題意,對于任意的實數(shù)要使,等價于,即,解得,即當Q為線段中點時,對于任意的實數(shù),都有.【點睛】本題考查了線面垂直的判定定理、線面角的計算,考查了空間向量在立體幾何中的應(yīng)用,屬于中檔題.18.(1);(2).【解析】

(1)分類討論去絕對值號,然后解不等式即可.(2)因為對任意,都存在,使得不等式成立,等價于,根據(jù)絕對值不等式易求,根據(jù)二次函數(shù)易求,然后解不等式即可.【詳解】解:(1)當時,,則當時,由得,,解得;當時,恒成立;當時,由得,,解得.所以的解集為(2)對任意,都存在,得成立,等價于.因為,所以,且|,①當時,①式等號成立,即.又因為,②當時,②式等號成立,即.所以,即即的取值范圍為:.【點睛】知識:考查含兩個絕對值號的不等式的解法;恒成立問題和存在性問題求參變數(shù)的范圍問題;能力:分析問題和解決問題的能力以及運算求解能力;中檔題.19.(1).(2)見解析【解析】

(1)由絕對值三解不等式可得,所以當時,,即可求出參數(shù)的值;(2)由,可得,再利用基本不等式求出的最小值,即可得證;【詳解】解:(1)∵,∴當時,,解得.(2)∵,∴,∴,當且僅當,即,時,等號成立.∴.【點睛】本題主要考查絕對值三角不等式及基本不等式的簡單應(yīng)用,屬于中檔題.20.(Ⅰ),該公司年年利潤的預(yù)測值為億元;(Ⅱ).【解析】

(Ⅰ)求出和的值,將表格中的數(shù)據(jù)代入最小二乘法公式,求得和的值,進而可求得關(guān)于的線性回歸方程,然后將代入回歸直線方程,可得出該公司年年利潤的估計值;(Ⅱ)利用(Ⅰ)中的回歸直線方程計算出從年至年這年被評為級利潤年的年數(shù),然后利用組合計數(shù)原理結(jié)合古典概型的概率可得出所求事件的概率.【詳解】(Ⅰ)根據(jù)表中數(shù)據(jù),計算可得,,,又,,,關(guān)于的線性回歸方程為.將代入回歸方程得(億元),該公司年的年利潤的預(yù)測值為億元.(Ⅱ)由(Ⅰ)可知年至年的年利潤的估計值分別為、、、、、、、(單位:億元),其中實際利潤大于相應(yīng)估計值的有年.故這年中被評為級利潤年的有年,評為級利潤年的有年.記“從年至年這年的年利潤中隨機抽取年,恰有年為級利潤年”的概率為,.【點

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論